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Abstract
In this work, we propose a model order reduction framework to deal with inverse problems in
a non-intrusive setting. Inverse problems, especially in a partial differential equation context,
require a huge computational load due to the iterative optimization process. To accelerate
such a procedure, we apply a numerical pipeline that involves artificial neural networks to
parametrize the boundary conditions of the problem in hand, compress the dimensionality
of the (full-order) snapshots, and approximate the parametric solution manifold. It derives a
general framework capable to provide an ad-hoc parametrization of the inlet boundary and
quickly converges to the optimal solution thanks to model order reduction. We present in this
contribution the results obtained by applying such methods to two different CFD test cases.

Keywords Model order reduction · Inverse problem · Machine learning · Artificial neural
network

Abbreviations
CFD Computational fluid dynamics
ROM Reduced order model
PDE Partial differential equation
POD Proper orthogonal decomposition
ANN Artificial neural network
AE AutoEncoder
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RBF Radial basis function

Symbols
σ Activation function in ANN
M Number of snapshots in ROM
p Number of parameters used in ROM
P Number of degrees of freedom for the velocity field
L Latent dimension

(ϕ)Mi=1 Velocity POD modes
‖ · ‖ Norm in L2

1 Introduction

Inverse problems is a wide family of problems that crosses many different sciences and
engineering fields. Inverse problems aim to compute from the given observations the cause
that has produced them, as also explained in [1, 2]. Formally, we can consider an input I and
an output O , and suppose that there exists a map

M : i → o

that models a mathematical or physical law. The computation of the output as o = M(i)
is called direct problem, whereas the problem of finding the input given the output is called
inverse problem. Given a certain output ot , the inverse problem consists of inverting the map
M and finding the input it which produces the output ot , i.e., which satisfies M(it ) = ot .
Inverse problems may be of interest for a lot of mathematical fields, from heat transfer
problems to fluid dynamics. The case study which is here analysed is a Navier–Stokes flow
in a circular cylinder, and the aim is to find the proper boundary condition in order to obtain
the expected distribution within the domain. Such an application tries to solve a typical
naval problem, numerically looking for the inlet setting which provides the right working
condition during the optimization of the propulsion system. Propeller optimization is indeed
very sensitive to modifications in the velocity distribution at the propeller plane: to obtain
an optimized artifact it becomes very important to set up the numeric simulation such that
the velocity distribution is as close as possible to the target distribution, usually collected
by experimental tests. The problem is the identification of the inlet boundary condition,
given the velocity distribution at the so-called wake, which is the plane (or a portion of
it) orthogonal to the cylinder axis where the propeller operates. To achieve that, the inlet
distribution is searched by parametrizing the target wake—by exploiting a neural network,
as we will describe in the next paragraphs—and optimizing these parameters such that in the
simulation the velocity is close to the target wake. It must be said that to produce meaningful
results, we assume here the flow has a main direction that is perpendicular to the inlet and
wake planes: in such away, the distributions at these planes are similar to each other, allowing
us to search for the optimal inlet among the parametrized wake distributions. Even if in this
case the numerical experiments are conducted in a Computational Fluid Dynamics (CFD)
setting, the methodology is in principle easily transferable to different contexts.

Typically, such an operation is performed within an optimization procedure, in which the
direct problem is iteratively solved by varying the input until the desired output is reached.
This, of course, implies the necessity to numerically parametrize the input in a proper way,
possibly allowing a large variety of admissible inputs and at the same time a limited number of
parameters. Moreover, the necessity to solve the direct problem for many different instances
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Fig. 1 Flow diagram for the data-driven pipeline followed in the paper

makes the entire process computationally expensive, especially dealing with the numerical
solution of Partial Differential Equations (PDEs). A possible solution to overcome such
computational burden is offered by the Reduced Order Modelling (ROM) techniques.
ROM constitutes a constantly growing approach for model simplification, allowing for a real-
time approximation of the numerical solution of the problem at hand. Among the methods
already introduced in the literature, the ProperOrthogonalDecomposition (POD) has become
in recent developments an important tool for dealing with PDEs, especially in parametric set-
tings [3–6]. Such a framework aims to efficiently combine the numerical solutions for different
configurations of the problem, typically pre-computed using consolidated methods—e.g.
finite volume, finite element — such that at any model inference all this information is com-
bined for providing a fast approximation. Within iterative and many-query processes, like
inverse problems, this methodology allows a huge computational gain. The many repetitions
of the direct problem, needed to find the target input, can be performed at the reduced level,
requiring then a finite and fixed set of numerical solutions only for building the ROM. The
coupling between ROM and the inverse problem has been already investigated in literature
for heat flux estimation in a data assimilation context [7], in aerodynamic application [8], in
haemodynamic problems [9]. An alternative way to efficiently deal with this kind of problem
has been explored in a Bayesian framework [10]. Moreover, among all the contributions in
literature we cite [11, 12] as an example of inverse problem with pointwise observations and
inverse problem in a boundary element method context, respectively.

This contribution introduces an entire and novel machine learning pipeline to deal with
the inverse problems in a ROM setting. In specific, we combine three different uses of
Artificial Neural Network (ANN), that are: i) parametrization of the boundary condition
given a certain target distribution or pointwise observations, ii) dimensionality compression
of the discrete space of the original—the so-called full-order—model and iii) approximation
of the parametric solution manifold. It derives a data-driven pipeline (graphically represented
in Fig. 1) able to provide a parametrization of the original problem, which is successively
exploited for the optimization in the reduced space. Finally, the optimization is carried out
by involving a Genetic Algorithm (GA), but in principle can be substituted by any other
optimization algorithm.

The contribution presents in Sect. 2 an algorithmic overview of the employed methods,
whereas Sect. 3 illustrates the results of the numerical investigation pursued to the above-
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mentioned test case. In particular, we present details for all the intermediate outcomes,
comparing them to the results obtained by employing state-of-the-art techniques. Finally,
Sect. 4 is dedicated to summarizing the entire content of the contribution, drawing future
perspectives and highlighting the criticisms highlighted during the development of this con-
tribution.

2 Methodology

We dedicate this section to providing an algorithmic overview of the numerical tools com-
posing the computational pipeline.

2.1 Boundary Parametrization Using ANN

Neural networks are a class of regression techniques and the general category ofFeed-forward
neural networks has been the subject of considerable research in several fields in recent years.
The capability of ANN to approximate any function [13] and the even greater computational
availability allowed indeed the massive employment of such an approach to overcome many
limitations. In the field of PDEs, we cite [14–21] as some of main impacting frameworks
recently explored. A not yet investigated usage of ANN, to the best of authors’ knowledge, is
instead the parametrization of a given (scattered) function. We suppose that we have a target
distribution vtarget = (v

target
i )Pi=1, corresponding to the wake velocity distribution in our case,

which has P degrees of freedom. We want to reproduce this distribution by exploiting a
neural network technique.

A neural network is defined as a concatenation of an input layer, multiple hidden layers,
and a final layer of output neurons. An output of the i-th neuron in the l-th layer of the
network is generally defined as:

hli = σ

⎛
⎝

Nl−1∑
j=1

Wl
i j h

l−1
j + bli

⎞
⎠ , i = 1, . . . , Nl , l = 1, . . . , H . (1)

where σ is the activation function (which provides non-linearity), bli the bias andW refers
to the so-called weights of the synapses of the network, Nl is the number of neurons of the
l-th hidden layer, H is the number of layers of the network.

The bias and the weights are the hyperparameters of the network, that are tuned during
the training procedure to converge to the optimal values for the approximation in hand.
We can think of these hyperparameters as the degree of freedom of our approximation,
allowing us to manipulate such distribution by perturbating them. We define the optimal
hyperparameters (computed with a generic optimization procedure [22, 23]) as b∗ and W ∗;
the network exploiting these hyperparameters reproduces as output an approximation of our
target wake distribution:

N (x) � vtarget(x).

The input x to the whole neural network in this paper corresponds to the polar coordinates
of the points of the wake, so we have a two-dimensional input. We can then rearrange Eq. (1)
to express the parametrized output of a single hidden layer as follows:
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hli (μ) = σ

⎛
⎝

Nl−1∑
j=1

W ∗ l
i j h

l−1
j + (b∗ l

i + μl
i )

⎞
⎠ , i = 1, . . . , Nl , l = 1, . . . , H . (2)

where μl is the vector of parameters in layer l, which applies only to the bias of the layers.
We finally obtain the parametrized output N (x,μ).

Themain advantage of this approach is the capability to parametrize any initial distribution,
since the weights are initially learnt during the training and then manipulated to obtain its
parametric version. On the other hand, the dimension of the weights is typically very large,
especially in networks with more than one layer. In networks composed of a large number of
layers, a high number of hyperparameters should be tuned. A possible solution to overcome
such an issue could be to manipulate just a subset of all the hyperparameters. Indeed, in this
paper, only the bias parameters of two hidden layers are perturbed.

Such a posteriori parametrization of any generic distribution is employed in this work to
deal with the inverse problem. The main idea is to compute different inlet velocity distri-
butions corresponding to different weights of the ANN. The weights perturbations are used
as parameters to build the reduced order model, providing an ad-hoc parametrization of the
boundary condition based on the target output. It must be said that such parametrization may
lead to good results only if some correlation between the boundaries and the target output
exists.

2.2 Model Order Reduction

ROMs are a class of techniques aimed to reduce the computational complexity of mathemat-
ical models.

The technique used in this paper is data-driven or non-intrusive ROM, which allows us
to build a reduced model without requiring the knowledge of the governing equations of the
observed phenomenon. For this reason, this technique is suitable to deal with experimental
data and it has been widely used in numerical simulations for industrial, naval, biomedical,
and environmental applications [24–30].

Non-intrusive ROMs are based on an offline-online procedure. Each stage of the procedure
can be approached in different ways, which are analyzed in the following Sections. All the
techniques presented in the next lines have been implemented in the Python package called
EZyRB [31].

2.2.1 Dimensionality Reduction

In the dimensionality reduction step, a given set of high-dimensional snapshots is represented
by a few reduced coordinates, in order to fight the curse of dimensionality and make the
pipeline more efficient.

We consider the following matrix of M snapshots, collecting our data:

Y =
⎡
⎣

| | | |
vwake1 vwake2 vwake3 ... vwakeM| | | |

⎤
⎦ =

⎡
⎣

| | | |
vwake(μ1) vwake(μ2) vwake(μ3) . . . vwake(μM )

| | | |

⎤
⎦ ,
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where vwakei ∈ R
P , i = 1, . . . , M are the velocity distributions in our case, each one

corresponding to a different set of parameters μi ∈ R
p for i = 1, . . . , M . The goal is

to calculate the reduced snapshots {v̂wakei ∈ R
L }Mi=1 such that

ṽwakei � �−1(�(vwakei )), v̂
wake
i = �(vwakei ), (3)

where � : RP → R
L . We specify that the latent dimension L � P has to be selected a

priori.
Such phase can be approached by making use of linear or non-linear techniques, such as

the POD and the usage of an Autoencoder (AE), respectively.
Proper Orthogonal Decomposition In the first case, the offline part consists of the com-
putation of a reduced basis, composed of a reduced number of vectors named modes. The
main assumption on which it is based is that each snapshot can be approximated by a linear
combination of modes:

vwakei �
L∑

k=1

aki ϕk, L � P, i = 1, . . . , M,

with ϕi ∈ R
P are the modes and aki are the related modal coefficients.

The computation of modes in the POD procedure can be done in different ways, such as
via Singular Value Decomposition (SVD) or the velocity correlation matrix. In the first case,
the matrix Y can be decomposed via singular value decomposition in the following way:

Y = U�VT ,

where the matrix U ∈ R
P×L stores the POD modes in its columns and matrix � ∈ R

L×L

is a diagonal matrix including the singular values in descending order. The matrix of modal
coefficients — so, the reduced coordinates — in this case can be computed by:

Ŷ = UTY,

where the Ŷ ∈ R
L×M columns are the reduced snapshots. In the second case, the POD space

VPOD = span{[φi ]Li=1} is found solving the following minimization problem:

VPOD = argminn=1,...,M
1

M

M∑
n=1

‖Yn −
L∑

i=1

ainϕi‖2 ∀n = 1, . . . , M,

where Yn is the n-th column of the matrix Y. This problem is equivalent to computing the
eigenvectors and the eigenvalues of the velocity correlation matrix:

(C)i j = (Yi ,Yu)L2(�),

where � is the domain on which the velocity is defined (the propeller wake plane in this
case). The POD modes are expressed as:

ϕi = 1

Mλui

M∑
j=1

Y j V y
i j ,

where V y stores the eigenvectors of the correlation matrix in its columns and λ
y
i are its

eigenvalues.
Autoencoder AE refers to a family of neural networks that, for its architectural features, has
become a mathematical tool for dimensionality reduction [17]. In general, an AE is a neural
network that is composed of two main parts:
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vwake Encoder
E v̂wake Decoder

D ṽwake

Fig. 2 Schematic structure of an autoencoder

• the encoder: a set of layers that takes as input the high-dimensionality vector(s) and
returns the reduced vector(s).

• the decoder, on the other hand, computes the opposite operation, returning a high-
dimensional vector by passing as input the low-dimensional one.

The layers composing the AE could be in principle of any type— e.g. convolutional [32],
dense—but in this work both the encoder and the decoder are feed-forward neural networks.
For sake of simplicity, we assume here that both the encoder and the decoder are built with
only one hidden layer and we denote by D the decoder and with E the encoder. If vwake is
the input of the AE, we denote by ṽwake = (D ◦ E)(vwake) = AE(vwake) the output of the
encoder, where formally:

E(vwake) = σ(Wvwake + b) = v̂
wake

,

D(v̂
wake

) = σ(W ′v̂wake + b′) = ṽwake.

A generic structure of an autoencoder is schematized in Fig. 2.
Weights and activation functions can be different for encoder and decoder, and of course

the case with more than one hidden layer for the encoder and the decoder can be easily
derived from this formulation. The AE is trained by minimizing the following loss function:

‖vwake − ṽwake‖2 = ‖vwake − σ ′(W ′(σ (Wvwake + b)) + b′)‖2,
where vwake is the original (high-dimensional) vector to reduce, v̂wake represents the reduced
coordinates and ṽwake is the predicted vector. In this way, the network weights are optimized
such that the entire AE produces the approximation of the original vector, but compressing it
onto an a priori reduced dimension. The learning step aims so to discover the latent dimension
of the problem at hand.

For what concerns the test cases here considered, two different types of autoencoders are
taken into account:

(i) a linear autoencoder, i.e. without an activation function between the hidden layers, with
a single hidden layer composed of a number of neurons equal to the reduced dimension:
it should exactly reproduce the behavior of the POD;

(ii) a non-linear autoencoder, i.e.with an activation function, andwithmultiple hidden layers,
whose performance is compared to that of the POD.

2.2.2 Approximation Techniques

The problem in the online part is to predict the (unknown) latent dimension ṽwake given a
new parameter μ:

ṽwake = π(μ) s.t. ṽwakei = π(μi ) for i = 1, . . . , M,
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where π : Rp → R
L is the mapping from parameter space to reduced space. We can approx-

imate such mapping by means of interpolation techniques, such as Radial Basis Functions
(RBF), or regression techniques, such asANN, in order to predict the latent dimension for any
new parameter. Finally, the approximation of the solution in the original (high-dimensional)
space requires the expansion of the reduced coordinates, which relies on the inverse com-
pression method computed during the dimensionality reduction.

Remark 1 Many approximation techniques can be employed to reconstruct the solution in
reduced order models. For instance, two spread techniques are the RBF and theGaussian Pro-
cess Regression (GPR). However, we remark that many other approximants can be adopted,
such as the Moving Least Squares approach (MLS), which is described in detail in [33, 34].
The reason for choosing the RBF approach is that it allows us to tune different parame-
ters, such as the radius, and the kernel of the radial basis functions, in order to adapt our
approximation to different settings of the training dataset.

RadialBasis FunctionsTheRBF is an approximation technique that reconstructs the original
field in the following way:

ṽwake ≡ ṽwake(μ) =
M∑
i=1

ωi φ(‖μ − μi‖),

where (φ(‖μ−μi‖))Mi=1 are called radial basis functions, each one associatedwith a different
centerμi and weighted with a weightωi . The radial functions can have different expressions,
in our case we consider the multiquadric functions φ(r) = √

1 + (εr)2, where r = ‖μ−μi‖.
Artificial Neural Networks The other technique here investigated to approximate the para-
metric solution manifold is ANN. The basic structure of the method is already explained in
Sect. 2.1,

We consider a neural network composed of a unique hidden layer. Its structure is:

ANN(μ) = σ(Wμ + b)

The weight matrix and bias of the ANN are found by training the neural network with
the set of parameters and snapshots (μi , v

wake
i )Mi=1. Then, the approximated solution ṽwake

is computed from the related vector of parameters μ as ṽwake = ANN(μ).
The reduced order techniques presented in this Section both for dimensionality reduction
and approximation are applied in this paper to two different inverse problems. In particular,
the following cases are considered:

1. POD-RBF;
2. POD-ANN;
3. AE-RBF;
4. AE-ANN; item[5.] non-linear AE-RBF;
6. non-linear AE-ANN.

2.3 Wake Optimization

The construction of the reduced order model is followed by the research of the vector of
parameters which better reconstructs the velocity distribution we want to reproduce. This
investigation is addressed by solving an optimization problem, inwhich the aim is tominimize
the difference between the approximatedwake distribution predicted by the ROMand the real
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wake distribution. The optimization problem can be addressed either by using a search-based,
such as the genetic algorithm (GA), initially proposed in [35], or a gradient-based algorithm.
In Sects. 3.2.3 and 3.3.2 we compare the results obtained employing both approaches.

Remark 2 However, it is worth remarking that the genetic algorithm allows us to reach the
global theoretical minimum without getting stuck into a local minimum. Gradient-based
methods, instead, require derivable objective functions and get trapped in local minima in
non-convex optimization. The genetic algorithm requires a high number of evaluations,which
is not a real issue since the employment of the reduced model, but it is able to converge to the
global minimum. In a data-driven ROM framework, as the one proposed in this manuscript,
the solution manifold is approximated with regression techniques, without any warranties on
convexity. Thus, genetic methods offer a robust approach in this context, as demonstrated by
its employment in similar frameworks [25, 36].

We dedicated this section to providing a basic introduction to the geneticmethod, retaining
a full discussion out of the topic of the present work. For a deeper focus on genetic optimiza-
tion, we refer the reader to the original contribution. The first step of the algorithm is the
definition of a population composed of Npop individuals, in our case vectors of parameters

(μ j )
Npop
j=1 , composed of p genes, μ j ∈ R

p . Then, we proceed by defining the objective func-

tion which should be minimized.We indicate by ṽwakej ≡ ṽwake(μ j ) the approximation of the
wake distribution computed with the reduced order model that we are taking into account.
We call vtarget(μ) the real wake distribution.

The objective function defined for each individual in the population is:

F(μ j ) = ‖ṽwake(μ j ) − vtarget(μ j )‖. (4)

The GA consists in an iterative process composed of three main steps: selection, in which
the best individuals are chosen; mate or crossover, where the genes of the best individuals
are combined according to a certain mate probability; mutation, changing some of the genes
of the individuals. This process is iterated a number of times which is named number of
generations. Regarding the technical side, the GA has been performed using the open-source
package DEAP [37].

3 Numerical Results

In the present Section, the methods presented in Sect. 2 are applied to the test case of the flow
in a circular cylinder.

3.1 The Inverse Problem

The computational domain is a circular cylinder with height 4.67m, diameter 2.36m and it
is schematized in Fig. 4, where the inlet is indicated as �i , the outlet as �o and the lateral
surface of the cylinder as �side. The aim is to reconstruct the inlet velocity distribution given
the velocity distribution at the so-called wake, which is a plane placed at a distance of 2.97
meters from the inlet plane, as showed in 4. This type of problem is known as inverse problem,
which is in this case applied in a CFD setting. The physical problem at hand is modelled
by the Navier-Stokes Equations (NSE) for incompressible flows. We call the fluid domain
� ∈ R

3, � its boundary; t ∈ [0, T ] is the time, u = u(x, t) is the flow velocity vector
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Fig. 3 Representation of the mesh on a slice orthogonal to the cylinder axis (left), and on the walls (right)

field and p = p(x, t) is the normalized pressure scalar field divided by the fluid density,
ν = 1.124 × 10−6m2/s is the fluid kinematic viscosity. The strong form of the NSE is the
following.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂u
∂t

= −∇ · (u ⊗ u) + ∇ · ν
(
∇u + (∇u)T

)
− ∇ p in � × [0, T ] , (5a)

∇ · u = 0 in � × [0, T ] , (5b)

+ boundary conditions on � × [0, T ] , (5c)

+ initial conditions in (�, 0) . (5d)

The boundary and initial conditions appearing in (5a) are the following:

• at the inlet �i :

{
u = u0,

∇ p · n = 0,
where u0 = u0(x) = (0, f (x), 0) and f (x) is the

distribution set at the inlet, specified in (6) and (7).

• at the outlet �o:

{
∇u · n = 0,

p = 0.

• on the walls �side:

{
u · n = 0,

∇ p · n = 0.
• moreover, u(x, t) = 0 and p(x, t) = 0, ∀x ∈ � at initial time t = 0.

In the computation of the full order solutions of the NSE in (5a), the finite volume dis-
cretization is employed, by means of the open-source software OpenFOAM [38]. The finite
volume method [39] is a mathematical technique that converts the partial differential equa-
tions (the NSE in our case) defined on differential volumes in algebraic equations defined on
finite volumes. The computational mesh considered in this test case has been generated by
blockMesh and snappyHexMesh and it is composed by 1 × 106 cells. The mesh is a regular
radial mesh, which presents 100 refinements both in the radial, the tangential and the axial
direction, as can be seen from Fig. 3.

The turbulence treatment at the full order level is characterized making use of the RANS
(Reynolds Averaged Navier–Stokes) approach. This approach is based on the Reynolds
decomposition, which was proposed for the first time by Osborne Reynolds [40], in which
each flow field is expressed as the sum of its mean and its fluctuating part. The RANS equa-
tions are obtained by taking the time average of the NSE and adding a closure model for the
well-known Reynolds stress tensor. The closure model considered in the full order model in
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Fig. 4 The computational domain

OpenFOAM is the κ − ω model, proposed in its standard form in [41], and in the SST form
in [42]. This model is based on the Boussinesq hypothesis, which models the Reynolds stress
tensor as proportional to the so-called eddy viscosity and it is based on the resolution of two
additional transport equation for the kinetic energy κ and for the specific turbulent dissipation
rate ω. In the full order model, we consider the SST κ − ω model. The CFD simulation is
run making use of the PIMPLE algorithm until convergence to a steady state (Fig. 4).

In this paper, the inverse problem presented is applied for two different wake distributions.
The first one is a smooth function f : W → R defined in all the wake planeW , written as a
function of the radial coordinate:

f (r) = sin (4r)2 − 10. (6)

The second distribution is given as a set of pointwise observations only in a selected
region of the wake plane. For the sake of simplicity only the distribution along the axis of
the cylinder, which is the main direction of the flow, is taken into account. The contributions
along the secondary directions are ignored. Thus,we denotewithwake distribution or velocity
distribution only the component of the velocity along the main direction of the flow. The
observations are computed using the function f defined as

f (x, y) = sin (πx) sin ((y + 0.2)π)

1.2ex+y , (7)

where x and y are the cartesian coordinates in the wake plane. In total we collect 36 obser-
vations by sampling with equispaced cartesian grid the domain [−0.5, 0.5]2 in the wake
plane.

3.2 First Test Case: A Smooth Distribution

In this Section of the results, the problem considered is the reconstruction of the inlet velocity
distribution when the wake velocity has the smooth distribution in (6).

3.2.1 Parametrization Using ANN

The first step in the resolution of the inverse problem is the parametrization of the real velocity
distribution at the wake through a fully-connected ANN. The ANN is represented in Fig. 5
and it is composed by 3 hidden layers, with 10, 5 and 3 neurons, respectively. The inputs are
the polar coordinates of the wake points and the output is the wake velocity distribution; the
degree of freedom of the distribution is P = 10001, which corresponds to the number of
points at the inlet.
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Fig. 5 Structure of the ANN used for parametrization

Fig. 6 First test case: parametrization of the given target sinusoidal function using a ANN: from left to right
are sketched the distribution after the training phase, the original distribution, and two perturbed configurations

As explained in Sect. 2.1, the parameters coincide with a subset of weights of the ANN. In
particular, our choice is to consider 4 parameters, given by the biases of the last two layers.

The main idea is to generate M different distributions from the ANN by randomly pertur-
bating the weights considered as parameters. Those distributions are set as inlet distributions
in the full order model. The perturbated parameters and the wake distributions obtained from
the full order computation are considered as parameters and snapshots, respectively, for the
formulation of the ROM.

In Fig. 6, the following distributions are represented from the left to the right: the distri-
bution predicted from the ANN considering the same parameters as in the training stage; the
real target wake distribution; two among the M distributions obtained by perturbating the
parameters.

3.2.2 Model Order Reduction

The distributions obtained by the parametrization described in Sect. 3.2.1 are then used as
inlet initial conditions to run a set of M offline simulations, following the setting described
in Sect. 3.1. The perturbed parameters of the ANN and the wake distributions found from
high-fidelity simulations are then used to perform a model reduction. In particular, in this
Section different types of techniques for the reduction and approximation stages of the ROM
are evaluated and compared and the models considered are here listed:

1. POD-RBF;
2. POD-ANN;
3. AE-RBF;
4. AE-ANN.
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Fig. 7 The POD and AE modes. Modes in (b) are obtained considering a linear autoencoder

5. Non linear AE-RBF;
6. Non linear AE-ANN.

The details related to the structure of the neural networks and the hyperparameters used
for training, i.e. the learning rate, the stopping criteria, the number of hydden layers and of
neurons for each layer, are defined in the discussion Sect. 3.4.

First of all, we consider a comparison regarding the dimensionality reduction step. The
reduced dimension considered in this test case is 3 and we consider a linear AE, i.e. without
any activation function, composed by a single hidden layer of 3 neurons for both the encoder
and the decoder parts. The idea is indeed to reproduce the behaviour of thePOD.Apreliminary
study is the graphical comparison between the POD and the AE modes. In particular, the AE
modes are computed by taking as input to the decoder part of the network the identity matrix
of size 3. Since the AE does not include any non linear computation, the operation is linear
and ideally identical to the computation of the first 3 POD modes. From Fig. 7, the shapes of
the first 3 POD and AE modes appear similar.

In Fig. 8 we provide a representation of the error in the L2 norm for: (a) a fixed test dataset;
(b) the training dataset used to build each ROM. In this sensitivity analysis, the test dataset is
fixed and composed by 10 snapshots and the number of snapshots used to train the reduced
models varies between 10 and 90.

Considering a dataset composed by n element, we first define the relative error for each
i-th element, say:
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Fig. 8 First test case: sensitivity analysis for all the ROMs with the reduced dimension L = 3. Error is shown
for test (left) and training (right) datasets

εi = ‖ṽwakei − vwakei ‖
‖vwakei ‖ ,

where ṽwakei is the velocity distribution predicted by the reduced model starting from the test
parameter, and vwakei is the full-order snapshot in the test dataset. Then, the mean over all the
elements of the test dataset is computed: (

∑n
i=1 εi )/n. This definition applies to both the test

and the training datasets and it is used to compute the errors represented in Fig. 8. The neural
networks appearing in ROMs are trained 3 times and Fig. 8 provides the mean test and train
errors among the 3 different runs, to ensure a more reliable analysis of the ROMs accuracy.

As can be seen from Fig. 8, the results obtained for the test error of POD-RBF and AE-
RBF are similar to each other and, as intuitively expected, the general trend is decreasing as
the number of training snapshots increases. The reduced methods which include a regression
technique for the approximation, i.e. the ANN, produce better results in terms of test error
with respect to the interpolating technique. In particular, the regression technique outperforms
the classical RBF if we consider a small number of training snapshots; however, the results
obtained by the two approximating techniques are similar when a larger training dataset is
used to train the ROM.

Remark 3 The behavior of the neural networks (both the AE used for reduction and the
ANN used as approximant) strongly depends on the hyperparameters of the networks. This
instability occurs also in the case of nonlinear AE. Indeed, in this case the training error
outperforms the results obtained with the POD, but the test error remains close to the one
obtained with a standard POD approach, leading to the overfitting phenomenon. A wider
discussion on the stability issues related to neural networks will be undertaken in Sect. 3.4.

3.2.3 Wake Optimization

In this Section, two different optimization methods are exploited to find the combination of
parameters that provides the highest accuracy in the reconstruction of the original wake. In
particular, the results obtained with a genetic algorithm are compared to those obtained with a
gradient-based method. Both optimization processes exploit the ROM potentiality to predict
the velocity distribution corresponding to each evaluation point in the parameter space. The
reduced model taken into account is POD-ANN, which provided the highest precision in the
sensitivity analysis in 3.2.2 when the number of snapshots used for training is 90.

The GA, composed by the selection, crossover and mutation steps, is evolved for 20
generations, considering an initial population of 200 individuals, where each individual is
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Fig. 9 First test case: graphical representations of the exact benchmarkwake (left), the optimal wakes obtained
with a genetic (center) and gradient (right) optimization

represented by a different combination of the four parameters used for the wake parametriza-
tion in Sect. 3.2.1. All the attributes of each individual are in the interval [−0.5, 0.5]. The
fitness of each individual of the population, i.e. the objective function minimized in the GA,
is the relative error of the wake obtained from the ROM with respect to the reference wake
we want to reproduce. We specify here more details about the implementation of the genetic
evolution:

• in the mate stage, a blend crossover is performed, that modifies in-place the input indi-
viduals;

• in the mutation step, a Gaussian mutation of mean μ = 0 and standard deviation σ = 1
is applied to the input individual. The independent probability for each attribute to be
mutated is set to 0.5;

• the evolutionary algorithm employed in the genetic process is the (μ + λ) algorithm,
which selects the μ = 50 best individuals for the next generation and produces λ = 100
children at each generation. Moreover, the probabilities that an offspring is produced by
crossover and by mutation are set to 0.4 and 0.6, respectively.

On the other hand, for the gradient optimization we considered the BFGS (Broyden-
Fletcher-Goldfarb-Shanno) algorithm. The starting point chosen in the function evaluation
is [0.5,−0.5,−0.5, 0.5]. The algorithm evaluated the derivative of the objective function via
forward differences, setting the absolute step size to 1 × 10−17.

The optimal individual obtained from the genetic optimization is[−0.157 −0.179 −0.157 0.0851
]
, whereas the optimal individual predicted by the gradient-

based algorithm is
[
0.00611 −0.117 −0.0095 0.0143

]
. The final value of the objective

function for the optimal individual is ∼ 3.89% for the genetic algorithm, and ∼ 3.94%
for the gradient algorithm. The graphical representations of the optimal and of the real dis-
tributions are displayed in Fig. 9.

Remark 4 Although the two methods reach similar precision, the genetic algorithm is pre-
ferred since the gradient method is significantly influenced by the choice of the initial guess
and by the step size used to evaluate the approximated derivative.Wewill show the numerical
evidence for this argumentation in Sect. 3.4.

3.3 Second Test Case: A Set of Pointwise Observations

In practical applications, the available data is typically provided not in the form of a smooth
distribution, but in a small number of pointwise observations, which are usually localized on
a reduced part of the computational domain. In this section, the known data at the wake is
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Fig. 10 Second test case: parametrization of the given target using a ANN: from left to right are sketched the
distribution after the training phase, the original observations, and two perturbed configurations

composed of a set of 36 measurements placed inside a square of side 1 m centered on the
wake plane. The reference distribution considered is expressed in (7).

The logical passages followed in Sect. 3.2 are reproduced in the present section with a
different set of data.

3.3.1 Parametrization Using ANN

The ANN used to parametrize the wake in this test case is composed of 3 hidden layers, the
first one with 8 neurons and the other two with 2 neurons. The number of parameters is 6
in this application and coincides with the perturbations of the weight matrix and the bias of
the last hidden layer. The ANN is trained for 50000 epochs with a learning rate of 3× 10−3.
Since in this numerical experiment there is no radial symmetry (contrary to the previous test
case) we add an additional contribution to the loss term to force the continuity between 0 and
2π angles. Formally, the loss to minimize during the train is

L(ṽwake, vtarget) = MSE(ṽwake, vtarget) + λ‖ANN(ri , 0) − ANN(ri , 2π)‖, (8)

where MSE(·, ·) is the mean square error, λ is a weight of the additional contribution (here
λ = 1) and ri for i = 1, . . . , 100 are the equispaced sample points we spanned along the
radius at the angles 0 and 2π . Figure10 shows indeed a continuous surface that keeps such
a feature also after the perturbation of the weights.

As already done in Sect. 3.2.1,M sets of parameters are generated as random perturbations
in the interval [−1, 1], which will be used as parameters of the ROM. The ANN perturbed
with the generated parameters is used to obtain M new velocity distributions, which are
set as inlet distributions for the full-order model. Then, from the full-order simulations, the
wake distributions corresponding to each set of parameters are obtained and considered as
snapshots for the ROM (Fig. 11).

3.3.2 Model Order Reduction and Optimization

From the sensitivity analysis in Sect. 3.2.2 the combination of the AE and the ANN proved to
have the highest precision in the reconstruction of the wake. For this reason, the AE-ANN is
the ROM which is chosen in this test case to train the optimization algorithm and to provide
the best (approximated) wake.

TheGA, composed by the selection,mate, andmutation, is here iterated for 20 generations.
The number of individuals considered is 200 for the first generation and 100 for all the other
generations. The fitness is the relative error between the real wake we want to reproduce
and the wake reconstructed by the ROM, where only the points in data are considered. In
this experiment, the fitness decreases as the population evolves, until a percentage error of
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Fig. 11 Second test case: sensitivity analysis for all the ROMs with the reduced dimension L = 4. Error is
shown for the testing (left) and training (right) datasets

Fig. 12 Second test case: the
target output at wake plane (left)
and the optimum representation,
obtained with a genetic algorithm
(right)

� 49% is reached. Also in this case, the BFGS technique is not able to reach that fitness and
gets blocked instead in some local minima at 61% of error with respect to the target wake.

Figure 12 shows the graphical representation of the optimumwake obtained from the GA.
From a graphical point of view, the optimization is able to capture the trend exhibited by
the pointwise measurements. However, the error remains high after the optimization since
the data in this test case is not given by a target smooth distribution, but by a few amount
of points. Another possible issue is that the points are given only in a limited region of the
wake, leading to a more difficult reconstruction of the distribution at the inlet, especially in
the external region.

3.4 Discussion

This Section is dedicated to a wider discussion of the numerical results obtained in Sects. 3.2
and 3.3.

Table 1 provides a summary of the results obtained for the two test cases. The first thing
that emerges from the table is that none of the methods performs better than the others for
each different value of the training snapshots. In general, for the first test case, the methods
that provide the highest accuracy on the test snapshots are the POD-ANN and the linear
AE-ANN, as can be seen also from Fig. 8. On the other hand, in the second test case, the
reduced order methods employing the nonlinear autoencoder provide the best results in most
of the M values, as can be seen in Fig. 11. For what concerns the training error, from both
Figs. 8 and 11we can deduce that the introduction of non-linearity in the reduction stage leads
to a better reconstruction of the training snapshots, especially when M is small, i.e. with a
limited amount of training data. Therefore, especially in the first test case, the autoencoder
reaches a high accuracy on the train snapshots, but it is not able to generalize the information
learned during training, leading to high errors on the test database. Indeed, the worst results
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Table 1 Summary of results

First test case Second test case

Number of parameters p 4 6

Reduced dimension L 3 4

10 train snapshots Best method Linear AE-ANN Linear AE-ANN

Mean test error 0.781% 65.32%

50 train snapshots Best method POD-ANN Non linear AE-ANN

Mean test error 0.399% 36.82%

90 train snapshots Best method POD-ANN Non linear AE-RBF

Mean test error 0.395% 29.95%

Optimal fitness Genetic 3.89% 49.83%

Gradient 3.94% 61.72%

in the first case are obtained with the nonlinear AE and are highlighted in red in Table 2. This
behavior describes the overfitting phenomenon, which is here mitigated by the addition of a
regularization term in the loss function, say:

L(ṽwake, vtarget) = MSE(ṽwake, vtarget) + α

2
‖W‖2,

where ‖W‖ is the L2 norm of the weight matrix, i.e. the sum over all the squared weight
values, and α is named weight decay.

In addition, we provide here different arguments to explain the stability issues concerning
the neural networks’ performance:

• The networks are highly influenced by the choice of the hyper-parameters, i.e. the learning
rate, the structure of the hidden layers, the stopping criteria, and the weight decay. In
order to have a good result for each value of M , the value of the hyperparameters should
be tuned ad-hoc considering each case individually. In our analysis, instead, we consider
the parameters fixed for each method for a fair comparison. These values are reported in
Appendix 1.

• The different performance of the autoencoder in the two test cases depends on the input
data. We obtained better results in the second test case, where the POD has poor accuracy
and is not able to capture the system’s behavior. To support this argumentation,we provide
the results obtained in the first test case when L = 1. From Fig. 13 we can notice that the
autoencoder improves the results obtained with the POD when M is low (Table 3).

An additional point that can be discussed is the type of optimization algorithm used. As
pointed out in Sect. 3.2.3, the genetic algorithm is preferred to a gradient-based algorithm,
because the gradient method can get stuck into local minima. The evidence of this statement
is provided in Table 4, where we show the results obtained with the BFGS method starting
from different initial guesses. In the first three cases analyzed, the method converges to three
different local minima; in the last two cases, it gets stuck in the first evaluation point.
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Table 2 First test case: stability analysis on the percentage test errors of the ROMs when L = 3

M linear linear nonlinear nonlinear
POD-RBF POD-ANN AE-RBF AE-ANN AE-RBF AE-ANN

min max min max min max min max min max min max

10 1.62 1.62 0.78 0.87 1.61 1.69 0.76 0.81 2.04 2.14 1.24 1.65

20 0.76 0.76 0.42 0.57 0.76 0.76 0.43 0.45 0.9 0.94 0.64 0.83

30 0.62 0.62 0.38 0.38 0.62 0.62 0.39 0.39 0.77 0.78 0.66 0.69

40 0.49 0.49 0.37 0.37 0.49 0.49 0.37 0.38 0.63 0.71 0.57 0.58

50 0.44 0.44 0.40 0.40 0.44 0.48 0.40 0.40 0.54 0.61 0.46 0.60

60 0.41 0.41 0.38 0.38 0.41 0.42 0.38 0.41 0.55 0.60 0.49 0.59

70 0.42 0.42 0.36 0.44 0.42 0.43 0.37 0.41 0.51 0.57 0.54 0.63

80 0.40 0.40 0.36 0.41 0.40 0.42 0.36 0.37 0.46 0.53 0.45 0.53

90 0.43 0.43 0.39 0.41 0.43 0.43 0.41 0.45 0.49 0.54 0.53 0.61

Fig. 13 First test case: sensitivity analysis for all the ROMs with the reduced dimension L = 1. Error is
displayed for test (left) and training (right) datasets

Table 3 Second test case: stability analysis on the percentage test errors of the ROMs, when L = 4

M linear linear nonlinear nonlinear
POD-RBF POD-ANN AE-RBF AE-ANN AE-RBF AE-ANN

min max min max min max min max min max min max

10 122.08 122.08 56.46 80.45 122.34 122.38 58.16 75.26 92.35 101.82 54.26 100.21

20 60.80 60.80 40.72 47.85 60.13 60.24 42.16 55.72 41.07 44.48 30.32 46.01

30 53.78 53.78 41.54 52.91 53.29 53.30 38.26 48.82 40.52 41.93 37.53 49.45

40 55.25 55.25 37.16 43.01 54.76 55.04 38.42 46.34 38.96 44.21 45.40 52.15

50 53.73 53.73 35.96 41.43 53.30 53.37 40.07 47.69 36.77 42.99 32.15 40.05

60 46.49 46.49 33.44 38.89 46.17 46.22 33.94 38.85 35.91 37.16 31.84 42.95

70 40.20 40.20 37.17 39.85 39.93 40.00 30.06 37.57 28.92 33.38 25.91 39.48

80 34.52 34.52 33.99 43.17 34.35 34.39 33.56 34.85 30.09 32.61 29.09 43.84

90 34.10 34.10 28.99 35.16 34.03 34.04 29.24 35.51 28.60 30.67 27.26 37.48
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Table 4 First test case: results of gradient optimization for different initial guesses

N. test Function evaluations Gradient evaluations Final fitness (%) Final point

1 85 17 3.94
[
0.01 −0.12 −0.01 0.01

]

2 236 47 3.98
[−0.1 −0.06 −0.18 0.1

]

3 252 48 4.03
[−0.33 0.03 −0.1 0.1

]

4 5 1 4.25
[−0.1 0.1 −0.1 0.1

]

5 5 1 5.36
[
0.1 0.1 0.1 0.1

]

Table 5 Second test case: results of gradient optimization for different initial guesses

N. testFunction evaluationsGradient evaluationsFinal fitness (%)Final point

1 467 65 110.30
[−0.047 −0.045 −0.23 −0.27 0.108 0.55

]

2 536 75 61.72
[
0.27 −0.54 0.107 0.44 0.35 −0.53

]

3 512 72 69.42
[
0.25 0.062 −0.39 0.17 −0.42 0.33

]

4 719 101 74.8
[
0.03 −0.11 −0.097 0.25 0.49 −0.27

]

5 382 53 79.38
[−0.096 0.46 0.28 −0.027 0.058 −0.49

]

4 Conclusion

We presented in this paper a data-driven computational pipeline that allows us to efficiently
face inverse problems by means of the model order reduction technique. Neural networks
are involved in the such framework at three different levels:

• The parametrization of a given (generic) wake distribution by perturbating a subset of
the weights of a fully-connected neural network. The parameters are exploited to obtain
the inlet distributions of the full-order simulations. The wake distributions obtained from
the full-order simulations are considered snapshots associated with the input parameters,
obtaining a parametrization of the original problem (Table 5).

• The compression of the dimensionality of the full-order snapshots,which typically belong
to high-dimensional spaces, obtained with a properly structured autoencoder;

• The approximation of the solution manifold, allowing for predicting new solutions for
any unseen parameters. This last task is obtained with a second fully-connected neural
network.

The results obtained by both the test cases in this work are promising. The neural network
parametrization shows the possibility to produce several different distributions playing with
very few parameters (4 and 6), becoming a valuable tool also for such an objective. Of course,
the benefits of such parametrization are strictly related to the problem at hand, since here we
are assuming that the target distribution is somehow related to the boundary condition. The
investigation of the parametric configuration shows also a large range of admissible distribu-
tions. However, we highlight there is no possibility to precisely select the region of interest
for the parametrization and the weights of the neural network which have been perturbated
have no physical significance linked to the wake velocity distribution. Dimensionality com-
pression and manifold approximation are already investigated uses of neural networks, and
also in this contribution, the results confirm their better performances with respect to the
more consolidated techniques.
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Possible future developments of the presented pipeline may interest the parametrization
through neural networks: at the current stage, it results in a sort of black-box procedure, since
the parameters and their ranges are selected following a trial and error process. Such an issue
can be alleviated by looking at the intermediate output—the output of the hidden layers of
the network—to propose a meaningful criterion for parameter selection.
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Appendix

In this section, we report the specifications of the hyperparameters of the neural networks
used to build the ROMs in the first and second test cases (Tables 6 and 7).
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Table 6 First test case: neural networks setting in ROMs

NN Structure Non-linearity Learning rate Stop criteria Weight decay

Epochs Final loss

ANN [4, 4] Softplus 5 × 10−3 200,000 1 × 10−3 0

(POD-ANN)

ANN [4, 4] Softplus 5 × 10−3 100,000 1 × 10−4 0

(lin AE-ANN)

ANN [40, 40] Softplus 5 × 10−3 100,000 1 × 10−5 0

(non lin AE-ANN)

AE [3, 3] None 1 × 10−3 1000 0

(linear)

AE [200, 3, Leaky ReLU 5 × 10−4 5000 5 × 10−4 5 × 10−4

(non linear) 3, 200]

Table 7 Second test case: neural networks setting in ROMs

NN Structure Non-linearity Learning rate Stop criteria Weight decay

Epochs Final loss

ANN [40, 20, 10] Softplus 2 × 10−3 0.1 0

AE [4, 4] None 3 × 10−3 5000 0

(linear)

AE [200, 4, Leaky ReLU 3 × 10−4 2000 5 × 10−4

(non linear) 4, 200]
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