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Abstract
We introduce Neural Network (NN for short) approximation architectures for the numerical
solution of Boundary Integral Equations (BIEs for short). We exemplify the proposed NN
approach for the boundary reduction of the potential problem in two spatial dimensions.
We adopt a Galerkin formulation-based method, in polygonal domains with a finite number
of straight sides. Trial spaces used in the Galerkin discretization of the BIEs are built by
using NNs that, in turn, employ the so-called Rectified Linear Units (ReLU) as the under-
lying activation function. The ReLU-NNs used to approximate the solutions to the BIEs
depend nonlinearly on the parameters characterizing the NNs themselves. Consequently, the
computation of a numerical solution to a BIE by means of ReLU-NNs boils down to a fine
tuning of these parameters, in network training. We argue that ReLU-NNs of fixed depth
and with a variable width allow us to recover well-known approximation rate results for the
standard Galerkin Boundary Element Method (BEM). This observation hinges on existing
well-known properties concerning the regularity of the solution of the BIEs on Lipschitz,
polygonal boundaries, i.e. accounting for the effect of corner singularities, and the expressive
power of ReLU-NNs over different classes of functions. We prove that shallow ReLU-NNs,
i.e. networks having a fixed, moderate depth but with increasing width, can achieve optimal
order algebraic convergence rates. We propose novel loss functions for NN training which
are obtained using computable, local residual a posteriori error estimators with ReLU-NNs
for the numerical approximation of BIEs. We find that weighted residual estimators, which
are reliable without further assumptions on the quasi-uniformity of the underlying mesh, can
be employed for the construction of computationally efficient loss functions for ReLU-NN
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training. The proposed framework allows us to leverage on state-of-the-art computational
deep learning technologies such as TENSORFLOW and TPUs for the numerical solution of
BIEs using ReLU-NNs. Exploratory numerical experiments validate our theoretical findings
and indicate the viability of the proposed ReLU-NN Galerkin BEM approach.

1 Introduction

Following fundamental mathematical developments in the 90’s that established density
(resp. “universal approximation capacity”) of shallow NNs (see, e.g., the surveys [28] and
the references therein), Deep Neural Networks (DNNs for short) based computations have
seen, during the past five to ten years, an increasing development driven by the advent of data
science and deep learning techniques. In these developments, in particular the quantitative
advantages in expressive power furnished by DNNs has moved into the focus of interest.

Mounting computational and theoretical evidence points to significant advantages of the
expressive power of DNNs when furnished by possibly large NN depth. We mention only
[29, 36] for the use of DNNs in the numerical solution of PDEs, and the recent works [27,
32] that indicate a scope for the efficacy of DNNs in the approximation of maps between
high-dimensional spaces.

In the present work, we propose the use of NNs for the approximation of variational BIEs,
in particular of the first kind. We focus on NNs with ReLU activation, of fixed depth. As we
shall show, mathematically and computationally, these ReLU-NNs allow for optimal conver-
gence rates of the Galerkin BEM in polygons. We also comment in passing on advantages
afforded by NNs with large depth. Here, approximation theory indicates that exponential
convergence is possible, in principle.

Contributions We consider the Laplace equation with appropriate boundary conditions on
R
2 \ �, where � corresponds to a one dimensional open arc, and on a polygonal Lipschitz

domainD, and consider their boundary reduction bymeans ofBIOs as described, for example,
in [31]. We prove that by using shallow ReLU-NNs as trial spaces in the Galerkin discretiza-
tion of the resulting BIEs one can recover well-known algebraic convergence rate bounds of
the BEM, which are in turn traditionally obtained by means of other methods, such as graded
meshes or the adaptive BEM [9, 15] (ABEM). Even though not thoroughly studied in the
present work, we remark that by using Deep ReLU-NNs (and working under the assumption
of analytic regularity hypotheses on the data) one can recover exponential convergence rates
usually obtained using the so-called hp Galerkin BEM. This can be obtained by recalling
recently obtained ReLU-NN emulation results from [27] together with analytic regularity
results of the solution to BIEs in polygonal Lipschitz domain D, with a finite number of
straight sides, in weighted function spaces [3]. However, we hasten to add that the main goal
of the present work is to study the approximation of the solution to BIEs by means of shallow
ReLU-NNs.

The insight behind the results present herein is the interpretation that shallow ReLU-NNs
realize approximations in linear subspaces, whose basis elements are realized by the so-
called “hidden layers” of the ReLU-NN and are, therefore, subject to optimization during
ReLU-NN training. In the present paper, we partially leverage this flexibility and the ability
of the hidden layers of ReLU-NNs to express: (a) low order boundary element spaces with
“free-knots” (in the terminology of spline approximation), i.e., to adapt the partitions of the
boundary to the structure of the unknown solution (which is reminiscent of adaptive meshing

123



Journal of Scientific Computing (2023) 95 :41 Page 3 of 37 41

strategies in Galerkin BEM), and (b) to leverage adaptive mesh refinement methods in BEM
for a rational procedure to “enlarge” the ReLU-NN through the insertion of nodes.

We propose two different algorithms to, computationally, perform the construction of the
ReLU-NNs (thus, two different paths to train the network). The first one is based on the
observation that the solution of symmetric, coercive problems, such as the ones arising from
the boundary reduction of the Laplace problem, can be written as the minimization of a
suitable energy functional.

The second algorithm makes use of well-known a posteriori error estimates, which are
commonly used in theABEM.The definition of an efficiently computable loss functionwhich
is based on computable, reliable a-posteriori error estimators for Galerkin discretizations dif-
fers from other widely established methods, and is not limited to Galerkin BEM. Numerical
experiments show the computational feasibility of these algorithms and a detailed conver-
gence analysis shows that shallow ReLU-NNGalerkin BEM can attain the optimal algebraic
convergence rates. NN training can, in particular, compensate for reduced convergence rates
due to, e.g., corner singularities of the physical domain.

OutlineThiswork is structured as follows. In Sect. 2webriefly review the boundary reduction
of potential problems in two space dimensions. We also present a recapitulation of the direct
method of boundary reduction and the strong ellipticity of boundary integral operators of the
first-kind in fractional order Sobolev spaces. Additionally, we recall results concerning the
regularity of the solution to BIEs both in Lipschitz polygons and on open arcs, which will
be used ahead to obtain convergence rates for the ReLU-NN approximation of BIEs.

We begin Sect. 3 by introducing rigorous definitions of DNNs and describing, in detail,
the connection existing between P1-spline boundary element spaces and ReLU-NNs. A key
observation in our analysis is that the low-order BEM spaces with adaptive mesh refinement
is shown to admit a representation through ReLU-NNs architectures. This property, together
with the regularity results of the solutions to BIEs, allows us to establish convergence results
with optimal rates in the approximation of the described BIEs bymeans of ReLU-NNs. These
theoretical results provide a benchmark to assess the performance of the different training
algorithms proposed ahead in Sect. 4.

In Sect. 4, we propose two concrete training algorithms for the construction of ReLU-NNs
approximating the solution of the analyzed BIEs. The first one leverages on the coercivity
properties of the BIEs for the potential problem and the interpretation of its solution as the
minimizer of a suitable energy functional. By performing a combination of the optimiza-
tion of hidden parameters of the ReLU-NN and computation of the output layer by solving
the corresponding Galerkin linear system, the proposed algorithm attains the (theoretically
proven) optimal convergence rates for different numerical test cases. The second algorithm
proposed in Sect. 4 hinges on a posteriori error estimates which, in turn, provide a com-
putable upper bound for the error between the exact solution to the BIE and the ReLU-NN.
Consequently, we can use this property to guide the training of the ReLU-NNs at each step
of the iterative process. We mention that the proposed numerical methodology does not rely
on automatic differentiation of the loss function with respect to the DNN parameters. Section
5 then presents concrete numerical experiments and is followed by Sect. 6, which recapitu-
lates our principal findings and indicates several lines of investigation for their extension and
possible further mathematical results.
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2 Preliminaries

2.1 Sobolev Spaces in Bounded Domains

Let D ⊂ R
2 be a bounded, connected Lipschitz domain with boundary ∂D. For s ∈ R, we

denote by Hs(D) the standard Sobolev spaces of order s defined in D equipped with the norm
‖·‖Hs (D). As it is customary, we identify H0(D)with L2(D). Sobolev spaces on the boundary
� := ∂D are denoted by Hs(�), where the range of s ∈ R is restricted in accordance to
the regularity of the domain D (cf. [26, Sections 3.8 and 3.11]). For Lipschitz domains, for
example, the space Hs(�) is well-defined for s ∈ [−1, 1]. Furthermore, we shall denote
by Hs(D)/R (resp. Hs(�)/R) the quotient space of Hs(D) (resp. Hs(�)) by the subspace

span{1}. We denote by γ0 : H1(D) → H
1
2 (�) and γ1 : H1(�,D) → H− 1

2 (�) the Dirichlet
and Neumann trace operators on �, respectively, with H1(�,D):={u ∈ H1(D) : �u ∈
L2(D)}. The duality between Hs(�) and H−s(�) is denoted by 〈ψ, φ〉� for ψ ∈ H−s(�)

and φ ∈ Hs(�).

2.2 Sobolev Spaces on Open Arcs

Let � ⊂ R
2 be a Jordan arc (in the sense of [30, Definition 2.4.2]). For s ∈ (−1, 1), we

denote by Hs(�) the standard Sobolev space on � and, furthermore, introduce the spaces
˜Hs(�) as in [26, Section 3.6]. Moreover, the following relations hold (cf. [26, Section 3.11])

˜H−s(�) ≡ (Hs(�)
)′ and H−s(�) ≡ ( ˜Hs(�)

)′
,

where, for a general Banach space X , X ′ denotes its dual space. The duality between Hs(�)

and ˜H−s(�) is denoted by 〈φ,ψ〉� for ψ ∈ ˜H−s(�) and φ ∈ Hs(�).

2.3 Boundary Integral Operators in Lipschitz Domains

Again, let D ⊂ R
2 be a bounded Lipschitz domain with boundary �:=∂D. In the follow-

ing, we introduce the main concepts concerning BIOs and BIEs to be used throughout this
manuscript. As we will only discuss boundary value problems in R

2, we limit our presenta-
tion of the aforementioned tools to the two dimensional case. Let G(x, y) be the fundamental
solution of the Laplacian in R

2 (cf. [34, Chapter 5] or [31, Section 3.1]), given by

G(x, y) = − 1

2π
log ‖x − y‖ , x, y ∈ R

2, x 
= y.

Let N : ˜H−1(D) → H1(D) denote the Newton potential, defined for ϕ ∈ C∞0 (D) as

(Nϕ) (x):=
∫

D

G(x, y)ϕ(y)dy, x ∈ D.

We define the single and double layer potentials, respectively, as follows:

S:=N ◦ γ ′0 and D:=N ◦ γ ′1. (2.1)

The operators S : H− 1
2 (�) → H1(D) and D : H

1
2 (�) → H1(D) define continuous

mappings (cf. [31, Theorem 3.1.12 & Theorem 3.1.16]). Equipped with these definitions, we
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introduce the boundary integral operators (BIOs) on � as:

V:=γ0S, K:=1

2
Id+ γ0D, K′:= − 1

2
Id+ γ1S, W:= − γ1D, (2.2)

referred to as the single layer, double layer, adjoint double layer and hypersingular BIOs,
respectively, where Id signifies the identity operator. The mapping properties of the BIOs in
(2.2) are stated in the following result.

Proposition 2.1 [10, Theorem 1] Let D ⊂ R
2 be a bounded Lipschitz domain with bound-

ary �:=∂D. For each σ ∈ (− 1
2 ,

1
2 ), the BIOs introduced in (2.2) define continuous maps

according to:

V : H− 1
2+σ (�) → H

1
2+σ (�), K : H 1

2+σ (�)→ H
1
2+σ (�),

K′ : H− 1
2+σ (�) → H−

1
2+σ (�), W : H 1

2+σ (�) → H−
1
2+σ (�).

Moreover, the single layer and hypersingular BIOs are coercive.

Proposition 2.2 [34, Theorems 6.23 & Corollary 6.25] Let D ⊂ R
2 be a bounded Lipschitz

domain with boundary �:=∂D. There exists cW > 0 such that

〈Wφ, φ〉� ≥ cW ‖φ‖2
H

1
2 (�)

, ∀φ ∈ H
1
2 (�)/R.

Assume that diam(D) < 1, then there exists cV > 0 such that

〈Vψ,ψ〉� ≥ cV ‖ψ‖2
H−

1
2 (�)

, ∀ψ ∈ H−
1
2 (�).

Remark 1 Let us define the bilinear form ǎ : H 1
2 (�)× H

1
2 (�) → R as

ǎ(φ, ψ):= 〈Wφ,ψ〉� + 〈φ, 1〉� 〈ψ, 1〉� , ∀φ,ψ ∈ H
1
2 (�). (2.3)

One can also prove (see, e.g., [37, Section 2] and the references therein) that there exists a
constant α > 0 such that

ǎ(φ, φ) ≥ α ‖φ‖2
H

1
2 (�)

, ∀φ ∈ H
1
2 (�).

Lemma 2.3 (Maue’s formula, [20, Lemma 1.2.2] & [34, Theorem 6.15]) Let D ⊂ R
2 be a

bounded Lipschitz polygonwith boundary� := ∂D. Then, for all ϕ ∈ C 0(�)with continuous
derivative on each smooth segment of � it holds that

Wϕ = − d

ds
V
d

ds
ϕ in H−

1
2 (�), (2.4)

where d
ds denotes the arc-length derivative. The relation (2.4) remains valid for ϕ ∈ H

1
2 (�).

2.3.1 Direct Boundary Integral Formulation of the Interior Dirichlet BVP

We consider the interior Laplace problem equipped with Dirichlet boundary conditions in a
bounded Lipschitz domain D ⊂ R

2 with boundary �:=∂D.

Problem 2.4 (Dirichlet Boundary Value Problem) Let f ∈ H
1
2 (�) be given . We seek

u ∈ H1(D) satisfying

−�u = 0 in D and γ0u = f on �.
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As is customary, one may recast Problem 2.4 as an equivalent BIE using the BIOs intro-
duced in (2.2). The starting point is the so-called integral representation formula: we express
the weak solution u ∈ H1(D) to Problem 2.4 using the layer potentials introduced in (2.1)
as follows:

u = S(γ1u)−D(γ0u) in D. (2.5)

By applying the Dirichlet trace operator γ0 : H1(D) → H
1
2 (�) to (2.5) and using the

boundary condition on� stated inProblem2.4, one obtains the followingBIE for the unknown

datum γ1u ∈ H− 1
2 (�).

Problem 2.5 (Boundary Integral Formulation of Problem 2.4) Let f ∈ H
1
2 (�) be given. We

seek ψ :=γ1u ∈ H− 1
2 (�) such that

Vψ =
(

1

2
Id+ K

)

f .

The well-posedness of the BIE in Problem 2.5 follows from the mapping properties of

the BIOs in Proposition 2.1, the ellipticity of the single layer BIO V : H− 1
2 (�) → H

1
2 (�)

in Proposition 2.2, and the Lax-Milgram lemma.

2.3.2 Direct Boundary Integral Formulation of the Interior Neumann BVP

We consider the interior Laplace problem equipped with nonhomogeneous Neumann bound-
ary conditions in a bounded, simply connected Lipschitz domain D ⊂ R

2 with boundary
�:=∂D, thus rendering the boundary � connected itself.

Problem 2.6 (NeumannBVP inD) Let g ∈ H− 1
2 (�) be given.We seek u ∈ H1(D) satisfying

�u = 0 in D and γ1u = g on �.

It iswell-established that there exists a uniqueu ∈ H1(D)/R solution toProblem2.6 provided

that one further imposes g ∈ H− 1
2 (�)/R (see, e.g., [34, Theorem 4.9]). We reduce the

boundary value problem stated in Problem 2.6 to an equivalent BIE using theBIOs introduced
in (2.2) and the integral representation formula (2.5). The application of the Neumann trace

operator γ1 : H1(�,D) → H− 1
2 (�) to (2.5) together with boundary condition stated in

Problem 2.6 yields the following boundary integral formulation of Problem 2.6.

Problem 2.7 (Boundary Integral Formulation of Problem 2.6) Let g ∈ H− 1
2 (�)/R be given.

We seek φ:=γ0u ∈ H
1
2 (�)/R such that

Wφ =
(

1

2
Id− K′

)

g.

The well-posedness of Problem 2.7 follows from the mapping properties of the BIOs
stated in Proposition 2.1, Proposition 2.2, the fact that K′ preserves integral mean value zero
for densities defined over � and from the Lax-Milgram lemma, as it is thoroughly explained
in [34, Section 7.2].
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2.4 Regularity of the Solution to the BIEs in Lipschitz Polygons

We recapitulate results concerning the regularity of solutions to the BIEs stated in Problems
2.5 and 2.7. In the following, we assume that D ⊂ R

2 is a bounded Lipschitz polygon
with boundary �:=∂D characterized by a finite number J ≥ 3 of vertices {x j }Jj=1 ⊂ R

2.
We enumerate cyclically mod J , i.e., xJ+1 = x1. We denote � j = conv(x j , x j+1), for
j = 1, . . . , J , (with the convention �0 = �J ) and let ω j ∈ (0, 2π) be the internal angle at
x j , i.e., that of the wedge formed by the edges � j−1 and � j , j = 1 . . . , J .

Let {χ j }Jj=1 be a partition of unity of �, where each function χ j , j = 1, . . . , J , is

constructed by considering the restriction of a function in C 2
0 (R2) to the boundary � such

that χ j = 1 in a neighborhood of x j and supp{χ j } ⊂ � j−1 ∪ {x j } ∪ � j . Let ϕ : � → R be
a function defined on the boundary �. Using the previously described partition of unity, we
may write

ϕ =
J
∑

j=1
(ϕ−, ϕ+) χ j on �,

where by (ϕ−, ϕ+) we denote the restriction of ϕ : � → R to � j−1 ∪ {x j } ∪ � j with
ϕ−:= ϕ|� j−1 and ϕ+:= ϕ|� j

, for j = 1, . . . , J .
The following result (from [16]) describes the regularity of the solution to Problems 2.5

and 2.7.

Proposition 2.8 [16, Proposition 2.1] Set α jk :=k π
ω j

, for k ∈ N and j = 1, . . . , J . Let

t ≥ 1/2 and n ∈ N be such that n + 1 ≥ ω j
π

(

t − 1
2

) ≥ n for all j = 1, . . . , J .

(i) Assume that f ∈ H
1
2 (�) in Problem 2.5 is additionally piecewise analytic. Then, there

exists ψ0 satisfying ψ0|� j
∈ Ht−1(� j ) for all j = 1, . . . , J , such that the solution

ψ ∈ H− 1
2 (�) to Problem 2.5 admits the following representation:

ψ =
J
∑

j=1

n
∑

k=1

(

(ψ jk)−, (ψ jk)+
)

χ j + ψ0. (2.6)

In (2.6), if α j,k /∈ Z

(ψ jk)± = c±jk
∥

∥x − x j
∥

∥

α jk−1 ,

and if α j,k ∈ Z

(ψ jk)± = c±jk
∥

∥x − x j
∥

∥

α jk−1 + d±jk
∥

∥x − x j
∥

∥

α jk−1 log
∥

∥x − x j
∥

∥ ,

where c±jk, d±jk ∈ R, for j = 1, . . . , J and k = 1, . . . , n.

(ii) Assume that g ∈ H− 1
2 (�)/R in Problem 2.7 is additionally piecewise analytic. Then,

there exists φ0 such that φ0|� j
∈ Ht (� j ), for all j = 1, . . . , J , such that the solution

φ ∈ H
1
2 (�) to Problem 2.7 admits the following representation:

φ =
J
∑

j=1

n
∑

k=1

(

(φ jk)−, (φ jk)+
)

χ j + φ0. (2.7)
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In (2.7), if α j,k /∈ Z

(φ jk)± = c±jk
∥

∥x − x j
∥

∥

α jk ,

and if α j,k ∈ Z

(φ jk)± = c±jk
∥

∥x − x j
∥

∥

α jk + d±jk
∥

∥x − x j
∥

∥

α jk log
∥

∥x − x j
∥

∥ ,

where c±jk, d±jk ∈ R, for j = 1, . . . , J and k = 1, . . . , n.

2.5 Boundary Integral Operators on Open Arcs

We proceed to extend the definitions and results introduced in Sect. 2.3 for BIOs in Lipschitz
domains D with closed boundary � = ∂D, i.e., ∂� = ∅, to open arcs � in R

2 (in the sense
of [30, Definition 2.4.2]), for which ∂� 
= ∅. To this end, we consider a bounded Lipschitz
D ⊂ R

2 with boundary �:=∂D and assume that � ⊂ R
2 is a connected open arc of � with

positive measure and endpoints x1 and x2 in�. By [10, Theorem 1], the potentials in (2.1) are
well defined as elements on local Sobolev spaces over the unbounded domain �c:=R

2 \�,
so that the layer potentials

S : ˜H− 1
2 (�)→ H1

loc(R
2) and D : ˜H 1

2 (�) → H1
loc(�

c),

define continuous operators. The continuity properties of the layer potentials and trace opera-
tors [26, Theorem 3.38] together with the jump properties of the layer potentials [10, Lemma
4.1] allow us to define the BIOs on � as before:

V:=γ0S and W:= − γ1D.

We recall key properties of the single layer and hypersingular BIOs on a open arc �.

Proposition 2.9 ([9, Lemmas 1 & 3]) Let � � � be an open Jordan arc. For |σ | ≤ 1
2 , the

maps

V : ˜H− 1
2+σ (�) → H

1
2+σ (�) and W : ˜H 1

2+σ (�) → H−
1
2+σ (�)

are continuous.

Theorem 2.10 ([9, Section 2] and [35, Theorem 1.5]) Let � � � be a Jordan arc. Then,
there exist positive constants μ, η (depending upon �) such that for all ψ ∈ ˜H− 1

2 (�) and

for all φ ∈ ˜H 1
2 (�) it holds

〈Vψ,ψ〉� ≥ η ‖ψ‖2
˜H−

1
2 (�)

, 〈Wφ, φ〉� ≥ μ ‖φ‖2
˜H

1
2 (�)

.

Problem 2.11 (Weakly singular BIE on �) Let f ∈ H
1
2 (�) be given. We seek u ∈ ˜H− 1

2 (�)

satisfying

〈Vu, v〉� = 〈 f , v〉� , ∀ v ∈ ˜H− 1
2 (�).

Problem 2.12 (Hypersingular BIE on �) Let g ∈ H− 1
2 (�) be given. We seek φ ∈ ˜H 1

2 (�)

satisfying

〈Wφ, v〉� = 〈g, v〉� , ∀ v ∈ ˜H 1
2 (�).

123



Journal of Scientific Computing (2023) 95 :41 Page 9 of 37 41

As with Problems 2.5 and 2.7, the well-posedness of Problems 2.11 and 2.12 follows
from Proposition 2.9, Theorem 2.10 and the Lax-Milgram lemma. Moreover, the respective

solutions ψ ∈ ˜H− 1
2 (�) and ϕ ∈ ˜H 1

2 (�) satisfy

‖ψ‖
H−

1
2 (�)

≤ 1

η
‖ f ‖

H
1
2 (�)

and ‖ϕ‖
H

1
2 (�)

≤ 1

μ
‖g‖

H−
1
2 (�)

,

with μ > 0 as in Theorem 2.10.

2.6 Regularity of the Solution to the BIEs on Open Arcs

For the ensuing analysis of lower-order BEM, in particular on open arcs, we shall invoke a
decomposition of solutions into regular and singular parts, from [16, 38]. For i = 1, 2, let �i
denote the Euclidean distance between x ∈ � and the endpoint xi ∈ R

2 of � and let ξi be a
C∞ cut-off function on � with 0 ≤ ξi ≤ 1, ξi = 1 near xi and ξ = 0 at the opposite end.
For α1, α2 ∈ R and ψ0 ∈ ˜Hs(�) for any s < 2, we set

ψ :=
2
∑

j=1
α j�

1
2
j ξ j + ψ0 (2.8)

and define

‖ψ‖T s (�) :=
{

∑2
j=1
∣

∣α j
∣

∣+ ‖ψ0‖˜Hs (�) s ∈ [1, 2)
‖ψ‖

˜Hs (�) s < 1,

T s(�) := R
2 × ˜Hs(�).

Proposition 2.13 [38, Theorem 1.8] For σ ∈ (− 1
2 ,

1
2 ) the operator W : T

3
2+σ (�) →

H
1
2+σ (�)

{α1, α2, ψ0} �→ W

⎛

⎝

2
∑

j=1
α j�

1
2
j ξ j + ψ0

⎞

⎠ = g,

is bijective and continuous and there exists C > 0 such that

‖ψ‖T s (�) ≤ C ‖g‖
H

1
2+σ

(�)
,

where ψ is as in (2.8).

2.7 Galerkin Boundary Element Discretization

We proceed to detail the Galerkin discretization of Problems 2.5, 2.7, 2.11 and 2.12. We
remark that other forms of numerical discretizations, such as collocation or Petrov-Galerkin
formulations, may be considered as well.

In what follows, we assume that D ⊂ R
2 is a bounded, Lipschitz polygon with boundary

�:=∂D. As is customary in the h-Galerkin BEM, we decompose the boundary � into N ∈ N

straight, disjoint line segments � j , for j = 1, . . . , N , from now onwards referred to as
elements. The vertices of the polygon � must match the endpoints of some of the elements
and the mesh TN :={�i }Ni=1 covers � itself. Equipped with these definitions, we introduce the
usual boundary element spaces of piecewise polynomial functions on the mesh TN of �:

S0(�, TN ):=
{

ψ ∈ L2(�) : ψ |� j
∈ P0(� j ), j = 1, . . . , N

}

,
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S1(�, TN ):=
{

ψ ∈ H1(�) : ψ |� j
∈ P1(� j ), j = 1, . . . , N

}

.

In the above, and for each j = 1, . . . , N , Pp(� j ) denotes the space of polynomials of degree
p ∈ N ∪ {0} on � j .

Problem 2.14 (BEM for Problem 2.5) Let TN be a mesh of the boundary � and let f ∈
H

1
2 (�) be given. We seek ψN ∈ S0(�, TN ) satisfying

〈VψN , ϕN 〉� =
〈(

1

2
Id+ K

)

f , ϕN

〉

�

, ∀ ϕN ∈ S0(�, TN ).

Problem 2.15 (BEM for Problem 2.7) Let TN be a partition of the boundary � and let

g ∈ H− 1
2 (�) be given. We seek φN ∈ S1(�, TN ) satisfying

〈WφN , ϕN 〉� + 〈φN , 1〉� 〈ϕN , 1〉� =
〈(

1

2
Id− K′

)

g, ϕN

〉

�

, ∀ ϕN ∈ S1(�, TN ).

Remark 2 The continuity and ellipticity of V and the bilinear form ǎ(·, ·) (recall its definition
in Remark 1) in H− 1

2 (�) and H
1
2 (�), respectively, will ensure the existence and uniqueness

of solutions to Problems 2.14 and 2.15.

Remark 3 (WeaklySingularOperatorV) For� := ∂Daclosed curve of arclength L = |�|, let
r : [0, L) → � be its arclength parametrization and consider the map I given for φ ∈ C 0(�)

by

(Iφ)(x) :=
∫ r−1(x)

0
φ ◦ r(σ )ds(σ )− 〈φ, 1〉�,

for all x ∈ �. One verifies that the map I may be extended to I ∈ Liso(H−
1
2 (�)/R, H

1
2 (�)).

For ψ ∈ H−1/2(�) define ψ̆ := ψ − 1
L 〈ψ, 1〉� ∈ H−1/2(�)/R. Then Maue’s formula in

Lemma 2.3 implies, for every ψN , ϕN ∈ S0(�, TN ), that

〈VψN , ϕN 〉�
=
〈

W(I ψ̆N ), I ϕ̆N

〉

�
+ 1

L

〈

V 〈ψN , 1〉� , φ̆N

〉

�

+ 1

L

〈

Vψ̆N , 〈φN , 1〉�
〉

�
+ 1

L2

〈

V 〈ψN , 1〉� , 〈φN , 1〉�
〉

�
.

We continue with the Galerkin discretization of Problems 2.11 and 2.12. Recall � � � to
be a Jordan arc and let ˜TN := {�i }Ni=1 be a mesh on � consisting, as before, of straight,
disjoint line segments� j , for j = 1, . . . , N . We introduce the following spaces of piecewise
polynomials:

S0(�,˜TN ):= {ψ ∈ L2(�) : ψ |� j ∈ P0(� j ), j = 1, . . . , N
}

,

S1(�,˜TN ):= {ψ ∈ ˜H1(�) : ψ |� j ∈ P1(� j ), j = 1, . . . , N
}

.

Problem 2.16 (Boundary element discretization of Problem 2.11) Let ˜TN be a mesh over

the Jordan arc � � � and let f ∈ H
1
2 (�) be given. We seek ψN ∈ S0(�,˜TN ) satisfying

〈VψN , ξN 〉� = 〈 f , ξN 〉� ∀ ξN ∈ S0(�,˜TN ).

Problem 2.17 (Boundary element discretization of Problem 2.12) Let ˜TN be a mesh over

the Jordan arc � � � and let g ∈ H− 1
2 (�) be given. We seek ϕN ∈ S1(�,˜TN ) satisfying

〈WφN , ϕN 〉� = 〈g, ϕN 〉� ∀ ϕN ∈ S1(�,˜TN ).
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3 ReLU Neural Networks

We introduce a key ingredient in the present paper, namely the so-called DNNs. Even though
in thisworkwe use only theReLU activation function, other (continuous) activation functions
could be considered in the analysis and numerical construction ofDNNs, such as sigmoidal, or
tanh activations. However, the approximation results presented herein hold with the simpler,
and computationally more efficient, ReLU activation function.

Definition 3.1 (Deep Neural Network) Let L ≥ 2, N0, N1, . . . , NL ∈ N. Amap� : RN0 →
R

NL given by

�(x) = W L(�(W L−1(�(· · · �(W1((x)))))), x ∈ R
N0 (3.1)

with affine maps W� : R
N�−1 → R

N� , W�(x) = A�x + b�, 1 ≤ � ≤ L , where A� ∈
R

N�×N�−1 , b� ∈ R
N� , and with activation function � : R → R (acting component-wise on

vector inputs) is calledDeep Neural Network. In the above definition, N0 is the dimension of
the input layer, NL denotes the dimension of the output layer, L = L(�) denotes the number
of layers (excluding the input layer), N1, . . . , NL correspond to the widths of each of the
L − 1 hidden layers, and M =M(�):=max� N� corresponds to the width of the network.
In addition, we denote by NN �

L,M,N0,NL
the set of all DNNs � : R

N0 → R
NL with input

dimension N0, output dimension NL , a depth of at most L layers, maximum width M , and
activation function �.

For any � ∈ NN �

L,M,N0,NL
with L ≥ 2 as in (3.1), we introduce �hid : R

N0 → R
NL−1

given by

�hid(x) := �(W L−1(�(· · · �(W1(x)))))),

ie., the subnetwork comprising all “responses from the hidden layers” of a DNN � ∈
NN �

L,M,N0,NL
. Moreover, we denote the space of all the responses from the hidden lay-

ers of DNN’s in NN �

L,M,N0,NL
as

NN hid,�
L,M,N0,NL

:=
{

�hid : � ∈ NN �

L,M,N0,NL

}

.

3.1 Structure of Galerkin Approximation Spaces generated by ReLU-NNs

It is an immediate consequence fromDefinition 3.1 that functions generated byDNNs (under-
stood in the sense that L ≥ 2 as opposed to shallow NNs, where L = 1) depend in a
nonlinear fashion on the DNN parameters characterizing the hidden layers, i.e., the weights
A� ∈ R

N�×N�−1 and biases b� ∈ R
N� . However, by setting the bias in the output layer of the

DNN in Definition 3.1 to 0, i.e., bL = 0, we have that DNN functions belong to the linear
span of the space of functions generated by the “hidden layers” of the corresponding DNN.

Proposition 3.2 Assume given aDNN� ∈ NN �

L,M,N0,NL
with L ≥ 2 and such that NL = 1,

bL = 0. Then, for any activation function � : R → R, it holds that

NN �

L,M,N0,NL
= span

{

�hid
i : �hid ∈ NN hid,�

L,M,N0,NL
, i ∈ {1, . . . , NL−1}

}

,

where �hid
i denotes the i-th component of any �hid ∈ NN hid,�

L,M,N0,NL
.

We see from this proposition that DNNs:
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(i) span particular linear subspaces of dimension NL−1 and
(ii) span subspaces with basis elements that, in turn, can be chosen in a problem-adapted

fashion by adjusting the parameters in the hidden layers of the DNN.

It is clear from this (trivial) observation that shallow ReLU-NNs, which we will consider
exclusively in the remainder of this paper, can exactly reproduce spaces of continuous and
piecewise linear functions on � with a DNN of depth L = 2. Mesh refinement on � can be
accounted for by adjusting the widths of the hidden layers during training.

As was shown in [27, Sections 4 and 5], for L > 2, ReLU-DNNs can represent hp-
boundary element spaces on geometric partitions, which are known to afford exponential
convergence rates for piecewise analytic data.We hasten to add, however, that Proposition 3.2
has wider implications, e.g., trainingNN hid,� to emulate reduced bases by a greedy search,
for example, will imply that the correspondingGalerkin BEM (with subspaces corresponding
to the DNN NN � = span{�hid ∈ NN hid,�}) will deliver performance corresponding to
reduced bases BEM. This could be employed to accommodate, for example, Galerkin BEM
with basis sets that feature additional properties which are tailored to particular problem
classes.

3.2 P1-Spline Boundary Element Spaces as ReLU-NNs

Recall that N ∈ N corresponds to the number of elements in the meshes on � and � (TN
and ˜TN , respectively), and let p ∈ N denote the polynomial degree of the boundary element
spaces S p(�, TN ) and S p(�,˜TN ) of piecewise polynomials of degree p. Moreover, define
I:=(−1, 1) and let r : I→ R

2 be a Lipschitz continuous and piecewise affine parametrization
of the closed curve� (where� is Lipschitz) satisfying r(−1) = r(1) and r ′(t) 
= 0 for almost
every t ∈ I. Define, for φ ∈ C 0(�), the so-called pullback operator as

τrφ:=φ ◦ r ∈ C 0
per(I),

where C 0
per(I) denotes the subspace of continuous, 2-periodic functions. This operator can be

uniquely extended in such a way that for s ∈ [−1, 1] the map τr : Hs(�) → Hs
per(I) defines

a linear, continuous operators that admits a bounded inverse, thus inducing an isomorphism
between Hs(�) and Hs(I), where, for s ≥ 0, Hs

per(I) denotes the Sobolev space of 2-periodic

functions of order s and H−sper (I) signifies its dual in the L
2(I) duality pairing. The following

result addresses the representability of the space S1(�, TN ) by means of ReLU-NNs.

Proposition 3.3 Let N ∈ N. For each φN ∈ S1(�, TN ) there is a ReLU neural network
�N ∈ NN 2,N+1,1,1 such that (τrφN )(t) ≡ �N (t) for all t ∈ I.

Proof Recall the setting described in Sect. 2.7: Given N ∈ N we consider a mesh TN of �

consisting of N + 1 points {xn}Nn=0 ⊂ � and where x0 = xN (i.e. N distinct points). The
set of nodes {xn}Nn=0 ⊂ � may be uniquely identified with {t j }Nj=0 ⊂ I through r(t j ) = x j ,
for j = 0, . . . , N , and we assume that −1 = t0 < t1 < · · · < tN−1 < tN = 1 set
K j = (t j , t j+1) for j = 0, . . . , N − 1, and define

S1(I, T̂N ):= {φ ∈ H1(I) : φ|K j ∈ P1, j = 0, . . . , N − 1
}

,
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where T̂N = ∪N−1
j=0 K j is a partition of the interval I. Set h j = t j+1 − t j . Let us define the

so-called “hat functions”

ζ j (t):=

⎧

⎪

⎨

⎪

⎩

t−t j−1
h j−1 , t ∈ K j−1,

1− t−t j
h j

, t ∈ K j ,

0, t /∈ K j−1 ∪ K j ,

, t ∈ I,

for j = 1, . . . , N − 1 and t ∈ I, together with

ζ0(t):=
{

1− t−t0
h0

, t ∈ K0,

0, t /∈ K0,
and ζN (t):=

{

t−tN−1
hN−1 , t ∈ KN−1,
0, t /∈ KN−1,

Recall that span{ζ0, . . . , ζN } = S1(I, T̂N ), whence for all �N ∈ S1(I, T̂N ) there are unique
coefficients c0(�N ), . . . , cN (�N ) ∈ R, such that

�N (t) =
N
∑

j=0
c j (�N )ζ j (t), t ∈ I. (3.2)

Each ζ j can be represented (non-uniquely) using ReLU-NNs as follows

ζ j (t) = 1

h j−1
�(t − t j−1)−

(

1

h j−1
+ 1

h j

)

�(t − t j )+ 1

h j
�(t − t j+1), t ∈ I, (3.3)

for j = 1, . . . , N − 1, together with

ζ0(t) = 1− 1

h0
�(t − t0)+ 1

h0
�(t − t1) and ζN (t) = 1

hN−1
�(t − tN−1), t ∈ I

Using (3.3) we obtain

⎛

⎜

⎝

ζ0(t)
...

ζN (t)

⎞

⎟

⎠
= A2� (A1t + b1)+ b2,

where A1:=(1, . . . , 1)� ∈ R
(N+1)×1, b1:=(−t0, . . . ,−tN )� ∈ R

N+1, b2:=(1, 0, . . . , 0)� ∈
R

N+1 and A2 ∈ R
(N+1)×(N+1) is defined as follows

A2:=
⎛

⎝

v1
H
v2

⎞

⎠

where v1:=(− 1
h0

, 1
h0

, 0, . . . , 0) ∈ R
1×(N+1), v2:=(0, . . . , 0, 1

hN−1 , 0) ∈ R
1×(N+1),

and H ∈ R
(N−1)×(N+1)

H[i, j]:=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1
hi−1 , if i = j,

−
(

1
hi−1 + 1

hi

)

, if i + 1 = j,
1
hi

, if i + 2 = j,
0, otherwise,
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for i = 1, . . . , N + 1, j = 1, . . . , N + 1. Finally, we construct the output layer by using
(3.2). Let us define C:= (c0(�N ), . . . , cN (�N )) ∈ R

1×(N+1). Then we have that

�N (t) = C

⎛

⎜

⎝

ζ1(t)
...

ζN (t)

⎞

⎟

⎠
= C (A2� (A1t + b1)+ b2) , t ∈ I. (3.4)

Observe that �N ∈ NN 2,N+1,1,1 and that, due to the construction (3.4), the weights of �N

are bounded in absolute value by max{1+ h1, ‖φN‖L∞(�) , 2 max
j=0,...,N−1

1
h j
}.

Now, set ν j = τ−1r ζ j , for j = 0, . . . , N . Therefore, for each φN ∈ S1(�, TN ) we have
that

φN (x) =
N
∑

j=0
φN (x j )ν j (x), x ∈ �. (3.5)

Observe that since φN (x0) = φN (xN ) we have φN ∈ S1(�, TN ). The application of τr to
(3.5) yields

(τrφN ) (t) =
N
∑

j=0
φN (x j )ζ j (t), t ∈ I. (3.6)

Observe that the right-hand side of (3.6) defines an element ofNN 2,N+1,1,1, thus concluding
the proof. ��
Remark 4 As pointed out in the proof of Proposition 3.3, the representation of the “hat
functions” ζ j ∈ φN ∈ S1(I, TN ) is not unique. One may also write

ζ j (t) = �

(

1− �

(

t − t j
h j

)

− �

(

t j − t

h j+1

))

, t ∈ I

for j = 0, . . . , N and t ∈ I. Then, there exists a neural network ˜� j ∈ NN 4,2,1,1 such that
� j (t) = ζ j (t), for all t ∈ I and j = 1, . . . , N . This representation leads to ReLU-NNs of
width 2 and depth 3.

3.3 Approximation Properties of ReLU-NNs: h-Galerkin BEM

Based on the result stated in Proposition 3.3 (concerning the exact emulation of the standard
P1-BEM spaces) one may conclude that existing results on the convergence rates of Galerkin
BEM are straightforwardly “transferred” to the ReLU Galerkin-BEM framework. In this
section, we provide a clear result establishing this connection. Firstly, we recapitulate known
approximation results of singular functions on graded partitions.

Proposition 3.4 Set I = (0, 1) and consider a function u ∈ ˜H 1
2 (I) of the form

u(x) =
J
∑

j=1
α j x

λ j + u0(x) , where Re{λ j } > 0, u0 ∈ H2(I), α j ∈ C, x ∈ I.

Assume λ0 := min{Re{λ j } : j = 1, ..., J } ≥ s for some 0 < s ≤ 1. For a grading parameter
β ≥ 1, denote by S1(I, TN ,β) the space of continuous, piecewise linear functions in I = (0, 1)

on the graded mesh TN ,β characterized by the nodes {xN ,β
k := (k/N )β, k = 0, 1, ..., N }
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in I. Then, for every ε > 0 and s ≥ 0 such that s < λ0 + 1/2 and s ≤ 1, and with
I β
N : C 0(I)→ S1(I, TN ,β) as the nodal interpolant, there holds that

‖u − I β
Nu‖˜Hs (I) �

{

N−(λ0−(s−1/2))β+ε if 1 ≤ β ≤ 2−s
λ0−(s−1/2) ,

N−(2−s) if β > 2−s
λ0−(s−1/2) ,

(3.7)

as N grows to infinity. In (3.7), the implied constant depends on β, {λ j } j=1,...,J , α j , u0 and
ε.

Proof A proof of this result is provided, for the convenience of the reader, in Appendix A. ��
We observe that Proposition 3.3 allows for arbitrary locations of the nodes characterizing

the mesh TN on �, while ensuring exact ReLU-NN emulation of the spaces S1(�, TN ).
The preceding result, therefore, also implies approximation rate bounds for ReLU-NNs. We
describe these now.

Theorem 3.5 (Approximation of the Solution to BIEs by ReLU–NNs)

(i) Let φ ∈ H
1
2 (�) be the solution of Problem 2.7 on a bounded Lipschitz polygon

with boundary � characterized by a finite number J ≥ 3 of vertices. Assume that

g ∈ H− 1
2 (�)/R in Problem 2.7 is additionally piecewise analytic and let r : I→ R

2 be a
Lipschitz continuous and piecewise linear parametrization of � satisfying r(−1) = r(1)
and r ′(t) 
= 0 for almost every t ∈ I.
Then, there exists C > 0 such that for each N ∈ N there exists φN ∈ NN 2,M,1,1

satisfying

‖τrφ − φN‖
H

1
2 (I)

≤ CN−
3
2 , (3.8)

where τr : H 1
2 (�) → H

1
2 (I) denotes the pullback operator introduced in Sect. 3.2 and

M = O(N ).
(ii) Let ϕ ∈ ˜H 1

2 (�) be the solution of Problem 2.12 for g ∈ H1(�), and let r : I→ R
2 be

a regular parametrization, i.e. r ′(t) 
= 0 for t ∈ I, of the open arc � ⊂ R
2.

Then, for every ε > 0 there exists C(ε) > 0 (depending on ε > 0) such that for each
N ∈ N there exists ϕN ∈ NN 2,N ,1,1 satisfying

‖τrϕ −ϕN‖
˜H

1
2 (I)

≤ C(ε)N−
3
2+ε, (3.9)

where τr : ˜H 1
2 (�) → ˜H

1
2 (I) denotes the pullback operator introduced in Sect. 3.2.

Proof (i) Let r : I → � be a Lipschitz continuous and piecewise linear parametrization
of �. Being � a bounded Lipschitz polygon with straight sides and defined by J ≥ 3
vertices, there exist points −1 = t0 < t1 < · · · < tJ := 1 satisfying r(t j ) = x j , for
j = 0, · · · , J , where we set x0 = xJ . Throughout this proof, we use I j :=[t j , t j+1] ⊂ I.
A piecewise affine parametrization of this polygon is, for instance, given by

r(t) = t j − t

t j − t j+1
x j + t − t j+1

t j − t j+1
x j+1, t ∈ I j , j = 0, ..., J − 1.

Additionally, for j = 0, . . . , J − 1, we define the extension by zero and restriction
operators E j : C 0(I j ) → C 0(I) and R j : C 0(I) → C 0(I j ) as

E j (u)(t) =
{

u t ∈ I j
0 t /∈ I j

, a.e. t ∈ I, and R j (v)(t) = v(t), a.e. t ∈ I j
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Equipped with this, and according to Proposition 2.8 item (ii), we have that

(τrφ) (t) = η j,1(t)+ η j,2(t)+ (τrφ0) (t), t ∈ I j .

with

η j,1(t):=χ j,1(t)
n
∑

k=1
β j,k

∥

∥x j+1 − x j
∥

∥

α jk

∣

∣t j+1 − t j
∣

∣

α j,k

∣

∣t − t j
∣

∣

α j,k , (3.10)

and

η j,2(t):=χ j,2(t)
n
∑

k=1
β j+1,k

∥

∥x j+1 − x j
∥

∥

α j+1,k
∣

∣t j+1 − t j
∣

∣

α j+1,k
∣

∣t − t j+1
∣

∣

α j+1,k , (3.11)

where χ j,1, χ j,2 : I j → R are infinitely differentiable functions, which, furthermore, are
identically equal to 1 for |t− t j | < L j/4 and |t− t j+1| < L j/4 (with L j := |t j+1− t j |),
respectively. In addition, χ j,1 and χ j,2 vanish for |t− t j | > L j/2 and |t− t j+1| > L j/2,
respectively. In (3.10) and (3.11), for each k ∈ N and j = 1, . . . , J , we have that
3
2

ω j
π
− 1 ≤ n ≤ 3

2
ω j
π
, α jk :=k π

ω j
,R j (τrφ0) ∈ H2(I j ) and β j,k, β j+1,k ∈ R, as stated in

Proposition 2.8. Observe that in (3.10) and (3.11) we have singularities arising at t = t j
and t = t j+1. The strength of these singularities is dictated by the inner angles of the
polygon at the corresponding vertices. It follows, from Proposition 3.4, with s = 1

2 and

β j > max
{

3
2α j,1

, 3
2α j+1,1

}

, that there exist η j,1,N , η j,2,N ∈ S1(I j , TN ,β j ) and a constant

C > 0 independent of N such that
∥

∥η1, j − η1, j,N
∥

∥

˜H
1
2 (I j )

≤ CN−
3
2 , and

∥

∥η2, j − η2, j,N
∥

∥

˜H
1
2 (I j )

≤ CN−
3
2 ,

and, in addition, there exists φ j,N ∈ S1(I j , TN ,β j ) such that

∥

∥R j (τrφ0)− φ j,N
∥

∥

˜H
1
2 (I j )

≤ CN−
3
2 .

Set φ j,N :=η j,1,N + η j,2,N + φ j,N ∈ S1(I, TN ,β j ) and we have that

∥

∥R j (τrφ)− φ j,N
∥

∥

˜H
1
2 (I j )

≤ CN−
3
2 (3.12)

for some positive constant C independent of N . At this point, we make the following

observation: It holds that R j (τrφ) = φ j,N on ∂I j , hence E j (R(τrφ)− φ j,N ) ∈ H
1
2 (I)

and
∥

∥E j (R(τrφ)− φ j,N )
∥

∥

H
1
2 (I)

= ∥∥R(τrφ)− φ j,N
∥

∥

˜H
1
2 (I j )

.

Following Proposition 3.3, on each side of the polygon we have constructed a ReLU-NN
belonging to NN 3,N+2,1,1 that approximates R j (τrφ) according to (3.12). In addition,
Proposition 3.4 implies that these ReLU-NNs interpolate exactly the value of the solution
to Problem 2.7 at the vertices of the polygon. Hence, by defining φN :=φ j,N in I j , for
j = 1, . . . , J , namely we define φN to be equal to the previously constructed ReLU on
each side of the polygon, we have constructed a ReLU-NN satisfying (3.8). Indeed, we
have that

‖τrφ − φN‖
H

1
2 (I)

≤
J−1
∑

j=0

∥

∥

(

E j ◦R j
)

(τrφ − φN )
∥

∥

H
1
2 (I)
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=
J−1
∑

j=0

∥

∥E j
(

R j (τrφ)− φ j,N
)∥

∥

˜H
1
2 (I j )

.

This ReLU-NN in particular belongs to NN2,J (N+1),1,1, thus concluding the proof of
this statement.

(ii) For the sake of simplicity andwithout loss of generality, we consider�:=(−1, 1)×{0} ⊂
R
2. It follows from Proposition 2.13 that

(τrφ) (t):=α1 |1+ t | 12 χ1(t)+ α2 |1− t | 12 χ2(t)+ v̌(t), t ∈ I,

where we have used the parametrization r(t) = (t, 0)� of� ⊂ R
2, α1, α2 ∈ R, χ1, χ2 ∈

C∞(I) are fixed cut-off functions with χ1 = 1, χ2 = 1 in a neighborhood of t = −1 and
t = 1, respectively, and v̌ ∈ H

1
2+σ (I) for σ ∈ (− 1

2 ,
1
2

)

. Set

η1(t):=α1 |1+ t | 12 χ1(t), η2(t):=α2 |1− t | 12 χ2(t), t ∈ I. (3.13)

Observe that [0, 1] � t �→ η1(2t − 1) and [0, 1] � t �→ η1(−2t + 1) defined in (3.13) fit
the framework of Proposition 3.4 with J = 1 and λ1 = 1

2 . It follows from Proposition
3.4 with s = 1

2 that for β > 2−s
λ0−(s−1/2) = 3 that there exists η1,N , η2,N ∈ S1(I, TN ,β)

and a constant C > 0 such that
∥

∥η1 − η1,N
∥

∥

˜H
1
2 (I)

≤ CN−
3
2 , and

∥

∥η2 − η2,N
∥

∥

˜H
1
2 (I)

≤ CN−
3
2 .

In addition, since v̌ ∈ H
1
2+σ (I) for for σ ∈ (− 1

2 ,
1
2

)

, for every ε > 0 there exists
C(ε) > 0 (depending on ε > 0) such that for each N ∈ N there exists v̌N ∈ S1(I, TN ,β)

satisfying
∥

∥v̌ − v̌N
∥

∥

˜H
1
2 (I)

≤ C(ε)N−
3
2+ε.

Observe that by adding η1,N , η2,N , v̌N ∈ S1(I, TN ,β) and recalling that S1(I, TN ,β) is a
vector space, we conclude thatϕN :=η1,N+η2,N+ v̌N ∈ S1(I, TN ,β) fulfills the estimate
in (3.9). According to Proposition 3.3, ϕN ∈ NN 2,N+1,1,1. However, recalling that
ϕN (−1) = ϕN (1) = 0, we can discard the basis functions associated to the endpoints
of the interval and conclude that ϕN ∈ NN2,N ,1,1. ��

4 ReLU Neural Network Galerkin BEM

In this section, we propose two algorithms to construct the ReLU-NNs described in Sect. 3 for
the approximation of the solution to BIEs in polygons and arcs, introduced in Sects. 2.3 and
2.5, respectively. Following the representation of the lower-order boundary element spaces as
ReLU-NNs elaborated in Sect. 3, we focus only on shallowNNs. The first method, described
herein in Sect. 4.1, aims to construct a ReLU-NN by considering as a loss function the total
energy of the problem. Indeed, it is well-known that the solution to operators equations
involving “elliptic” operators in Hilbert spaces may be cast as minimization problems. We
rely on this observation to mathematically justify this algorithm for the construction of
the corresponding ReLU-NN. This approach has been previously described for example
in [19, Section 7.2] in the context of one-dimensional FEM for the Poisson problem with
non-homogeneous Dirichlet boundary conditions, and actually is the key ingredient of the
so-calledDeepRitzMethod, described in [13, 14, 22, 24]. The secondmethod proposed in this
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work consists in the construction of a computable loss function based on a posteriori error
estimators for BIEs of the first kind. These tools come in different flavors, and we refer to [15]
for an extensive review, including their application to the Adaptive BEM. In particular, here
we make use of the so-called weighted residual estimators [7–9], which have been proven
to be reliable, thus providing a computable upper bound for the error of the Galerkin BEM.
To date, these are the only ones shown to deliver optimal convergence rates when used in
the Adaptive BEM algorithm (ABEM for short). Finally, in Sect. 4.3, we describe precise
algorithms for the computations of the ReLU-NNs for the approximation of the solutions to
the hypersingular BIEs introduced in Problems 2.7 and 2.12.

4.1 EnergyMinimization

Throughout this section, let X be a real Hilbert space equipped with the inner product (·, ·)X
and the induced norm ‖·‖X =

√

(·, ·)X . In addition, let X ′ denote the dual space of X and
let 〈·, ·〉X represent the duality pairing between X ′ and X . As it is customary, we endow X ′
with the dual norm

‖f‖X ′ := sup
0 
=u∈X

|〈f, u〉X |
‖u‖X

, f ∈ X ′.

In addition, we say that operator A : X → X ′ is X -elliptic if there exists a constant Ca > 0
such that

〈Av, v〉X ≥ Ca ‖v‖2X , ∀ v ∈ X . (4.1)

In the following, we recall a well-established result on continuous, self-adjoint and positive
semi-definite operators. This property has been previously used in the construction of DNNs
in the “Deep Ritz Method” framework introduced in [14].

Lemma 4.1 ([34, Lemma 3.2]) Let A : X → X ′ be a continuous, self-adjoint and positive
semi-definite operator, i.e.

〈Av, v〉X ≥ 0, ∀ v ∈ X ,

and let f ∈ X ′. Then, u ∈ X solves the variational problem

〈Au, v〉X = 〈f, v〉X , ∀ v ∈ X ,

if and only if

u = argmin
v∈X

(

1

2
〈Av, v〉X − 〈f, v〉X

)

.

Lemma 4.1 allows us to express Problems 2.7 and 2.12 (as well as their discrete counterparts)
as minimization problems over the corresponding Hilbert spaces. Let us define,

�� :H 1
2 (�) → R : φ �→ 1

2
〈Wφ, φ〉� + 〈φ, 1〉2� − 〈g�, φ〉� , (4.2)

�� :˜H 1
2 (�) → R : ϕ �→ 1

2
〈Wϕ, ϕ〉� − 〈g�, ϕ〉� , (4.3)

where g� ∈ H− 1
2 (�) and g� ∈ H− 1

2 (�) represent the right-hand sides of the variational
BIEs.
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For each N ∈ N, we aim to find ReLU-NNs φ�
�,N ∈ NN 2,N+1,1,1 and ϕ�

�,N ∈
NN 2,N ,1,1 minimizing the loss functions defined in (4.2) and (4.3), i.e.,

φ�
�,N := argmin

φ∈NN 2,N+1,1,1∩H
1
2
per(I)

��(τ−1r φ) and ϕ�
�,N := argmin

ϕ∈NN 2,N ,1,1∩˜H
1
2 (I)

��(τ−1r ϕ).

(4.4)

Remark 5 Observe that ϕ�
�,N must vanish at the boundary of �. Hence, the width of the

family of ReLU-NNs over which we search ϕ�
�,N in (4.4) is exactly N . In addition, recall

that NN 2,N+1,2,1 ∩ H
1
2
per(I) ⊂ C 0

per(I), thus enforcing periodicity of the corresponding of
the ReLU-NN in the approximation of the density over a closed curve �.

Remark 6 While the loss functions (4.2) and (4.3) are applied to the operatorW, similar loss
functions can be derived for V. Consisting of piecewise constant discontinuous functions on
�, the spaces S0(�, TN ) in the Galerkin BEM Problem 2.14 for Symm’s BIE can not be
exactly realized via ReLU-NNs. However, with Remark 3, the corresponding loss functions
for the Galerkin BEM Problem 2.14 can be realized also with ReLU-NNs on �. All results
on convergence rates for W will have, via Remark 3, analogs for V. For reasons of length,
we develop the ReLU Galerkin BEM algorithms only forW and loss functions introduced in
(4.2) and (4.3).

The following result and accompanying corollaries motivate our choice of loss functions.
We use this result to address the construction of ReLU–NNs by solving the minimization
problems listed in (4.4).

Lemma 4.2 Let A : X → X ′ be a continuous, self-adjoint and X–elliptic operator. Given
f ∈ X ′, let u ∈ X be the unique solution to the following variational problem:

〈Au, v〉X = 〈 f , v〉X , ∀v ∈ X . (4.5)

Define � : X → R as

�(v):=1

2
〈Av, v〉X − 〈 f , v〉X , v ∈ X .

Then, there exist positive constants C1 and C2, both independent of u ∈ X, such that

∀v ∈ X : C1
(〈 f , u〉X + 2�(v)

) ≤ ‖u − v‖2X ≤ C2
(〈 f , u〉X + 2�(v)

)

. (4.6)

Proof Due to the continuity and X -ellipticity of the operator A : X → X ′, we may define an
equivalent norm to ‖·‖X in X as follows:

‖v‖A :=
√〈Av, v〉X , v ∈ X .

Indeed, if Cc > 0 denotes the continuity constant of A : X → X ′ and Ca > 0 is as in (4.1),
for all v ∈ X it holds

C
1
2
a ‖v‖X ≤ ‖v‖A ≤ C

1
2
c ‖v‖X .

Let u ∈ X be the unique solution to the variational problem (4.5). Then, for all v ∈ X ,
we have

‖u − v‖X ≤ C
− 1

2
a ‖u − v‖A and ‖u − v‖X ≥ C

− 1
2

c ‖u − v‖A . (4.7)
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For v ∈ X , we calculate

‖u − v‖2A = 〈A(u − v), u − v〉X = 〈 f , u〉X − 2 〈 f , v〉X + 〈Av, v〉X . (4.8)

In (4.8) we use (4.5) and the self-adjointness of the operator A : X → X ′. The bounds
presented in (4.6), follow from (4.8) and (4.7) with C1 = C−1a > 0 and C2 = C−1c > 0. ��

The next results, relevant for DNN training, follow from Lemma 4.2 and Proposition 3.3.

Corollary 4.3 Let φ ∈ H
1
2 (�) be the unique solution to Problem 2.7 with g� ∈ H− 1

2 (�)/R.
Then, there exist positive constants C1 and C2 (independent of φ and g) such that for all
N ∈ N such that N + 1 > J and for all φ ∈ NN 2,N+1,1,1, it holds

C1

(〈(

1

2
Id− K′

)

g�, φ

〉

�

+ 2��(τ−1r φ)

)

≤ ‖τrφ − φ‖2
H

1
2 (I)

≤ C2

(〈(

1

2
Id− K′

)

g�, φ

〉

�

+2��(τ−1r φ)
)

,

where �� : H 1
2 (�) → R is as in (4.2), the ReLU-NN φ is identified with its restriction to I

and τr : H 1
2 (�) → H

1
2 (I) denotes the pullback operator.

Corollary 4.4 Let ϕ ∈ ˜H 1
2 (�) be the unique solution to Problem 2.12 with right hand side

g� ∈ H− 1
2 (�). Then, there exist positive constants C1 and C2 independent of φ and g such

that for all N ∈ N and for all ϕ ∈ NN 3,N ,1,1 ∩ ˜H 1
2 (�), it holds

C1
(〈g�, ϕ〉� + 2��(τ−1r ϕ)

) ≤ ‖τrϕ −ϕ‖2
˜H

1
2 (I)

≤ C2
(〈g�, ϕ〉� + 2��(τ−1r ϕ)

)

,

where �� : ˜H 1
2 (�) → R is as in (4.3), the ReLU-NN ϕ is identified with its restriction to I

and τr : ˜H 1
2 (�) → ˜H

1
2 (I) denotes the pullback operator.

4.2 Weighted Residual Estimators

We shortly recall the so-called weighted residual estimators for the a-posteriori error estima-
tion of the numerical solution to hypersingular BIEs in a bounded Lipchitz polygon and in
an open arc in R

2, namely Problems 2.7 and 2.12, respectively. We proceed to recapitulate
the result of [7], in which reliable a-posteriori error estimates for first-kind integral equations
are analyzed.

Proposition 4.5 ([7, Theorem 2]) Let � be a closed or open arc in R
2. If f ∈ L2(�) is

L2(�)–orthogonal to S1(�, TN ), then for s ∈ [0, 1] it holds
‖ f ‖H−s (�) ≤ c(s, κ)

∥

∥hsT f
∥

∥

L2(�)
,

where

c(s, κ):=
{

Cs if s 
= 1
2

C 1
2
(log(1+ κ))

1
2 if s = 1

2 ,
, κ:=max

{

h j

hk
: � j is a neighbor of �k

}

,

(4.9)

Cs > 0 only depending on s ∈ [0, 1], and hT ∈ L∞(�) is the piece-wise constant function
defined element-wise as hT |� j

= h j .
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Corollary 4.6 Let D ⊂ R
2 be a bounded Lipschitz polygon with boundary �:=∂D, and let

� ⊂ R
2 be a Jordan arc. Let c(κ) > 0 denote the constant in (4.9) with s = 1

2 .

(i) Let φ ∈ H
1
2 (�) and φN ∈ S1(�, TN ) be the solution to Problem 2.7 and Problem 2.17,

respectively, with g� ∈ L2(�).

‖φ − φN‖
H

1
2 (�)

≤ c(κ)

∥

∥

∥

∥

h
1
2
T RN

∥

∥

∥

∥

L2(�)

, RN :=WφN −
(

1

2
Id− K′

)

g�.

(ii) Let ϕ ∈ ˜H
1
2 (�) and ϕN ∈ S1(�, TN ) be the solution to Problems 2.12 and Problem

2.15, respectively, with g� ∈ L2(�).

‖ϕ − ϕN‖
˜H

1
2 (�)

≤ c(κ)

∥

∥

∥

∥

h
1
2
T RN

∥

∥

∥

∥

L2(�)

, RN :=WϕN .

Proof We prove item (i). The Galerkin solution φN ∈ S1(�, TN ) to Problem 2.15 satisfies

〈WφN , ψN 〉� =
〈(

1

2
Id− K′

)

g�,ψN

〉

�

, ∀ψN ∈ S1(�, TN ), (4.10)

as by construction it holds 〈φN , 1〉� = 0. Recalling that for bounded Lipschitz polygons
the maps W : H1(�) → L2(�) and K′ : L2(�) → L2(�) are continuous. Considering that
g� ∈ L2(�), we have that the duality pairings appearing in (4.10) can be interpreted as
L2(�)-inner products. Hence, we have that

(

WφN −
(

1

2
Id− K′

)

g�,ψN

)

L2(�)

= 0, ∀ψN ∈ S1(�, TN ),

and we may conclude that the residual RN ∈ L2(�) is orthogonal to S1(�, TN ). Recall

the bilinear form ǎ : H
1
2 (�) × H

1
2 (�) → R defined in (2.3). There exists an operator

W̌ : H 1
2 (�)→ H− 1

2 (�) such that

ǎ(φ, ψ) =
〈

W̌φ,ψ
〉

�
, for all φ,ψ ∈ H

1
2 (�).

Next, using the continuity and H
1
2 (�)-ellipticity of the modified hypersingular BIO W̌ :

H
1
2 (�)→ H− 1

2 (�), stated in Propositions 2.1 and 2.2, respectively, we conclude that there
exists a constant C > 0 independent of TN such that

‖φ − φN‖
H

1
2 (�)

≤ C
∥

∥

∥W̌φ − W̌φN

∥

∥

∥

H−
1
2 (�)

≤ C

∥

∥

∥

∥

(

1

2
Id− K′

)

g − W̌φN

∥

∥

∥

∥

H−
1
2 (�)

.

(4.11)

In addition, 〈φN , 1〉� = 0 yields W̌φN = WφN . In view of this, together with (4.11) and
using Theorem 4.5 with f = ( 12 Id− K′

)

g −WφN , we get the desired result. The proof of
item (ii) follows the exact same steps of item (i), hence we omit it for the sake of simplicity.

��

4.3 Training Algorithms

In this section, we describe two algorithms devised to construct ReLU-NNs for the approxi-
mation of the solution to Problems 2.7 and 2.12. These two approaches rely on the following

123



41 Page 22 of 37 Journal of Scientific Computing (2023) 95 :41

observation: Each element space of piecewise linear polynomials defined on a suitable par-
tition of the boundary can be exactly represented by a ReLU-NN according to Proposition
3.3. Moreover, the parameters of these ReLU-NNs, i.e. weights and biases, can be precisely
described in terms of the parameters of the partition, namely the position of the nodes over the
boundary. Therefore, we can replace the Galerkin solution to the discrete variational problem
by a ReLU-NN as the ones described in Proposition 3.3 and proceed to find its parameters
by minimizing a suitable loss function. The algorithms to be presented here are in the spirit
of the “Deep Ritz Method” [14] and rely on the tools introduced in Sects. 4.1 and 4.2.

4.3.1 Training Using Minimization of the Total Energy

Corollaries 4.3 and 4.4 provide a justification to use the loss functions ��(·) and ��(·) in the
construction of the sought ReLU-NNs. Indeed, these quantities can be used as surogates of
the exact error in the minimization process. Equipped with this observation, we proceed to
describe a two-step scheme to find a realization of ReLU-NN that approximates the solution
to Problems 2.7 and 2.12 using the aforementioned loss functions.

We begin by describing the algorithm for Problem 2.7 only. As per usual, we consider a
bounded Lipschitz polygonD ⊂ R

2 with boundary�:=∂D characterized by a number J ∈ N

(J ≥ 3) of vertices. Let N ∈ N be fixed and such that N + 1 > J . We consider a mesh TN
of � as described in Sect. 2.7, with N + 1 points {xn}Nn=0 ⊂ � and where x0 = xN (i.e. N
distinct points). Within the set {xn}Nn=0 ⊂ � one may identify two kinds of nodes: (i) there
is a first subset consisting in the vertices of the polygon �, which in the the following are
referred to as fixed nodes, and (ii) there is a second set of mesh nodes that are not vertices of
the polygon, which in the following are referred to as free nodes. Moreover, with a Lipschitz
continuous and piecewise linear parametrization of �, r : I → � (as in Sect. 3.2), the set
of nodes {xn}Nn=0 ⊂ � may be identified with a set of biases t := {tn}Nn=0 ⊂ I such that
r(tn) = xn for each n = 0, . . . , N (see Proposition 3.3). We aim to find the position of the
biases in an optimal fashion, while keeping the biases associated with fixed nodes unaltered.
Figure 1 illustrates this setting for an open arc in R

2.
Let tF ∈ R

N+1−J be a vector containing the elements of the biases {tn}Nn=0 that are
associated to the free nodes only and let φN ∈ NN 3,N+2,1,1. In view of Proposition 3.3,
there holds

φN (t) =
N
∑

j=0
c jζ j (t), t ∈ I, (4.12)

where c := (c0, . . . , cN )� ∈ R
N+1 and, for each n = 1, . . . , N , {ζn}Nn=0 corresponds to the

“hat” functions introduced in Sect. 3.2. Then, in view of Proposition 3.3, the task of finding
a ReLU-NN φN to approximate the solution of Problem 2.7 may be stated in the following
form:

(t�, c�) = argmin
tF∈RN+2−J , c∈RN+1,

φN (−1)=φN (1).

��

(

τ−1r φN (t, c)
)

, (4.13)

where ��(·) has been introduced in (4.2) and by φN (t, c) we denote the dependence of φN

upon the biases t and the set of weights c. Note our slight abuse of notation by referring to
both the vector of coefficients of the BEM solution in (4.12) and to the ReLU-NN weights
as c (see Proposition 3.3).

In Algorithm 1, we propose a two-step scheme for the construction of optimal ReLU-NN
in the approximation of the solution to Problem 2.7. This algorithm is based on the following

123



Journal of Scientific Computing (2023) 95 :41 Page 23 of 37 41

Fig. 1 Two sets of equispaced nodes for a straight open arc. Dots represent fixed nodes, while dashes represent
free nodes.

observation: if we fix the free biases tF, the minimization of (4.13) for the computation of
c� ∈ R

N boils down to the solution of the Galerkin discretization of Problem 2.7, namely
Problem 2.15. Hence, rather than computing the gradient with respect to tF ∈ R

N+2−J and
c ∈ R

N+1, and executing a step of the gradient descent algorithm, we perform only a gradient
descent step with respect to the vector of free nodes tF ∈ R

N+2−J while keeping that of the
coefficients c ∈ R

N+1 fixed. Then, in the second step of this algorithm, we fix the biases
and compute c� ∈ R

N+1 in (4.13) by solving the discretized boundary integral equation in
Problem 2.15.

Algorithm 1 Construction of ReLU-NN by minimizing the total energy

Input: Initial set of biases t ∈ R
N+2; maximum number of iterations M ∈ N; tolerance ε > 0.

Output: Optimal solution (t�, c�).

1: procedure ReLU_Optimization_Total_Energy(t,M ,ε)
2: Compute c ∈ R

N by solving Problem 2.15 on the mesh associated with the biases t;
3: for { j = 1; j ≤ M; j ← j + 1} do
4: Find η > 0 by line search: t̃F ← tF − η∇tF��(φN (t, c));

5: if η
∥

∥∇tF��(φN (t, c))
∥

∥

2
RN+2−J < ε then

6: return t and c;
7: end if
8: tF ← t̃F;
9: Compute c ∈ R

N by solving Problem 2.15 on the mesh associated with the biases t;
10: end for
11: return (t, c);
12: end procedure

For given initial set of biases (with a fixed number of biases), Algorithm 1 returns an
optimal collection of biases in � (with the same cardinality) upon which the loss function
��(·) is minimized. This, in turn allows us to construct a ReLU–NN for the approximation
of the solution to Problem 2.7 according to Proposition 3.3. To construct a sequence of
ReLU–NNwith increasing width (corresponding to a sequence of meshes with an increasing
number of nodes according to Proposition 3.3) we propose Algorithm 2. Therein, we widen
the network by including neurons with (initial) biases given as the midpoints between two
contiguous biases, which are subsequently optimized through Algorithm 1.

Through Algorithm 2 we construct a sequence of biases {t�i }i∈N from a given initial
configuration t such that the sequence {��(�(t�i , ci ))}i∈N ismonotonically decreasing, where
ci is obtained by solving Problem 2.15 on the mesh T �

Ni
associated with the biases t�i . Greedy

algorithms aiming to construct shallow networks for function approximation characterized by
a variety of activation function, e.g. the so-called ReLUk and sigmoidal activation function,
are studied in [33]. Improved convergence rates for the Orthogonal Greedy Algorithm (with
respect to the well-known result presented in [4, 12]) depending on the smoothness properties
of the activation function of choice are proven. Later in [18], these findings are used for the
NN approximation of the solution to elliptic boundary value problem. We mention, however,
that considering Algorithm 2 with a sufficiently high number of inner iterations M ∈ N

(i.e. iterations of Algorithm 1) yields, in our numerical examples, the same convergence
rates proved in [18] and the references there. Furthermore, Algorithms 1 and 2 may be
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Algorithm 2 Construction of a sequence of ReLU-NN minimizing the total energy
Input:

• Initial set of biases t ∈ R
N+2;

• Maximum number of iterations K ∈ N;
• Maximum number of inner iterations M ∈ N;
• Tolerance ε > 0.

Output: Sequence of optimal network parameters {(t�j , cj�)}Kj=1.

1: procedure Sequence_ReLU_Total_Energy(t ,K ,M ,ε)
2: for { j = 1; j < K ; j ← j + 1} do
3: (t�j , c

�
j ) ← ReLU_Optimization_Total_Energy(t ,M ,ε);

4: tF ← Increase the number of biases in t�F, j by including the middle points of contiguous biases.
5: end for
6: (t�K , c�K ) ← ReLU_Optimization_Total_Energy(t ,M ,ε);

7: return {(t�j , c�j )}Kj=1;
8: end procedure

modified to tackle the minimization of ��(·) in (4.3) by simply replacing, in both algorithms,
� by �.

4.3.2 Training UsingWeighted Residual Estimators

The result presented in Corollary 4.6 justifies the use of efficiently computable, weighted
residual a-posteriori estimators in the construction of a suitable loss function to be used in
the numerical implementation of the ReLU–NN BEM algorithms described herein. More
precisely, the computable, local residual a-posteriori error estimates presented in Sect. 4.2
can be used as computable surrogates of the mismatch between the exact solution and its
Galerkin approximation, in the corresponding norm.

Unlike the approach presented in Sect. 4.3.1, here we do not aim to construct a ReLU-NN
to approximate the solution of the BIEs previously described by finding the optimal position
of the mesh nodes, which in turn is driven by the minimization of a computable loss function.
In turn, the algorithm presented herein aims to greedily select a set of basis functions to
enrich the finite dimensional space upon which an approximation of the solution to the BIEs
is built. We remark in passing that this approach is strongly related to the adaptive basis
viewpoint elaborated in [11]. Due to Proposition 3.3, this amounts to increasing the width of
the underlying ReLU-NN every time a new neuron, i.e. basis function, is added.

As in Sect. 4.2, we restrict our presentation to the case of a bounded Lipschitz polygon in
R
2 and, again, point out that the extension to an open arc is straightforward. The technique

to be presented here is an adaptation of the orthogonal matching pursuit algorithm [6], and
is also motivated by the recent results in [1, 18], which strongly leverage the variational
structure of the discretization scheme.

LetS ⊂ H
1
2 (�) denote a finite dimensional space of functions on� and let {ζn}Nn=1 denote

a basis of S1(�, TN ). For each ξ ∈ S, span
({ζn}Nn=1 ∪ {ξ}

)

is itself a valid finite dimensional

space on which a solution to Problem 2.15 may be sought. For given S ⊂ H
1
2 (�), we aim

to determine the element ξ ∈ S having the least angle with respect to the residual ϕ − ϕN .
We aim at finding φ� ∈ S such that
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φ� = argmax
φ∈S

∣

∣

∣

∣

(ϕ − ϕN , φ)
H

1
2 (�)

∣

∣

∣

∣

‖φ‖
H

1
2 (�)

. (4.14)

However, in the computation of φ� ∈ S in (4.14) we encounter the following difficulty: We

can not directly compute the residual ϕ − ϕN ∈ H
1
2 (�). In view of Corollary 4.6, we use

h
1
2
TN

(WϕN − g) ∈ L2(�), (4.15)

as a surrogate of the exact residual ϕ−ϕN in the H
1
2 (�)-norm.We proceed to find an element

in S such that its contribution to (4.15) has the least angle, in the L2(�)-inner product, with
the residual (4.15) itself, i.e., find φ� ∈ S such that

φ� = argmax
φ∈S

(

h
1
2
TN

(WϕN − g) , h
1
2
TN

Wφ

)

L2(�)
∥

∥

∥

∥

h
1
2
TN

Wφ

∥

∥

∥

∥

L2(�)

. (4.16)

To properly state an algorithm that allows us to construct a ReLU-NN, it remains to define
how the set S is constructed at each step. As in Sect. 2.7, we consider a mesh TN of � with
N + 1 points {xn}Nn=0 ⊂ R

2, and where x0 = xN (i.e. N distinct points). Let x′n denote
the midpoint between xn and xn+1 for each n = 0, . . . , N − 1, and consider the set of N

piecewise linear functions SN :={ξn}Nn=0 ⊂ H
1
2 (�), defined as

ξn(x):=
⎧

⎨

⎩

1, x = x′n,
0, x 
= x′k or x /∈ {xk}Nk=0,

linear elsewhere,
(4.17)

for n = 0, . . . , N − 1. In this case, the set SN gathers the piecewise linear functions one
would add to S1(�, TN ) if a uniform refinement of the mesh TN of � were to be performed.
We aim to select, among the candidates in SN , a function according to (4.16). Furthermore,
since the incorporation of a single basis function of the set SN at each step may result in
a needlessly expensive procedure, we allow for the incorporation of a subset of SN at each
step in order to enhance the procedure (as in the ABEM algorithm). We do so by computing

qn :=

(

h
1
2
TN

(WϕN − g) , h
1
2
TN

Wξn

)

L2(�)
∥

∥

∥

∥

h
1
2
TN

Wξn

∥

∥

∥

∥

L2(�)

, n = 0, . . . , N − 1,

and then selecting a number of elements of SN having the largest values of qn . The number of
elements of SN incorporated at each iteration is controlled by an input a parameter θ ∈ (0, 1]
specifying the fraction of elements of SN to be included in our enhanced finite dimensional
space at each iteration. The procedure is presented in Algorithm 3 for the setting of Problem
2.15 (recall the notation t and c denoting the biases and weights of the ReLU-NN). Note that
Algorithm 3 may be implemented in tandem with Algorithm 1, as presented in Algorithm 4.

Finally, note that setting θ = 1 onAlgorithm 4 results inAlgorithm 2, while settingM = 0
on Algorithm 4 results in Algorithm 3.
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Algorithm3Construction of a sequence ofReLUnetworksminimizing theweighted residual
estimator

Input: Initial set of biases t ∈ R
N ; cardinality parameter θ ∈ (0, 1] ; maximum number of iterations

K ∈ N.
Output: Optimal Numerical Approximation (t�F, c�).

1: procedure Sequence_ReLU_Weighted_Residual_Estimators(t,θ ,K )
2: for { j = 1, j ≤ K , j = j + 1} do
3: Compute c ∈ R

N+1 and φ(t, c) by solving Problem 2.15 on the corresponding mesh of �;

4: q ←
{

1
‖Wξn‖L2(�)

(

h
1
2
TN

[

W(τ−1r φ(t, c))− g
]

,Wξn

)

L2(�)

}N−1

n=0
with ξn as in (4.17);

5: IN ←Set of the �θN�nodes {x̃′n}�θN�n=1 ⊂ � associatedwith the highest values in q (where ξn(x̃′n) = 1
as in (4.17));

6: t ← include the biases {tn}�θN�n=1 ⊂ I associated with {x̃′n}�θN�n=1 ⊂ � through r : I→ �;
7: N ← N + �θN�;
8: t�j ← t;

9: Compute c�j ∈ R
N by solving Problem 2.15 on the mesh associated with the biases t�j ;

10: end for
11: return {(t�j , c�j )}Kj=1;
12: end procedure

Algorithm 4 Combination of Algorithms 1 and 3

Input: Initial set of biases t ∈ R
N ; cardinality parameter θ ∈ (0, 1] ; maximum number of iterations

K ∈ N; maximum number of inner iterations M ∈ N; tolerance ε > 0.
Output: Sequence of optimal network parameters {(t�j , c�j )}Kj=1.

1: procedure Sequence_ReLU_Combination(t,θ ,K ,M ,ε)
2: for { j = 1, j < K , j = j + 1} do
3: (t�j , c

�
j ) ← ReLU_Optimization_Total_Energy(t, M, ε);

4: q ←
{

1
‖Wξn‖L2(�)

(

h
1
2
TN

[

W(τ−1r φ(t�j , c
�
j ))− g

]

,Wξn

)

L2(�)

}N−1

n=0
with ξn as in (4.17);

5: IN ←Set of the �θN�nodes {x̃′n}�θN�n=1 ⊂ � associatedwith the highest values in q (where ξn(x̃′n) = 1
as in (4.17));

6: t ← t�j together with the biases {tn}�θN�n=1 ⊂ I associated with {x̃′n}�θN�n=1 ⊂ � through r : I→ �;
7: N ← N + �θN�;
8: end for
9: (t�K , c�K ) ← ReLU_Optimization_Total_Energy(t, M, ε);

10: return {(t�j , c�j )}Kj=1
11: end procedure

5 Numerical Results

In this section we present numerical results obtained using the algorithms described in
Sect. 4.

5.1 Setting

For the sake of simplicity, we provide results only for the setting described in Problem 2.12
on the so-called slit � := (−1, 1) × {0} ⊂ R

2. For the numerical implementation of the
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Fig. 2 Values of the loss function �� and ˜H
1
2 (�)–error throughout the training process of Algorithm 1 for

different values of N (i.e., number of degrees of freedom/free biases). The initial mesh (i.e. the biases in the
hidden layer) was uniform for all instances. Excluding the mesh with 8 free nodes (which saturates before the

1000th iteration), a decrease of the loss function is observed to parallel the descent of the ˜H
1
2 (�)–error of the

solution of Problem 2.17 on each mesh

BEM and the evaluation of the weighted residual estimators we use the MATLAB based [25]
BEM library HILBERT [2] and custom Fortran codes. We remark that, in the numerical
examples presented in Sects. 5.2 and 5.3, we also compare the performance of Algorithm 4
to the built-in adaptive strategies implemented in HILBERT. These codes have been made
available in https://gitlab.epfl.ch/fhenriqu/relugalerkinbem.

5.2 Example I

We consider Problem 2.12 with right-hand side g = 1 on �. The exact solution to this

problem in � is known and given by φ(x) = 2
√

1− x21 , x = (x1, x2)� ∈ � (cf. [21,
Section 4.2]). As a consequence of Lemma 4.1, �� in (4.3) achieves its minimum at φ, with
value

��
�:=��(φ) = −1

2

∫

�

g(x)φ(x)dsx = −1

2

1
∫

−1

√

1− x2 dx = −π

2
. (5.1)

We begin by considering Algorithm 1 on four different inital configurations of the biases t ∈
R

N+2 corresponding to N ∈ {8, 32, 128, 512} equidistant free biases tF on I = [−1, 1]. Fig-
ure 2 portrays the evolution of both the loss function �� and the error in the estimated ˜H

1
2 (�)–

norm to the exact solution 2
√

1− x21 attained by the ReLU-NN generated by Algorithm 1

throughoutM = 104 iterations. The decrease of the loss function displayed in Fig. 2 is accom-

panied by the decrease of the error in the estimated ˜H
1
2 (�)–norm to the exact solution, as

indicated by Lemma 4.2.
Then,we considerAlgorithm2with an initial configuration of only one free bias (N0 = 1),

located at tF,1 = 0, and display the evolution of the loss function �� and the ˜H
1
2 (�)–error

attained by the NN on Fig. 3, where M = 104 inner iterations of Algorithm 1 are considered,
together with a tolerance of ε = 10−15 and K = 8 outer iterations. The convergence of the
loss function to its minimum value is compared to that of Algorithm 2 with no optimization
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Fig. 3 Evolution of the loss function �� and of the ˜H
1
2 (�)–error throughout the training process of Algorithm

2 with respect to the number of free biases of each ReLU-NN (degrees of freedom of the associated mesh,
see Proposition 3.3). On Fig. 3a, the difference between the loss function �� and its minimum value−π

2 (see
(5.1) and Lemma 4.1) is compared for the sequence of meshes resulting from Algorithm 2 and for uniform
mesh refinement. Substantially faster convergence of the training procedure to the optimum is observed for

Algorithm 2 than for a uniform mesh refinement. Figure 3b portrays the convergence in ˜H
1
2 (�)–norm of

the solutions to Problem 2.17 given by Algorithm 2 and by the adaptive BEM algorithm. The adaptive BEM
algorithm achieves the optimal convergence rate of 1.5, while the sequence of meshes returned by Algorithm
2 attains a convergence rate of, approximately, 1.38 with respect to the number of degrees of freedom that are
active in the ReLU-NN

of the position of the biases (which is analogous to solving Problem 2.17 on meshes with
a uniform refinement), for which we expect a convergence rate O(N−1) (the double of the
expected convergence rate of the estimated ˜H

1
2 (�)–error, see Lemma 4.2). The convergence

of the estimated ˜H
1
2 (�)–error, on the other hand, is compared to that attained by the ABEM

algorithm. The trained ReLU-NN displays convergence rates close to 3, for the loss function,

and an EOC1 1.4 for the estimated ˜H
1
2 (�)–error (with respect to the number of free biases).

The performance of Algorithm 3 is compared with that of the ABEM algorithm in Fig. 4,

through the weighted residual estimator and estimated ˜H
1
2 (�)–error, for two different values

of the parameter θ (0.25 and 0.5). The numerical results display a decay of the convergence
rate for the value θ = 0.5, due to the inclusion of suboptimal biases. For the value θ = 0.25,
on the other hand, an optimal convergence rate of 1.5 with respect to the free biases is
observed.

Finally, Fig. 5 portrays the convergence of the estimated ˜H
1
2 (�)–norm for the ReLU-NNs

returned by Algorithm 4, with θ ∈ {0.25, 0.5} and an initial configuration of one free bias,
as before (N0 = 1). Algorithm 1 was executed with M = 5000 and ε = 10−15 and, on
most iterations, fewer than 1000 inner iterations of Algorithm 1 were required thanks to the
stopping criterion. The results of Algorithm 4 are compared with those of Algorithm 3, and
display how the optimization of the free bias through Algorithm 1 enhances the convergence
rates obtained for θ = 0.5, for which the optimal convergence rate of 1.5 (with respect
to the number of free biases) is observed. The locations of the free biases generated by 8
iterations of Algorithm 4 are shown in Fig. 8, where an accumulation towards the boundary
of I, in order to account for the singular behaviour of the solution. In addition, in Fig. 7
we show the computed solution on the meshes generated by Algorithm 4 together with the

1 Empirical Order of Convergence
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Fig. 4 Evolution of the weighted residual estimator and ˜H
1
2 (�)–error throughout the training process of

Algorithm 3 and by the ABEM algorithm. The ABEM algorithm in the above figure corresponds to θ = 0.25,

and achieves, for the ˜H
1
2 (�)-error in Fig. 4b, the optimal convergence rate of 1.5 with respect to the number

of degrees of freedom. On the other hand, Algorithm 3 achieves convergence rates of, approximately, 1.48
and 0.85 for θ = 0.25 and θ = 0.5, respectively. The convergence rates of the weighted residual estimators
in Fig. 4a follow a similar behavior

Fig. 5 Convergence of the ˜H
1
2 (�)-norm of the solutions of Problem 2.17 generated by Algorithms 3 and 4 for

θ = 0.25 and θ = 0.5. The sequences ofmeshes returned byAlgorithm4 both achieve the optimal convergence
rate of 1.5, independent of θ (though for θ = 0.25 Algorithm 3 had already achieved a convergence rate close
to 1.5). The figure displays how optimizing the positions of the free biases tF through Algorithm 1 in between
successive refinements by Algorithm 3 helps to improve convergence.

exact solution of this problem. Figures 7b 7c, 7d, and 7e portray the solution obtained on the
meshes generated by Algorithm 4 with N = 2, 4, 7, 11, respectively.

5.3 Example II

Here, we consider Problem 2.12 but with the right-hand side

g(x) =
{−1, x ∈ (−1, 0)× {0},
+1, x ∈ [0, 1)× {0}, , x ∈ �, (5.2)

and repeat the numerical experiments presented in Sect. 5.2. That is to say, Figs. 8, 9, 10
and 11 correspond to our implementations of Algorithms 1, 2, 3 and 4 exactly as in Sect.
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Meshes constructed through Algorithm 4 ( =0.5)

Fig. 6 First 8 meshes generated by Algorithm 4

5.2, but considering the right-hand side defined in (5.2). However, all initial configurations
in this section require a fixed bias at the origin to accommodate for the discontinuity of
g at x = (0, 0). Figure 12 shows the locations of the biases generated by 8 iterations of
Algorithm 4, where an accumulation at 0 due to the discontinuity of g, besides the expected
accumulation at x = (−1, 0) and x = (1, 0), may be observed.

All errors and differences |�� − ��
�| displayed on the figures referenced in this section

are computed with respect to an overkill solution (implemented in HILBERT) with ��
� ≈

−0.63662, attained by Algorithm 4.

6 Concluding Remarks and Outlook

We recapitulate principal findings of the present paper, and indicate extensions and possible
directions for further research.

We developed a novel class of Galerkin boundary elementmethods, on polygonal domains
D ⊂ R

2. They are based on trial spaces comprising deep neural networks with ReLU acti-
vation function.

Similar approaches are conceivable on boundaries of polyhedraD ⊂ R
3, using the fact that

also on surfaces, continuous first order Lagrangean boundary elements admit representations
as ReLU NNs [19].

We investigated the approximation rates of corresponding BEM in dependence on the
DNN architecture. Essentially, the size and structure of the triangulation is encoded in the
NN architecture, with the location of the nodes being NN weights in the hidden layer of the
NN.

We proved, also for singularities due to corners of ∂D, that optimal algebraic convergence
rates can be achieved with shallow ReLU DNN BEM, by suitable choice of NN weights
and biases in the hidden layer. Deep ReLU DNN trial spaces could facilitate exponential
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(a) (b)

(c) (d)

Fig. 7 Exact solution to Problem 2.12 with right-hand side g = 1 on the slit � = (−1, 1)× {0} together with
the solution obtained with the mesh produced by Algorithm 4 for N = 2, 4, 7, 11 in Figs. 7b 7c, 7d, and 7e,
respectively.

Fig. 8 Evolution of the loss function �� and ˜H
1
2 (�)–error throughout the training process of Algorithm 1

for different values of N . The initial mesh was uniform for all instances. As in Fig. 2, a reduction of the loss

function is observed together with a reduction ˜H
1
2 (�)–error of the solution of Problem 2.17 on each mesh

(excluding the mesh with 9 degrees of freedom, that saturates before 102 iterations)
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Fig. 9 Evolution of the loss function �� and of the ˜H
1
2 (�)–error throughout the training process of Algorithm

2with an initial uniformmesh given by N0 = 3 (i.e., 5 nodes and 4 elements). Figure 9a displays the difference
between the loss function �� and its minimum attained value ��

� ≈ −0.63662 for the sequence of meshes
resulting from Algorithm 2 and for uniform mesh refinement. Again, faster convergence to the optimum is

observed for Algorithm 2 than for uniform mesh refinement. Figure 9b shows the convergence in ˜H
1
2 (�)–

norm of the solutions to Problem 2.17 for Algorithm 2 and the adaptive BEM algorithm. The adaptive BEM
algorithm achieves the optimal convergence rate of 1.5, while Algorithm 2 attains a convergence rate of 1.35
with respect to the degrees of freedom active in the ReLU-NN

Fig. 10 Evolution of the weighted residual estimator and ˜H
1
2 (�)–error throughout the training process of

Algorithm3andby theABEMalgorithm.Twovalues of θ were considered for the implementation ofAlgorithm
3 (0.25 and 0.5), while the ABEM algorithm considered θ = 0.5. The initial mesh was uniform and consisted
of 3 nodes (2 elements). The ABEM algorithm achieves, for both the weighted residual estimator in Fig. 10a

and for the ˜H
1
2 (�)–error in Fig. 10b, the optimal convergence rate of 1.5with respect to the number of degrees

of freedom, while Algorithm 3 achieves convergence rates of, approximately, 1.48 and 0.85 for θ = 0.25 and
θ = 0.5, respectively

convergence of the corresponding deep ReLU BEM, by emulating hp-boundary element
methods. These can in principle achieve exponential rates of convergence, see [27].

We proposed DNN training in the “natural” energy spaces being fractional, hilbertian
Sobolev spaces on the boundary � which underlie the variational theory of first kind BIEs.
While NN based discretizations have been proposed recently for PDEs, the nonlocal nature
of the boundary integral operators renders efficient numerical evaluation of loss functions
costly.We leveraged existing, computable local residual a-posteriori error estimators to obtain
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Fig. 11 Convergence in the ˜H
1
2 (�)–norm of the solutions of Problem 2.17 on the sequence of meshes

generated by Algorithms 3 and 4 for θ = 0.25 and θ = 0.5. The sequences of meshes returned by Algorithm
4 both achieve the optimal convergence rate of 1.5, independent of θ (though for θ = 0.25 Algorithm 3 had
already achieved the a convergence rate close to the optimum). The figure displays how optimizing the mesh
nodes through Algorithm 1 in between successive refinements by Algorithm 3 helps improve convergence.
Here, Algorithm 1 was called with M = 5 ·103 and ε = 10−15 and, on most meshes, fewer than 103 iterations
were required thanks to the stopping criterion

-1 -0.8 -0.6 -0.4 -0.2
-8

-7

-6

-5

-4

-3

-2

-1
Meshes constructed through Algorithm 4 ( =0.5)

Fig. 12 First 8 meshes generated by Algorithm 4. The non symmetric behaviour of the positions of the biases
is due to �Nθ� being an odd integer for some iterations of the Algorithm. This results, in this case, in more
biases on the interval (−1, 0) than on (0, 1)

novel, computationally efficient loss functions. They are based on local, reliable a-posteriori
residual discretization error estimators.

The present exposition was developed for plane, polygonal domains. However, the ReLU
DNN expression results extend also to polyhedral domains D ⊂ R

3 with boundaries com-
prising a finite number of plane faces � j . Here, again exact expression results of ReLU
DNNs for continuous, piecewise affine BEM spaces on � are available in [19]. Correspond-
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ing approximation results on corner- and edge-graded meshes on � (see, e.g., [17]) will
hold.

The general principle described in the present work, namely that ReLUDNNs are capable
of emulating a wide range of spline-based approximation spaces with, essentially, identical
convergence rate bounds, extends well beyond the presently considered setting.

The presently proposed formulation of boundary integral equations with DNN - based
approximation spaces can serve as a vehicle to leverage powerful machine learning method-
ologies for the numerical treatment of boundary integral equations. Here, one single, unifying
ReLU DNN based construction of approximation spaces on � will allow to achieve perfor-
mance of adaptive mesh refinements and exponential convergence of hp-BEM without any
revision of implementations.

For more general BIEs arising, for example, in BIEs on polyhedral surfaces resulting
from the boundary reduction of the time-harmonic Maxwell equations, it is well-known that
Galerkin discretizations must be based on certain compatible subspaces. See, e.g., [5], and
[20]. Also in these cases, DNNs which are structure preserving can be constructed. We
refer to [23] for a development of DNNs for De Rham compatible Finite Element spaces.
Development of details for BIEs of, e.g., electromagnetic scattering is beyond the scope of
the present work.
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Appendix A. Proof of Proposition 3.4

We only prove the second case in (3.7) which gives the maximum rate of convergence.
We consider separately the regular part u0 and the singularities xλ j . As in the statement of
Proposition 3.4, we assume β ≥ 1, 0 < s ≤ 1 (we will mainly need the case s = 1/2).
We write xk in place of xN ,β

k = (k/N )β ∈ [0, 1] for k = 0, 1, ..., N . The assumptions of

Proposition 3.4 imply that u ∈ C (I). Hence the linear interpolant I β
N of u on TN ,β is well-

defined and nodally exact: (u − I β
Nu)(xk) = 0 for k = 0, 1, ..., N . Recall that u0 ∈ H2(I ),

and that 0 ≤ s ≤ 1. On each Ik = (xk−1, xk) ∈ TN ,β ,

‖v0 − S0‖˜Hs (Ik ) ≤ Ch2−sk ‖v′′0‖L2(Ik ) .
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Here, ‖ · ‖
˜Hs (Ik ) is the interpolation norm between L2(Ik) and H1

0 (Ik), and C > 0 depends
on s ∈ [0, 1], but not on hk . For s = 0, 1, we get

‖u0 − I β
Nu0‖2˜Hs (I)

≤ C
N
∑

k=1
‖u0 − I β

Nu0‖2˜Hs (Ik )
≤ C

N
∑

k=1
h4−2sk ‖u′′0‖2L2(Ik )

≤ max
k=1,..,N{hk}

4−2s
N
∑

k=1
‖u′′0‖2L2(Ik )

≤ Ch2(2−s)‖u′′0‖2L2(I) ,

and the general case (s ∈ [0, 1]) follows by interpolation.
Consider now a singularity, i.e., f (x) = xλ with λ ∈ {λ j } and take γ̃ ∈ R such that

1 − 1/β ≤ γ̃ ≤ 1. Assume, first, k ≥ 2, so that dist(0, Ik) > 0. Then, we have that
f ∈ H2(Ik) ⊂ C(Ik) and, therefore, the linear nodal interpolant of f on Ik is well-defined
and f − I β

N f ∈ H1
0 (Ik). Furthermore,

N
∑

k=2
‖ f − I β

N f ‖2
˜Hs (Ik )

≤ C
N
∑

k=2
h4−2sk ‖ f ′′‖2L2(Ik )

�
N
∑

k=2
h(1−γ̃ )β(4−2s)x γ̃ (4−2s)

k ‖ f ′′‖2L2(Ik )
,

since, for k = 1, . . . , N , it holds that

hk ≤ βhβkβ−1 = βx γ̃

k h
(1−γ̃ )β−1 ≤ βh(1−γ̃ )x γ̃

k .

For k ≥ 2, and for any x ∈ Ik = (xk−1, xk), we have that

xk = (kh)β =
(

k

k − 1

)β

xk−1 ≤ 2βxk−1 ≤ 2βx .

Therefore

N
∑

k=2
‖ f − I β

N f ‖2
˜Hs (Ik )

≤ Ch(1−γ̃ )β(4−2s)
N
∑

k=2
‖ f ′′(x)x (2−s)γ̃ ‖2L2(Ik )

≤ Ch(1−γ̃ )β(4−2s)
∫ 1

x1

∣

∣ f ′′(x)
∣

∣

2
x2(2−s)γ̃ dx

≤ Ch(1−γ̃ )β(4−2s)
∫ 1

0

∣

∣ f ′′(x)
∣

∣

2
x2(2−s)γ̃ dx .

Since f ′′(x) = λ(λ− 1)xλ−2, the latter integral exists if

2λ− 4+ 2(2− s)γ̃ > −1⇐⇒ 1− γ̃ <
λ− s + 1/2

2− s
.

To bound the contribution from I1 = (0, x1) = (0, hβ), we use a scaling argument. Let
0 < h < 1 be arbitrary. Then, for any g ∈ H1

0 (I) there holds that

‖g(x/x1)‖L2(I1) ≤ x1/21 ‖g(x)‖L2(I), |g(x/h)|H1(I1) ≤ x−1/21 |g|H1(I) .

We interpolate (or directly estimate the fractional order seminorm) to obtain

‖g(x/x1)‖˜Hs (I1) ≤ x1/2−s1 ‖g(x)‖
˜Hs (I).

Taking g(x) = ( f − I β
N f )(x1 · x), so that g(x/x1) := ( f − I β

N f )(x) on I1 = (0, x1), yields

‖( f − I β
N f )(x)‖

˜Hs (I1) ≤ x1/2−s1 ‖( f − I β
N f )(x1 · x)‖˜Hs (I)
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≤ x1/2−s+λ
1 ‖ f − f̃ ‖

˜Hs (0,1) ≤ C(λ, s)x1/2−s+λ
1 ,

where f̃ is the linear interpolant of f on I, so that ‖ f − f̃ ‖H̃ s (I) is independent of x1. Inserting
γ̃ = 1− 1/β ⇐⇒ 1− γ̃ = 1/β into the constraints implies

1/β = 1− γ̃ <
λ− s + 1/2

2− s

which is the second case in (3.7). The first case is proved in the same fashion.
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