Skip to main content
Log in

DTA–TGA and XRD study of the formation of LISICON-type Li1+xCrxZr2−x(PO4)3 ceramic using ZrOCl2·8H2O as precursor

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This contribution is devoted to thermoanalytical investigation of the mechanism of the formation of solid solutions of Li1+xCrxZr2−x(PO4)3. The samples were prepared by high-temperature solid-state reaction in the reaction mixtures of (0.5 + x/2)Li2CO3–(2 − x)ZrOCl2·8H2O–(x/2)Cr2O3–3(NH4)2HPO4. Thermal behaviour of the mixtures was characterised using STA analysis (RT-1200 °C); evolution of the phase composition during heating was analysed using powder XRD analysis. It is shown that with increase in substitution degree x from 0 to 2, the mechanism of the formation of the solid solutions changes dramatically. In general, it is influenced by the content of ZrOCl2·8H2O because its interaction with (NH4)2HPO4 is the dominant feature of the thermal transformation of the mixtures. However, with decrease in ZrOCl2·8H2O content and the corresponding increase in x, the indicated process becomes less dominant. On the other hand, unreacted amount of (NH4)2HPO4 is increased and the corresponding effect of elimination of its ammonia becomes more and more prominent. The mixture with x = 2 can be characterised with typical behaviour of the mixtures of (NH4)2HPO4 with oxides or carbonates. In general, the formation of solid solutions required calcination at 1200 °C during 6–12 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gorodylova N, Kosinová V, Šulcová P, Bělina P, Vlček M. Cr1/3Zr2P3O12 with unusual tetrahedral coordination of Cr(III): peculiarities of the formation, thermal stability and application as a pigment. Dalton Trans. 2014;43(41):15439–49.

    Article  CAS  PubMed  Google Scholar 

  2. Gorodylova N, Kosinová V, Dohnalová Ž, Bělina P, Šulcová P. New purple-blue ceramic pigments based on CoZr4(PO4)6. Dyes Pigm. 2013;98:393–404.

    Article  CAS  Google Scholar 

  3. Oikonomou P, Dedeloudis Ch, Stournaras CJ, Ftikos C. [NZP]: a new family of ceramics with low thermal expansion and tunable properties. J Eur Ceram Soc. 2007;27:1253–6.

    Article  CAS  Google Scholar 

  4. Zhang Y, Chen K, Shen Y, Lin Y, Nan C-W. Enhanced lithium-ion conductivity in a LiZr2(PO4)3 solid electrolyte by Al doping. Ceram Int. 2017; ahead of print.

  5. Mutter D, Urban DF, Elsaesser Ch. Systematic search for lithium ion conducting compounds by screening of compositions combined with atomistic simulation. MRS Adv. 2017;2(9):483–9.

    Article  CAS  Google Scholar 

  6. Orlova AI. Isomorphism in d-and f-element phosphates having framework crystal structure and crystallochemical conception of NZP matrix for radionuclide immobilisation. Czech J Phys. 2003;53A:649–55.

    Article  Google Scholar 

  7. Wang T, Yu Q, Kong J, Wong Ch. Synthesis and heat-insulating properties of yttria-stabilized ZrO2 hollow fibers derived from a ceiba template. Ceram Int. 2017;43(12):9296–302.

    Article  CAS  Google Scholar 

  8. Xiao L, Xu L-F, Hua K-H, Shui A-Z. Preparation of Al2O3–ZrO2 composite nanopowders by co-precipitation method. J Synth Cryst. 2015;44(10):2751–5.

    CAS  Google Scholar 

  9. Thananatthanachon T. Synthesis and characterization of a perovskite barium zirconate (BaZrO3): an experiment for an advanced inorganic chemistry laboratory. J Chem Educ. 2016;93(6):1120–3.

    Article  CAS  Google Scholar 

  10. Zhao D, Deng X, Ding Z, Wang H, Ma G. Intermediate temperature ionic conduction in Mg2+-doped ZrP2O7 ceramics. Solid State Ion. 2012;229:33–7.

    Article  CAS  Google Scholar 

  11. Gorodylova N, Šulcová P, Bosacka M, Filipek E, Vlček M. Heterovalent Zr4+–Cu2+ substitution in zirconium pyrophosphate: from theoretical models to synthesis and utilisation. J Eur Ceram Soc. 2015;35:4293–305.

    Article  CAS  Google Scholar 

  12. Tao X, Xiang Zh, Zhou Sh, Zhu Y, Qiu W. Synthesis of a soluble preceramic polymer for ZrC using 2-hydroxybenzyl alcohol as carbon source. Adv Appl Ceram. 2016;115(6):342–8.

    Article  CAS  Google Scholar 

  13. Liu Y, Geng R, Cui Y, Peng S, Chang X, Han K, Yu M. A novel liquid hybrid precursor method via sol-gel for the preparation of ZrB2 films. Mater Des. 2017;128:80–5.

    Article  CAS  Google Scholar 

  14. Patra N, Nasiri NA, Jayaseelan DD, Lee WE. Synthesis, characterization and use of synthesized fine zirconium diboride as an additive for densification of commercial zirconium diboride powder. Ceram Int. 2016;42(8):9565–70.

    Article  CAS  Google Scholar 

  15. Guo Ch. Preparation and applications of kaolin ZrO2/ZnO loaded photo-catalytic functional materials. Mater Res Appl. 2015;9(3):162–5.

    CAS  Google Scholar 

  16. Bhattacharyya KG, Sen Gupta S. Adsorption of Fe(III), Co(II) and Ni(II) on ZrO-kaolinite and ZrO-montmorillonite surfaces in aqueous medium. Colloids Surf A Physicochem Eng Asp. 2008;317(1–3):71–9.

    Article  CAS  Google Scholar 

  17. Nikoofar K, Khademi Z. A review on green Lewis acids: zirconium(IV) oxydichloride octahydrate (ZrOCl2·8H2O) and zirconium(IV) tetrachloride (ZrCl4) in organic chemistry. Res Chem Intermed. 2016;42(5):3929–77.

    Article  CAS  Google Scholar 

  18. Gorodylova N, Šulcová P, Bosacka M, Filipek E. DTA–TG and XRD study on the reaction between ZrOCl2·8H2O and (NH4)2HPO4 for synthesis of ZrP2O7. J Therm Anal Calorim. 2014;2014(118):1095–100.

    Article  CAS  Google Scholar 

  19. Gorodylova N, Kosinová V, Šulcová P. Interrelations between composition, structure, thermal stability, and chromatic characteristics of new NASICON-related solid solutions of Li1+x Cr x Zr2−x (PO4)3. Ceram Int. 2017;. doi:10.1016/j.ceramint.2017.07.135.

    Article  Google Scholar 

  20. Kim JW, Lee HG. Thermal and carbothermic decomposition of Na2CO3 and Li2CO3. Metallurg Mater Trans B. 2001;32:17–24.

    Article  Google Scholar 

  21. Stenina IA, Velikodnyi YuA, Ketsko VA, Yaroslavtsev AB. Synthesis of NASICON-type lithium zirconium phosphate. Inorg Mater. 2004;40:967–70.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank for the financial support to Grant Agency of Czech Republic (No. 16-06697S).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nataliia Gorodylova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorodylova, N., Šulcová, P. DTA–TGA and XRD study of the formation of LISICON-type Li1+xCrxZr2−x(PO4)3 ceramic using ZrOCl2·8H2O as precursor. J Therm Anal Calorim 133, 405–411 (2018). https://doi.org/10.1007/s10973-017-6736-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6736-z

Keywords

Navigation