Skip to main content
Log in

Primary activity standardization of 134Cs

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Cesium-134 has been measured by means of a new coincidence counting system which is equipped with a liquid scintillation detector to count β particles and a NaI crystal to detect γ-rays which are emitted simultaneously. In order to validate this new technique, additional measurements were carried out with an established 4πβγ-coincidence counting system with a proportional counter in the β channel. The coincidence counting experiments were complemented with measurements in further liquid scintillation counters with two and three photomultiplier tubes. The counting efficiencies for these systems were determined using CIEMAT/NIST efficiency tracing and the triple-to-double coincidence ratio (TDCR) method, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Schönfeld E, Janssen H, Klein R, Hardy JC, Iacob V, Sanchez-Vega M, Griffin HC, Ludington MA (2002) Production of Co-60 sources for high-accuracy efficiency calibrations of gamma-ray spectrometers. Appl Radiat Isot 56:215–221

    Article  Google Scholar 

  2. Nähle O, Kossert K, Cassette P (2010) Activity standardization of 3H with the new TDCR system at PTB. Appl Radiat Isot 68:1534–1536

    Article  Google Scholar 

  3. Grau Malonda A (1999) Free parameter models in liquid scintillation counting. Colección Documentos CIEMAT, CIEMAT. ISBN 84-7834-350-4

    Google Scholar 

  4. Broda R, Cassette P, Kossert K (2007) Radionuclide metrology using liquid scintillation counting. Metrologia 44:S36–S52

    Article  CAS  Google Scholar 

  5. Bé MM, Chisté V, Dulieu C, Mougeot X, Chechev VP, Kondev FG, Nichols AL, Huang X, Wang B (2013) Table of radionuclides (Vol. 7A = 14 to 245). Monographie BIPM-5 Vol. 7, Bureau International des Poids et Mesures, Sèvres, ISBN-13 978-92-822-2248-5

  6. Nähle O, Zhao Q, Wanke C, Weierganz M, Kossert K (2014) A portable TDCR system. Appl Radiat Isot 87:249–253

    Article  Google Scholar 

  7. Schönfeld E, Janssen H (1994) Precise measurement of dead time. Nucl Instrum Methods A339:137–143

    Article  Google Scholar 

  8. Smith D (1978) Improved correction formulae for coincidence counting. Nucl Instrum Methods 152:505–519

    Article  CAS  Google Scholar 

  9. ICRU Report 52 (1994) Particle counting in radioactivity measurements. Bethesda, Md., ISBN 0-913394-51-3

  10. Bouchard J, Cassette P (2000) MAC3: an electronic module for the processing of pulses de-livered by a three photomultiplier liquid scintillation counting system. Appl Radiat Isot 52:669–672

    Article  CAS  Google Scholar 

  11. Rytz A (1982) Activity measurement of a solution of 134Cs: report on an international comparison. Nucl Instrum Methods 192:427–431

    Article  CAS  Google Scholar 

  12. Yunoki A, Kawada Y, Hino Y (2016) Improvements of the standardization of 134Cs by the critical window setting for 605 keV photopeak. Appl Radiat Isot 109:374–377

    Article  CAS  Google Scholar 

  13. García-Toraño E, Rodríguez Barquero L, Roteta M (2002) Standardization of 134Cs by three methods. Appl Radiat Isot 56:211–214

    Article  Google Scholar 

  14. Kibédi T, Burrows TW, Trzhaskovskaya MB, Davidson PM, Nestor CW Jr. (2008) Evaluation of theoretical conversion coefficients using BrIcc. Nucl Instrum Methods.589, 202–229. And: http://bricc.anu.edu.au/. Accessed June 2015

  15. Kossert K, Schrader H (2004) Activity standardization by liquid scintillation counting and half-life measurements of 90Y. Appl Radiat Isot 60:741–749

    Article  CAS  Google Scholar 

  16. Nähle O, Kossert K, Klein R (2008) Activity standardization of 22Na. Appl Radiat Isot 66:865–871

    Article  Google Scholar 

  17. Verdecia OP, Kossert K (2009) Activity standardization of 131I at CENTIS-DMR and PTB within the scope of a bilateral comparison. Appl Radiat Isot 67:1099–1103

    Article  Google Scholar 

  18. Carles AG (2007) MICELLE, the micelle size effect on the LS counting efficiency. Comput Phys Commun 176:305–317

    Article  Google Scholar 

  19. Kossert K, Nähle OJ, Ott O, Dersch R (2012) Activity determination and nuclear decay data of 177Lu. Appl Radiat Isot 70:2215–2221

    Article  CAS  Google Scholar 

  20. Kossert K, Nähle OJ (2014) Activity determination of 59Fe. Appl Radiat Isot 93:33–37

    Article  CAS  Google Scholar 

  21. Kossert K, Cassette P, Carles AG, Jörg G, Gostomski CL, Nähle O, Wolf C (2014) Extension of the TDCR model to compute counting efficiencies for radionuclides with complex decay schemes. Appl Radiat Isot 87:242–248

    Article  CAS  Google Scholar 

  22. Kossert K, Altzitzoglou T, Auerbach P, Bé MM, Bobin Ch, Cassette P, García-Toraño E, Grigaut-Desbrosses H, Isnard H, Lourenço V, Nähle O, Paepen J, Peyrés V, Pommé S, Rozkov A, Sanchez-Cabezudo AI, Sochorová J, Thiam C, Van Ammel R (2014) Results of the EURAMET.RI(II)-K2.Ho-166 m activity comparison. Metrologia 51:06022

    Article  Google Scholar 

  23. Kossert K, Grau Carles A (2010) Improved method for the calculation of the counting efficiency of electron-capture nuclides in liquid scintillation samples. Appl Radiat Isot 68:1482–1488

    Article  CAS  Google Scholar 

  24. Kossert K, Broda R, Cassette P, Ratel G, Zimmerman B (2015) Uncertainty determination for activity measurements by means of the TDCR method and the CIEMAT/NIST efficiency tracing technique. Metrologia 52:S172–S190

    Article  CAS  Google Scholar 

  25. Kossert K, Mougeot X (2015) The importance of the beta spectrum calculation for accurate activity determination of 63Ni by means of liquid scintillation counting. Appl Radiat Isot 101:40–43

    Article  CAS  Google Scholar 

  26. Nähle O, Kossert K (2011) Comparison of the TDCR method and the CIEMAT/NIST method for the activity determination of beta emitting nuclides. LSC2010, Advances in LS spectrometry: proceedings of the 2010 international conference on LS spectrometry, Paris 6–10 September 2010, Cassette P (ed), Radiocarbon, The University of Arizona, Tucson. ISBN 978-0-9638314-7-7, 313-320

  27. Pommé S (2016) When the model doesn’t cover reality: examples from radionuclide metrology. Metrologia 53:S55–S64

    Article  Google Scholar 

Download references

Acknowledgements

We wish to thank S. Hennig for sample preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karsten Kossert.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kossert, K., Marganiec-Gałązka, J. & Nähle, O.J. Primary activity standardization of 134Cs. J Radioanal Nucl Chem 314, 545–553 (2017). https://doi.org/10.1007/s10967-017-5338-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-017-5338-3

Keywords

Navigation