Skip to main content
Log in

Study of water in Ca-montmorillonite by thermal analysis and positron annihilation lifetime spectroscopy

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The aim of this study is to characterize adsorbed liquid in montmorillonite structure for different levels of adsorption by both thermoanalytical and microstructural methods. Montmorillonite of Ca type is used for the analysis. Water desorption process occurring typically between 50 and 180 °C is analysed in details by thermogravimetric analysis. Thermal response of adsorbed water for the selected steps of desorption process is studied by differential scanning calorimetry. Corresponding characterization of free volume is performed by positron annihilation lifetime spectroscopy. An attempt to determine a correlation of characterization method results is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kader MA, Kim K, Lee Y-S, Nah C. Preparation and properties of nitrile rubber/montmorillonite nanocomposites via latex blending. J Mater Sci. 2006;41:7341–52.

    Article  CAS  Google Scholar 

  2. Lloyd L. Handbook of industrial catalysts. New York: Springer; 2011.

    Book  Google Scholar 

  3. Riikonen J, Salonen J, Lehto VP. Utilising thermoporometry to obtain new insights into nanostructured materials: review part 1. J Therm Anal Calorim. 2011;105:811–21.

    Article  CAS  Google Scholar 

  4. Riikonen J, Salonen J, Lehto VP. Utilising thermoporometry to obtain new insights into nanostructured materials: review part 2. J Therm Anal Calorim. 2011;105:823–30.

    Article  CAS  Google Scholar 

  5. Landry MR. Thermoporometry by differential scanning calorimetry: experimental considerations and applications. Thermochim Acta. 2005;433:27–50.

    Article  CAS  Google Scholar 

  6. Illeková E, Miklošovičová M, Šauša O, Berek D. Solidification and melting of cetane confined in the nanopores of silica gel. J Therm Anal Calorim. 2012;108:497–503.

    Article  CAS  Google Scholar 

  7. Illeková E, Krištiak J, Macová E, Maťko I, Šauša O. Rearrangement of hexadecane molecules confined in the nanopores of a controlled I pore glass using positron annihilation and differential scanning calorimetry. J Therm Anal Calorim. 2013;113:1187–96.

    Article  CAS  Google Scholar 

  8. Iskrová M, Majerník V, Illeková E, Šauša O, Berek D, Krištiak J. Free volume seen by positronium in bulk and confined molecular liquid. Mat Sci Forum. 2009;607:235–7.

    Article  Google Scholar 

  9. Šauša O, Illeková E, Krištiak J, Berek D, Macová E. PALS and DSC study of partially filled nanopores by E hexadecane. J Phys Conf Ser. 2013;443:012059.

    Article  Google Scholar 

  10. Illeková E, Macová E, Majerník V, Maťko I, Šauša O. Anomalous thermal expansion of thin cetane layer solidified at the inner surface of confining nanoporous silica gel. J Therm Anal Calorim. 2014;116:753–8.

    Article  CAS  Google Scholar 

  11. Maťko I, Šauša O, Macová E, Berek D. Combined study of confined water in controlled pore glasses by differential scanning calorimetry and positron annihilation lifetime spectroscopy. J Therm Anal Calorim. 2015;121:163–8.

    Article  CAS  Google Scholar 

  12. Tao SJ. Positronium annihilation in molecular substances. J Chem Phys. 1972;56:5499–510.

    Article  CAS  Google Scholar 

  13. Eldrup M, Lightbody D, Sherwood JN. The temperature dependence of positron lifetime in solid pivalic acid. Chem Phys. 1981;63:51–8.

    Article  CAS  Google Scholar 

  14. Zaleski, R. EELViS. http://eelvis.sourceforge.net (2009). Accessed 15 Jun 2011.

  15. Ferrell RA. Long lifetime of positronium in liquid helium. Phys Rev. 1957;108:167.

    Article  CAS  Google Scholar 

  16. Goworek T. Positronium as a probe of small free volumes in crystals, polymers and porous media. Ann Univ Maria Curie-Sklodowska, Lublin-Polonia. 2014;69:1–110.

    Google Scholar 

  17. Gonzáles Sánchez F, Jurányi F, Gimmi T, Van Loon L, Seydel T, Unruh T. Dynamics of supercooled water in highly compacted clays studied by neutron scattering. J Phys Condens Matter. 2008. https://doi.org/10.1088/0953-8984/20/41/415102.

    Article  Google Scholar 

  18. Jesenák K. Laboratory device for sedimentation separation of powders. Ceramics. 1994;38:35–6.

    Google Scholar 

  19. Jesenák K, Kuchta Ľ, Guller L, Fúsková J. Physico-chemical properties of Bentonite “Stará Kremnička – Jelšový potok” I: particle size distribution. Mineralia Slovaca. 1997;29:439–42.

    Google Scholar 

  20. Jesenák K, Fajnor V. Distribution of trace elements in bentonite Stará Kremnička – Jelšový potok. Mineralia Slovaca. 1995;27:221–4.

    Google Scholar 

  21. Kansy J. Microcomputer program for analysis of positron annihilation lifetime spectra. Nucl Instrum Method A. 1996;374:235–44.

    Article  CAS  Google Scholar 

  22. Brun M, Lallemand A, Quinson J, Eyraud C. A new method for simultaneous determination of size and shape of pores: the thermoporometry. Thermochim Acta. 1977;21:59–88.

    Article  CAS  Google Scholar 

  23. Morishige K, Yasunaga H, Denoyel R, Wernert V. Pore-blocking-controlled freezing of water in Cagelike Pores of KIT-5. J Phys Chem C. 2007;111:9488–95.

    Article  CAS  Google Scholar 

  24. Janssen AH, Talsma H, van Steenbergen MJ, de Jong KP. Homogeneous nucleation of water in mesoporous zeolite cavities. Langmuir. 2004;20:41–5.

    Article  CAS  PubMed  Google Scholar 

  25. Pruppacher HRJ. A new look at homogeneous ice nucleation in supercooled water drops. Atmos Sci. 1995;52:1924–33.

    Article  Google Scholar 

  26. Fajnor VŠ, Jesenák K. Differential thermal analysis of montmorillonite. J Therm Anal. 1996;46:489–93.

    Article  CAS  Google Scholar 

  27. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  28. Consolati G, Natali-Sora I, Pelosato R, Quasso F. Investigation of cation-exchanged montmorillonites by combined X-ray diffraction and positron annihilation lifetime spectroscopy. J Appl Phys. 2002;91:1928–32.

    Article  CAS  Google Scholar 

  29. Stepanov SV, Zvezhinski DS, Duplâtre G, Byakov VM, Batskikh YY, Stepanov PS. Incorporation of the magnetic quenching effect into the blob model of Ps formation. Finite sized Ps in a potential well. Mat Sci Forum. 2011;666:109–14.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Work was partially supported by projects VEGA 2/0127/17, VEGA 2/0157/17, APVV-16-0369 and APVV-15-0621.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Maťko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maťko, I., Šauša, O., Čechová, K. et al. Study of water in Ca-montmorillonite by thermal analysis and positron annihilation lifetime spectroscopy. J Therm Anal Calorim 133, 247–254 (2018). https://doi.org/10.1007/s10973-018-7145-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7145-7

Keywords

Navigation