Skip to main content
Log in

Polyvector representations of GLn

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

In the present paper, we characterize ⋀n(GL(n, R)) over any commutative ring R as the connected component of the stabilizer of the Plücker ideal. This folk theorem is classically known for algebraically closed fields and should also be well known in general. However, we are not aware of any obvious reference, so we produce a detailed proof, which follows a general scheme developed by W.C.Waterhouse. The present paper is a technical preliminary to a subsequent paper, where we construct the decomposition of transvections in polyvector representations of GL n. Bibliography: 50 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Artin, Geometrical Algebra [Russian translation], Chaps. I–III, Moscow (1962).

    Google Scholar 

  2. N. Bourbaki, Algebra [Russian translation], Chaps. I–III, Moscow (1962).

    Google Scholar 

  3. N. Bourbaki, Lie Groups and Algebras [Russian translation], Chaps. VII, VIII, Moscow (1978).

    Google Scholar 

  4. N. A. Vavilov, “Subgroups of split classical groups,” Doctoral Thesis, Leningrad State University (1987).

  5. N. A. Vavilov, “The signs of structure constants,” Algebra Analiz, 19 (2007).

  6. N. A. Vavilov, “Decomposition of unipotents in the adjoint representation of Chevalley groups of type E6,” Algebra Analiz (to appear).

  7. N. A. Vavilov and E. Ya. Perelman, “Transvections in polyvector representations of GLn” (to appear).

  8. N. A. Vavilov, E. B. Plotkin, and A. V. Stepanov, “Calculations in Chevalley groups over commutative rings,” Dokl. Acad. Nauk SSSR, 40, No. 1, 145–147 (1990).

    MathSciNet  Google Scholar 

  9. E. B. Vinberg and A. G. Elashvili, “Classification of trivectors in the nine-dimensional space,” Trudy Semin. Vekt. Tenz. Analiz, 18, 197–233 (1978).

    MathSciNet  Google Scholar 

  10. Ph. Griffithz and J. Harris, Principles of Algebraic Geometry [Russian translation], Mir, Moscow (1982).

    Google Scholar 

  11. T. tom Dieck, Transformation Groups and Representation Theory [Russian translation], Mir, Moscow (1982).

    MATH  Google Scholar 

  12. J. Dieudonné, Geometry of Classical Groups [Russian translation], Mir, Moscow (1974).

    Google Scholar 

  13. E. B. Dynkin, “Maximal subgroups of classical groups,” Trudy Mosk. Mat. Obshch., 1, 39–166 (1952).

    MathSciNet  MATH  Google Scholar 

  14. P. Cohn, Free Rings and Their Relations [Russian translation], Mir, Moscow (1975).

    Google Scholar 

  15. A. V. Stepanov, “Stability conditions in the theory of linear groups over rings,” Ph. D. Thesis, Leningr. State Univ. (1987).

  16. W. Hodge and D. Pidoe, Methods of Algebraic Geometry. I [Russian translation], IL, Moscow (1954).

  17. I. R. Shafarevich, Foundations of Algebraic Geometry [in Russian], Nauka, Moscow (1988).

    Google Scholar 

  18. A. Bak and N. Vavilov, “Structure of hyperbolic unitary groups. I. Elementary subgroups,” Algebra Colloq., 7, No. 2, 159–196 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  19. M. Barnabei, A. Brini, and G.-C. Rota, “On the exterior calculus of invariant theory,” J. Algebra, 96, 120–160 (1985).

    Article  MATH  MathSciNet  Google Scholar 

  20. H. Bass, “Clifford algebras and spinor norms over a commutative ring,” Amer. J. Math., 96, 156–206 (1974).

    Article  MATH  MathSciNet  Google Scholar 

  21. J. B. Bertin and M. J. Bertin, Algèbre Linèaire et Geométrie Classique, Masson, Paris (1981).

    MATH  Google Scholar 

  22. B. Capdevielle, “Classification des formes trilinéaires altern’ees en dimension 6,” Enseignement Math., 18, 225–243 (1972).

    MathSciNet  Google Scholar 

  23. C. Chevalley, Séminaire sur la Classification des Groupes de Lie Algèbriques. I, II, Ecole Norm. Sup., Paris (1956–1958).

    Google Scholar 

  24. W. L. Chow, “On the geometry of algebraic homogeneous spaces,” Ann. Math., 50, 32–67 (1949).

    Article  Google Scholar 

  25. A. M. Cohen and A. G. Helminck, “Trilinear alternating forms on a vector space of dimension 7,” Commun. Algebra, 16, No. 1, 1–25 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  26. B. N. Cooperstein, “Nearly maximal representations for the special linear group,” Michigan Math. J., 27, 3–19 (1980).

    Article  MATH  MathSciNet  Google Scholar 

  27. M. Demazure and P. Gabriel, Groupes Algèbriques. I, North Holland, Amsterdam et al. (1970).

    Google Scholar 

  28. M. Demazure and P. Gabriel, Introduction to Algebraic Geometry and Algebraic Groups, North Holland, Amsterdam et al. (1980).

    MATH  Google Scholar 

  29. M. Demazure and A. Grothendieck, “Schémas en groupes. I, II, III,” Lect. Notes Math. 151, 1–564; 152, 1–654; 153, 1–529 (1971).

    Article  Google Scholar 

  30. J. D. Dixon, “Rigid embeddings of simple groups in the general linear group,” Canad. J. Math., 29, No. 2, 384–391 (1977).

    MATH  MathSciNet  Google Scholar 

  31. D. Z. Djoković, “Classification of trivectors of an eight-dimensional real vector space,” Lin. Multilin. Algebra, 13, 3–39 (1983).

    Article  MATH  Google Scholar 

  32. A. J. Hahn and O. T. O’Meara, The Classical Groups and K-Theory, Springer, Berlin et al. (1989).

    MATH  Google Scholar 

  33. N. Jacobson, Structure and Representations of Jordan Algebras, Providence (1968).

  34. J. C. Jantzen, Representations of Algebraic Groups, Academic Press, New York (1987).

    MATH  Google Scholar 

  35. W. Lichtenstein, “A system of quadrics describing the orbit of the highest weight vector,” Proc. Amer. Math. Soc., 84, No. 4, 605–608 (1982).

    Article  MATH  MathSciNet  Google Scholar 

  36. E. B. Plotkin, A. A. Semenov, and N. A. Vavilov, “Visual basic representations: an atlas,” Int. J. Algebra Comput., 8, No. 1, 61–97 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  37. Ph. Revoy, “Trivecteurs de rang 6,” Bull. Soc. Math. France, 59, 141–155 (1979).

    MathSciNet  Google Scholar 

  38. Ph. Revoy, “Formes trilinéaires alternées de rang inférieur ou égalá 7,” in: Actes du 110 e Congrès National des Sociétés Savantes (Montpellier-1985), Paris (1985), pp. 189–194.

  39. Ph. Revoy, “Formes trilinéaires alternées en dimension 6 et 7,” Bull. Sci. Math., 112, 357–368 (1988).

    MATH  MathSciNet  Google Scholar 

  40. G. M. Seitz, “The maximal subgroups of classical algebraic groups,” Memoirs Amer. Math. Soc., 67, 1–286 (1987).

    MathSciNet  Google Scholar 

  41. T. A. Springer and F. D. Veldkamp, Octonions, Jordan Algebras, and Exceptional Groups, Springer, Berlin et al. (2000).

    MATH  Google Scholar 

  42. A. V. Stepanov and N. A. Vavilov, “Decomposition of transvections: a theme with variations,” K-Theory, 19, 109–153 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  43. D. M. Testerman, “Irreducible subgroups of exceptional algebraic groups,” Memoirs Amer. Math. Soc., 75, 1–190 (1988).

    MathSciNet  Google Scholar 

  44. N. A. Vavilov, “Structure of Chevalley groups over commutative rings,” in: Proceedings of the Conference on Associative Algebras and Related Topics (Hiroshima-1990), World Sci. Publ., London et al. (1991), pp. 219–335.

    Google Scholar 

  45. N. A. Vavilov, “A third look at weight diagrams,” Rend. Semin. Matem. Univ. Padova, 204, 1–45 (2000).

    MathSciNet  Google Scholar 

  46. N. A. Vavilov and E. B. Plotkin, “Chevalley groups over commutative rings. I. Elementary calculations,” Acta Applicandae Math., 45, 73–115 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  47. W. C. Waterhouse, Introduction to Affine Group Schemes, Springer-Verlag, New York (1979).

    MATH  Google Scholar 

  48. W. C. Waterhouse, “Automorphisms of quotients of Π GL(n i ),” Pacif. J. Math., 102, 221–233 (1982).

    MATH  MathSciNet  Google Scholar 

  49. W. C. Waterhouse, “Automorphisms of det(X ij ): the group scheme approach,” Adv. Math., 65, No. 2, 171–203 (1987).

    Article  MATH  MathSciNet  Google Scholar 

  50. R. Westwick, “Real trivectors of rank seven,” Lin. Multilin. Algebra, 10, 183–204 (1981).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 338, 2006, pp. 69–97.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vavilov, N.A., Perelman, E.Y. Polyvector representations of GLn . J Math Sci 145, 4737–4750 (2007). https://doi.org/10.1007/s10958-007-0305-0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-007-0305-0

Keywords

Navigation