Skip to main content
Log in

Nature of the kinematic shear viscosity of water

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Nature of the kinematic shear viscosity of water ν is discussed in the work. Dependences of ν on temperature t, reduced volume \( \tilde \upsilon \), and the average number of hydrogen bonds per one molecule n H (t = T/T c, \( \tilde \upsilon \)=υ/υc, T c and υc are critical values of temperature and reduced volume) are analyzed in detail on a liquid-vapor coexistence curve. It is shown that at T < T H (T H ≈ 310 K is the characteristic temperature of water) the formation of the kinematic shear viscosity is induced by activation. At T > T H, the shear viscosity of water is the sum of two contributions. One of them is of the same nature as in simple liquids, and another is caused by effects of hydrogen bonds. The temperature dependence of ν in this temperature region has nothing in common with exponential formulas of activation theory. The explicit form of the functional dependence of the kinematic shear viscosity on t, \( \tilde \upsilon \), and n H is found and substantiated. It is shown that the value and temperature dependence of n H resulting in the experimental values of the kinematic shear viscosity of water agree well with the values corresponding to density and evaporation heat data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Franks (ed.), Water: A Comprehensive Treaties, Plenum, New York (1972).

    Google Scholar 

  2. R. C. West (ed.), CRS Handbook of Chemistry and Physics: a Ready-Reference Book of Chemical and Physical Data, 67th ed. Boca Raton: CRS Press (1996).

    Google Scholar 

  3. TPP Program (“Thermophysical Properties of Water and Water Vapor,” http://www.prowas3.narod.ru).

  4. Data from NIST Standard Reference Database 69, June 2005 Release: NIST Chemistry WebBook (http://webbook.nist.gov/chemistry/fluid).

  5. N. B. Vargaftik, Handbook on Thermophysical Properties of Gases and Liquids [in Russian], Nauka, Moscow (1972); N. B. Vargaftik, Handbook on Thermophysical Properties of Gases and Liquids [in Russian], Energoatomizdat, Moscow (1990).

    Google Scholar 

  6. T. V. Lokotosh, S. Magazu, G. Maisano, and N. P. Malomuzh, Phys. Rev., 62E, 3572–3580 (2000).

    Google Scholar 

  7. T. Litovitz, and K. Davis, in: Physical Acoustics. Principles and Methods, W. P. Mason (ed.), Vol. IIA, Properties of Gases, Liquids and Solutions, Academic Press, New York (1965).

    Google Scholar 

  8. I. G. Mikhailov, V. A. Solov’ev, and Yu. P. Syrnikov, Fundamentals of Molecular Acoustics [in Russian], Nauka, Moscow (1964).

    Google Scholar 

  9. H. Eyring, J. Chem. Phys., 4, 283–291 (1936).

    Article  CAS  Google Scholar 

  10. Ya. I. Frenkel, Kinetic Theory of Liquids [in Russian], Nauka, Leningrad (1975).

    Google Scholar 

  11. N. P. Malomuzh and I. Z. Fisher, FZhS, 1, 34–39 (1973).

    Google Scholar 

  12. I. V. Blazhnov, N. P. Malomuzh, and S. V. Lishchuk, J. Chem. Phys., 121, 6435–6443 (2004).

    Article  CAS  Google Scholar 

  13. I. V. Blazhnov, S. Magazu, G. Maisano, et al., Phys. Rev., 73E, No. 3, 031 (201–208) (2006).

  14. L. A. Bulavin, N. P. Malomuzh, and K. S. Shakun, UJP, 50, 653–658 (2005).

    CAS  Google Scholar 

  15. M. A. Anisimov, Critical Phenomena in Liquids and Liquid Crystals [in Russian], Nauka, Moscow (1987).

    Google Scholar 

  16. A. Z. Patashinskii and V. L. Pokrovskii, Fluctuation Theory of Phase Transitions [in Russian], Nauka, Moscow (1982).

    Google Scholar 

  17. L. D. Landau and E. M. Lifshits, Statistical Physics. [in Russian], part 1, Nauka, Moscow (1976).

    Google Scholar 

  18. L. A. Bulavin, N. P. Malomuzh, and K. N. Pankratov, J. Struct. Chem., 47, No. 1, 48–55 (2006).

    Article  CAS  Google Scholar 

  19. L. A. Bulavin, N. P. Malomuzh, and K. N. Pankratov, ibid., Supplement, S50-S60.

  20. M. F. Chaplin, Water Structure and Behavior (http://www.lsbu.ac.uk/water/index.html).

  21. T. V. Lokotosh, N. P. Malomuzh, and V. L. Zakharchenko, J. Struct. Chem., 44, No. 6, 1001–1010 (2003).

    Article  CAS  Google Scholar 

  22. Yu. V. Lisichkin, A. G. Novikov, and N. K. Fomichev, Zh. Fiz. Khim., 63, 833–835 (1989).

    CAS  Google Scholar 

  23. A. Rahman, Phys. Rev., 136A, 405–412 (1964); J. Chem. Phys., 45, 2585–2592 (1966).

    Article  Google Scholar 

  24. M. A. van der Hoef and D. Frenkel, Phys. Rev. Lett., 66, 1591–1594 (1991).

    Article  Google Scholar 

  25. W. Doster, S. Cusack, and W. Petry, Nature, 337, 754–756 (1989).

    Article  CAS  Google Scholar 

  26. N. P. Malomuzh, A. V. Oleynik, O. P. Rudenko, and A. M. Khlopov, UJP, in press (2007)

  27. D. Éizenberg and W. Kautsman, Structure and Properties of Water [in Russian], Gidrometeoizdat, Leningrad (1975).

    Google Scholar 

  28. Yu. I. Naberukhin, V. A. Luchnikov, G. G. Malenkov, and E. A. Zheligovskaya, J. Struct. Chem., 38, No. 3, 593–600 (1997).

    Article  CAS  Google Scholar 

  29. D. Paschek and A. A. Geiger, J. Phys. Chem., 103B, 4139–4146 (1999).

    Google Scholar 

  30. N. P. Malomuzh and A. V. Oleynik, UJP, in press (2007).

  31. V. P. Slyusar, N. S. Rudenko, and V. M. Tret’yakov, UFZh, 17, No. 8, 1257–1263 (1972).

    CAS  Google Scholar 

  32. B. A. Younglove and H. J. M. Hanley, J. Phys. Chem. Ref. Data, 15, No. 4, 1323–1337 (1986).

    Article  CAS  Google Scholar 

  33. A. Batchiski, Z. Phys. Chem., 84, 643–706 (1913).

    Google Scholar 

  34. V. Yu. Bardic, N. P. Malomuzh, and V. M. Sysoev, JML, 120, 27–30 (2005).

    Article  CAS  Google Scholar 

  35. Y. Kataoka, H. Hamada, S. Nose, and T. J. Yamamoto, Chem. Phys., 77, 5699–5706 (1982).

    CAS  Google Scholar 

  36. G. G. Malenkov and D. L. Tytik, Dynamics of Networks of Hydrogen Bonds in Liquid Water By Computer Experiment. (in: Method of Molecular Dynamics in Physical Chemistry) [in Russian], Nauka, Moscow (1996) pp. 204–233.

    Google Scholar 

  37. G. G. Malenkov, J. Struct. Chem., 47,Supplement, S1–S31 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. P. Malomuzh.

Additional information

__________

Translated From Zhurnal Strukturnoi Khimii, Vol. 49, No. 6, pp. 1092–1100, November–December, 2008.

Original Russian Text Copyright © 2008 by N. P. Malomuzh and A. V. Oleinik

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malomuzh, N.P., Oleinik, A.V. Nature of the kinematic shear viscosity of water. J Struct Chem 49, 1055–1063 (2008). https://doi.org/10.1007/s10947-008-0178-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10947-008-0178-1

Keywords

Navigation