Skip to main content
Log in

Comparison of textural information from argon(87 K) and nitrogen(77 K) physisorption

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Argon(87 K) and nitrogen(77 K) adsorption of three types of porous samples (microporous, microporous-mesoporous and mesoporous) was evaluated. The shapes of isotherms, specific surface areas, mesopore-, micropore- and net pore volumes, pore-size distributions (PSD) and positions of micropore and mesopore PSD’s maxima were compared to ascertain the credibility of individual adsorbates for the texture information estimation. The shapes of adsorption isotherms for Ar and N2 of all samples are similar and the adsorbed amounts at relative pressure x = 0.975 differ slightly. For mesoporous samples some differences are observed between specific mesopore surface areas derived from nitrogen and argon isotherms. Radii of pore size maxima from Ar(87 K) PSD’s are on average systematically lower than from N2(77 K) for all samples. The Saito-Foley approach for ZSM-5 samples gives consistently lower mean pore radius from N2(77 K) adsorbate than from Ar(87 K). This difference probably arises from the multiplication factor, Ω, in the Saito-Foley equation which includes physical properties (magnetic susceptibility, polarizability etc. at 77 and 87 K) and is not easy to obtain with sufficient precision. The use of both adsorbates Ar(87 K) and N2(77 K) possesses some advantages as well some disadvantages and the comparison of textural properties of individual samples must be evaluated with respect to adsorbate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

a:

Adsorbed amount

am :

Monolayer capacity

aμ :

Adsorbed amount in micropores

C:

Constant in BET and modified BET equation

p:

Adsorbate pressure

p0 :

Saturated adsorbate vapor pressure at its normal boiling point

Q:

Objective function

R:

Pore radius

rm :

Most frequent mesopore radius

rμ :

Most frequent micropore radius

Sm :

Mesopore surface area

SBET :

Surface area from the classic BET equation

V:

Pore volume

Vp :

Net pore volume

Vm :

Mesopore volume

Vμ :

Micropore volume

X:

Relative adsorbate pressure (x = p/p0)

References

  1. S. Storck, H. Bretinger, W.F. Maier, Appl. Catal. A 174, 137 (1998)

    Article  CAS  Google Scholar 

  2. A. Zukal, M. Thomes, J. Čejka, Micropor. Mesopor. Mater. 104, 52 (2007)

    Article  CAS  Google Scholar 

  3. P. Kowalczyk, M. Jaroniec, A.P. Terzyk, K. Kaneko, D.D. Do, Langmuir 21, 1827 (2005)

    Article  CAS  Google Scholar 

  4. A.V. Neimark, P.E. Ravikovitch, M. Grun, F. Schuth, K.K. Unger, J. Colloid Interf. Sci. 207, 159 (1998)

    Article  CAS  Google Scholar 

  5. J.C. Groen, L.A.A. Peffer, J. Pérez-Ramírez, Micropor. Mesopor. Mater. 60, 1 (2003)

    Article  CAS  Google Scholar 

  6. M. Kruk, M. Jaroniec, Micropor. Mesopor. Mater. 44–45, 725 (2001)

    Article  Google Scholar 

  7. P. Prokešová-Fojtíková, S. Mintova, J. Čejka, N. Žilková, A. Zukal, Micropor. Mesopor. Mater. 92, 154 (2006)

    Article  Google Scholar 

  8. J. Čejka, N. Žilková, J. Rathouský, A. Zukal, J. Jagiello, Langmuir 20, 7532 (2004)

    Article  Google Scholar 

  9. L. Matejova, T. Cajthaml, Z. Matej, O. Benada, P. Kluson, O. Solcova, J. Supercrit Fluids 52, 215 (2010)

    Article  CAS  Google Scholar 

  10. S. Brunauer, P.H. Emmett, E. Teller, J. Am. Chem. Soc. 60, 309 (1938)

    Article  CAS  Google Scholar 

  11. P. Schneider, Appl. Catal. A 129, 157 (1995)

    Article  CAS  Google Scholar 

  12. J.B. DeBoer, B.C. Lippens, B.G. Linsen, J.C.P. Broekhoff, A.V.D. Heuvel, Th.J. Osinga, J. Colloid Interf. Sci. 21, 405 (1966)

    Article  CAS  Google Scholar 

  13. E.P. Barret, L.G. Joyner, P.B. Halenda, J. Am. Chem. Soc. 73, 373 (1951)

    Article  Google Scholar 

  14. A. Saito, H.C. Foley, Microporous. Mater. 3, 531 (1995)

    Article  CAS  Google Scholar 

  15. S. Ban, T.J.H. Vlugt, Mol. Simul. 35, 1105 (2010)

    Article  Google Scholar 

  16. D.D. Do, H.D. Do, D. Nicholson, Chem. Eng. Sci. 65, 3331 (2010)

    Article  CAS  Google Scholar 

  17. M. Kruk, M. Jaroniec, C.H. Ko, R. Ryoo, Chem. Mater. 12, 1961 (2000)

    Article  CAS  Google Scholar 

  18. H. Luan, M. Hartmann, D.Y. Zhao, W.Z. Zhou, L. Kevan, Chem. Mater. 11, 1621 (1999)

    Article  CAS  Google Scholar 

  19. J.A. Nelder, R. Mead, Comput. J. 7, 308 (1965)

    Google Scholar 

  20. W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vettering, Numerical Recipes (Cambridge University Press, Cambridge, 1986)

    Google Scholar 

  21. C.L. Yaws, Chemical Properties Handbook (McGraw-Hill, New York, 1999)

    Google Scholar 

  22. R.T. Jacobsen, S.G. Penoncello, E.W. Lemmon, Thermodynamic Properties of Cryogenic Fluids (Springer, Heidelburg, 1997)

    Google Scholar 

  23. International Critical Tables of Numerical Data, Physics, Chemistry and Technology, 1st electronic edn. ed by E.W. Washburn 1926–1930 (Knovel, 2003)

  24. P.A. Webb, C. Orr, Analytical Methods in Fine Particle Technology. (Micromertics, 1997)

  25. L. Matějová, O. Šolcová, P. Schneider, Micropor. Mesopor. Mater. 107, 227 (2008)

    Article  Google Scholar 

  26. M. Jaroniec, M. Kruk, J.P. Olivier, Langmuir 15, 5410 (1999)

    Article  CAS  Google Scholar 

  27. M. Kruk, M. Jaroniec, Chem. Mater. 12, 222 (2000)

    Article  CAS  Google Scholar 

  28. B.F. Roberts, J. Colloid Interf. Sci. 23, 266 (1967)

    Article  CAS  Google Scholar 

  29. ASAP 2020 Operators Manual V3.00 (Micromeritics, 2004)

  30. Ch. Baerlocher, L.B. McCusker, D.H. Olson, D.H. Olson, Atlas of Zeolite Framework Types, 6th edn. (Elsevier, Amsterdam, 2007)

    Google Scholar 

Download references

Acknowledgments

The financial support of the Academy of Sciences of the Czech Republic, Program Nanotechnology for Society (KAN400720701) and of the Grant Agency of the Czech Republic (104/09/0694 and 104/09/P290) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Šolcová.

Appendix

Appendix

Saito-Foley [11] relation between micropore radius, r, and relative pressure, x, at which spontaneous condensation in micropores takes place, r(x):

\( \ln (x) = \frac{3}{4}{\frac{{\pi {\text{A}}}}{{{\text{R}}_{g} T}}}\,\,{\frac{\Upomega }{{{\text{d}}_{o}^{4} }}}\sum\limits_{k = 0}^{\infty } {\left[ {{\frac{1}{k + 1}}\left( {1 - {\frac{{{\text{d}}_{o} }}{r}}} \right)^{2k} \left\{ {\frac{21}{32}\alpha_{k} \left( {{\frac{{{\text{d}}_{o} }}{r}}} \right)^{10} - \beta_{k} \left( {{\frac{{{\text{d}}_{o} }}{r}}} \right)^{4} } \right\}} \right],} \)where the interaction parameter, Ω, is defined as:

$$ \Upomega = N_{A} A_{A} + N_{S} A_{S} $$
$$ {\text{with}}\,\, A_{S} = {\frac{{6mc^{2} \alpha_{s} \alpha_{A} }}{{{\frac{{\alpha_{s} }}{{\chi_{s} }}} + {\frac{{\alpha_{A} }}{{\chi_{A} }}}}}} , \quad A_{A} = {\frac{{3mc^{2} \alpha_{A} \chi_{A} }}{2}}\quad{\text{and}}\quad{\text{d}}_{o} = \left( {{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} \right)\left( {d_{A} + d_{s} } \right) $$

The coefficients α k and β k are given by recurrent relations:

$$ \begin{gathered} \alpha_{k} = \left( {{\frac{ - 4.5 - k}{k}}} \right)^{2} \alpha_{k - 1} ;\quad\alpha_{o} = 1.0 \hfill \\ \beta_{k} = \left( {{\frac{ - 1.5 - k}{k}}} \right)^{2} \beta_{k - 1} ;\quad \beta_{o} = 1.0 \hfill \\ \end{gathered} $$

Here, N denotes the surface number of adsorbate gas molecules or porous sample atoms, d is the diameter of adsorbate gas molecule or adsorbate surface atom, mc2 stands for the kinetic energy of an electron (0.8183 × 10−6 erg), α is the polarizability of porous sample atom or adsorbate gas molecule and χ is the diamagnetic susceptability of porous sample atom or adsorbate gas molecule. The lower index S denotes the porous sample, A denotes the adsorbate surface atom.

The following values were used for calculations of interaction parameter, Ω:

 

Zeolites (index ‘S’)

Argon (index ‘A’)

Nitrogen (index ‘A’)

d (A)

3.04

2.95

3.00

N (molecules/cm2)

3.75 × 1015

7.608 × 1013

6.71 × 1013

−χ (cm3)

1.94 × 10−29

3.22 × 10−29

3.6 × 10−29

α (cm3)

0.85 × 10−24

1.63 × 10−24

1.76 × 10−24

Interaction parameters, Ω (erg.cm4):

Adsorbate

Adsorbent: zeolite

Ar at 87 K

3.19 × 1043

N2 at 77 K

3.49 × 1043

Rights and permissions

Reprints and permissions

About this article

Cite this article

Šolcová, O., Matějová, L., Topka, P. et al. Comparison of textural information from argon(87 K) and nitrogen(77 K) physisorption. J Porous Mater 18, 557–565 (2011). https://doi.org/10.1007/s10934-010-9409-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-010-9409-x

Keywords

Navigation