Skip to main content
Log in

Physicochemical properties of ceramic tape involving Ca0.05 Ba0.95 Ce0.9Y0.1O3 as an electrolyte designed for electrolyte-supported solid oxide fuel cells (IT-SOFCs)

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A proton-conducting membrane involving modified barium cerate BaCe0.9Y0.1O3 was obtained in the form of gas-tight ceramic tape. Monophase Ca0.05Ba0.95Ce0.9Y0.1O3 (5CBCY) powder and an organic medium consisting of polyvinyl butyral used as a binder, a plasticiser based on carboxylic acid esters, and a mixture of ethanol and methyl ethyl ketone were used to prepare slurry for the tape-casting process. Gas-tight ceramic tapes involving 5CBCY and sintered samples were tested as electrolytes in hydrogen–oxygen button solid oxide fuel cells within the temperature range 500–750 °C. Variations in OCV and ohmic resistance (Rs) were determined within this range. A considerable decrease in Rs value was recorded for 5CBCY tape compared to 5CBCY sintered samples. A series of symmetrical cells with 5CBCY electrolytes was analysed. The lowest ASR values for the investigated cells were found for a newly elaborated LSCF–5CBCY cathode as well as for a Ni–5CBCY anode. These electrode materials appear to be suitable for 5CBCY-electrolyte-supported solid oxide fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Iwahra H, Asakura Y, Katahira K, Tanaka M. Prospects of hydrogen technology using proton-conducting ceramics. Solid State Ionics. 2004;168:299–310.

    Article  CAS  Google Scholar 

  2. Tao Z, Zhu Z, Wang H, Liu W. A stable BaCeO3-based proton conductor for intermediate-temperature solid oxide fuel cells. J Power Sources. 2010;195:3481–4.

    Article  CAS  Google Scholar 

  3. Sawant P, Warma S, Wani BN, Bharadwaj SR. Influence of synthesis route on morphology and conduction behavior of BaCe0.8Y0.2O3−δ. J Therm Anal Calorim. 2012;107:189–95.

    Article  CAS  Google Scholar 

  4. Gaweł R, Przybylski K, Vivami M. Resistance of composite materials based on BaCeO3 against the corrosive effect of carbon dioxide and water vapour at intermediate fuel cell. J Therm Anal Calorim. 2014;116:895–903.

    Article  CAS  Google Scholar 

  5. Bućko MM, Dudek M. Structural and electrical properties of (Ba1−xSrx)(Zr0.9M0.1)O3, M = Y, La solid solution. J Power Sources. 2009;194:25–30.

    Article  CAS  Google Scholar 

  6. Kochetova N, Animitsa A, Medvedev M, Demin A, Tsiakars P. Recent activity in the development of proton-conducting oxides for high temperature applications. RSC Adv. 2016;6:73222–68.

    Article  CAS  Google Scholar 

  7. Amsif M, Marrero-López D, Ruiz-Morales JC, Savvin SN, Núñez P. The effect of Zn addition on the structure and transport properties of BaCe0.9−xZrxY0.1O3−δ. J Eur Ceram Soc. 2014;34:1553–62.

    Article  CAS  Google Scholar 

  8. Pasierb P, Gajerski R, Osiadły M, Łącz A. Application of DTA-TG-MS for determination of chemical stability of BaCeO3−δ—based protonic conductors. J Therm Anal Calorim. 2014;117:683–91.

    Article  CAS  Google Scholar 

  9. Hossain S, Abdallan AM, Noorazean S, Azad A. A review on proton conducting electrolytes for clean energy and intermediate temperature-solid oxide fuel cells. Renew Sust Energ Rev. 2017;79:750–64.

    Article  CAS  Google Scholar 

  10. Dudek M, Lis B, Rapacz-Kmita A, Gajek M, Raźniak A. Some observation on the synthesis and electrolytic properties of (Ba1−xCax)(M0.9Y0.1)O3 M = Ce, Zr based samples modified with calcium. Mater Sci Poland. 2016;34:101–14.

    Article  CAS  Google Scholar 

  11. Okiba T, Fuijshiro F, Hashimoto T. Evaluation of kinetic stability against CO2 and conducting property of BaCe0.9−xZrxY0.1O3−δ. J Therm Anal Calorim. 2013;113:1269–74.

    Article  CAS  Google Scholar 

  12. Radojković A, Žunić M, Savić SM, Branković G, Branković Z. Chemical stability and electrical properties of Nb doped BaCe0.9Y0.1 O3−δ as a high temperature proton conducting electrolyte for IT-SOFC. Ceram Int. 2013;29:2631–7.

    Article  CAS  Google Scholar 

  13. Łącz A, Pasierb P. Synthesis and properties of BaCe1−xYxO3-δ—BaWO4 composite protonic conductors. J Therm Anal Calorim. 2013;113:405–12.

    Article  CAS  Google Scholar 

  14. Hung IM, Peng HW, Zheng SL, Lin CP, Wu JS. Phase stability and conductivity of Ba1−xSrxCe0.9Y0.1O3-δ solid oxide fuel cell electrolyte. J Power Sources. 2009;193:155–9.

    Article  CAS  Google Scholar 

  15. Wang S, Zhao F, Zhang L, Brinkman K, Chen F. Stability and electrical property of Ba1−xSrxCe0.8Y0.2O3-δ high temperature proton conductor. J Alloys Compd. 2010;506:263–7.

    Article  CAS  Google Scholar 

  16. Timakul P, Jinawath S, Aungkavattana P. Fabrication of electrolyte materials for solid oxide fuel cells by tape-casting. Ceram Int. 2008;34:867–71.

    Article  CAS  Google Scholar 

  17. Fernández-González R, Molina T, Savvin S, Moreno R, Makradi A, Núñez P. Fabrication and electrical characterization of several YSZ tapes for SOFC application. Ceram Int. 2014;40:4253–14259.

    Article  CAS  Google Scholar 

  18. Fu Y, Liu Y, Hu S. Aqueous tape casting and crystalization beahaviour of gadolina-doped ceria. Ceram Int. 2009;35:3153–9.

    Article  CAS  Google Scholar 

  19. Mahmud LS, Muchtar A, Somalu MR. Challenges in fabricating planar solid oxide fuel cells: a review. Renew Sust Energ Rev. 2017;72:105–16.

    Article  CAS  Google Scholar 

  20. Savignat SB, Chiron M, Barthet C. Tape casting of new electrolyte and anode materials for SOFCs operated at intermediate temperature. J Eur Ceram. 2007;27:673–8.

    Article  CAS  Google Scholar 

  21. Zhou J, Liu Q, Zhang L, Chan SH. A study of short stack with large area solid oxide fuel cells by aqueous tape casting. Int J Hydrog. Energy. 2016;41:18203–6.

    Article  CAS  Google Scholar 

  22. Costa R, Hafsaoui J, Oliviera A, Grosjean A, Caruel M, Chesnaud A, Thorel A. Tape casting of proton conducting material. J Appl Electrochem. 2009;36:485–95.

    Article  CAS  Google Scholar 

  23. Yoo CY, Yun DS, Park SY, Park JH, Kwak M. Investigations of electrochemical properties of model lanthanium cobalt ferrite—based cathodes for proton ceramic fuel cells. Electrocatalysis. 2016;7:280–6.

    Article  CAS  Google Scholar 

  24. Ii H, Choi S, Yoon KC, Son H, Kim BK, Lee H, Lee J. Influence of wet atmosphere on electrical and transport properties of lanthanum strontium cobalt ferrite cathode materials for protonic ceramic fuel cells. Solid State Ionics. 2013;249:249–50.

    Google Scholar 

  25. Raźniak A, Tomczyk P. Application of microelectrodes for investigation of the oxygen electrode reaction in selected electrolytes. Mater Sci Poland. 2008;26:195–206.

    Google Scholar 

  26. Tomczyk P, Żurek S, Mosiałek M. Effect of time and polarization on kinetics of the oxygen electrode reaction at an Au|YSZ interface. J Electroceram. 2009;23:25–36.

    Article  CAS  Google Scholar 

  27. James F, Roos M. Minuit—a system for function minimization and analysis of the parameter errors and correlations. Comput Phys Commun. 1975;10:343–67.

    Article  Google Scholar 

  28. Mosiałek M, Nowak P, Dudek M, Mordarski G. Oxygen reduction at the Ag|Gd0.2Ce0.8O1.9 interface studied by electrochemical impedance spectroscopy and cyclic voltammetry at the silver point electrode. Electrochim Acta. 2014;120:248–53.

    Article  CAS  Google Scholar 

  29. Chanquia CM, Mogni L, Troiani HE, Caneiro A. Higly active La0.4Sr0.6Co0.8Fe0.2O3−d nanocatalyst for oxygen reduction in intermediate temperature solid oxide fuel cells. J Power Sources. 2014;270:457–67.

    Article  CAS  Google Scholar 

  30. Asadi AA, Behrouzifar A, Iravaninia M, Mohammedi T, Pak A. Preparation and oxygen permeation of La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF) perovskite-type membranes: experimental study and mathematical modelling. Ind Eng Chem Res. 2012;51:3069–80.

    Article  CAS  Google Scholar 

  31. Malavasi L, Ritter C, Chiodelli G. Correlation between thermal properties, electrical conductivity and crystal structure in the BaCe0.8Y0.2O2.9 proton conductor. Chem Mater. 2008;20:2343–51.

    Article  CAS  Google Scholar 

  32. Ding Y, Li Y, Huang W. The role of Ba concentration on the structural characteristics and electrical conductivities of BaxCe0.9Y0.1O3−α. Mater Res Bull. 2017;205:122–8.

    Google Scholar 

  33. Nguyen NTQ, Yoon HH. Preparation and evaluation of BaZr0.1Ce0.7Y0.1Yb0.1O3−δ (BZCYYb) electrolyte and BZCYYb-based solid oxide fuel cells. J Power Sources. 2013;231:213–8.

    Article  CAS  Google Scholar 

  34. Sun Z, Fabbri E, Bi L. Traversa E. Electrochemical properties and intermediate-temperature fuel cell performance of dense yttrium-doped barium zirconate with calcium addition. J Am Ceram Soc. 2012;95:627–35.

    Article  CAS  Google Scholar 

  35. He B, Zhang L, Zhang Y, Ding D, Xu J, Ling Y, Zhao Y. New insight into highly active cathode of proton conducting solid oxide fuel cells by oxygen ionic conductor modification. J Power Sources. 2015;287:170–6.

    Article  CAS  Google Scholar 

  36. Zhao L, Li G, Chen K, Ling Y, Cui Y, Gui L, He B. Sm0.5Sr0.5CoO3-δ infiltrated Ce0.9Gd0.1O2−δ composite cathodes for high performance protonic ceramic fuel cells. J Power Sources. 2016;333:24–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The paper was completed under a contract with the AGH University of Science and Technology, Cracow, Poland (No. 15.11.210.345). Some measurements were performed using scientific equipment belonging to the laboratories of the AGH-UST Energy Centre, Cracow, Poland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena Dudek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lis, B., Dudek, M., Kluczowski, R. et al. Physicochemical properties of ceramic tape involving Ca0.05 Ba0.95 Ce0.9Y0.1O3 as an electrolyte designed for electrolyte-supported solid oxide fuel cells (IT-SOFCs). J Therm Anal Calorim 133, 95–105 (2018). https://doi.org/10.1007/s10973-018-7105-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7105-2

Keywords

Navigation