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Abstract
We propose a new approach to generate a reliable reduced model for a parametric elliptic
problem, in the presence of noisy data. The reference model reduction procedure is the
directional HiPOD method, which combines Hierarchical Model reduction with a standard
Proper Orthogonal Decomposition, according to an offline/online paradigm. In this paper we
show that directional HiPOD looses in terms of accuracy when problem data are affected
by noise. This is due to the interpolation driving the online phase, since it replicates, by
definition, the noise trend. To overcome this limit, we replace interpolation with Machine
Learning fitting models which better discriminate relevant physical features in the data from
irrelevant unstructured noise. The numerical assessment, although preliminary, confirms the
potentialities of the new approach.
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1 Introduction andMotivations

Numerical methods for solving parametric partial differential equations are relevant for all
the engineering applications that can be framed into a multi-query or a real-time context.
Recurrent instances range from the estimation of the parameters which govern physical
phenomena (e.g., in biomedical engineering, where the known velocity of the blood and the
Navier-Stokes equations for incompressible fluids are combined to draw conclusions about
the blood viscosity inside a cardiovascular vessel) to the solution of optimal control problems
(e.g., in environmental engineering, where experimental measurements of the concentration
of a pollutant in the water and the Navier-Stokes equations for incompressible fluids with a
parametrized forcing term are combined to compute the maximum amount of pollutant that
can be released without compromising the ecosystem inside a river).

The curse of dimensionality characterizing full order models to simulate this type of
physical systems raised the necessity to propose specific numerical methods in order to
sustain the computational cost. Reduced order models have garnered interest in the scientific
computing community as an effective way to compress complex partial differential models
in a projection subspace, and thus make it more computationally convenient to solve [2, 4,
6, 14, 17, 35].

Here, we focus on a class of reduced order models conceived to describe flows in pipes
or, more in general, phenomena with a privileged dynamics aligned with the centerline of the
pipe, which may be locally modified by secondary dynamics evolving along the transverse
sections. We are referring to the Hierarchical Model (HiMod) reduction [11, 27, 29, 30, 33,
36], and, in particular, to a parametric counterpart of such an approach, known as HiPOD [3,
21]. HiPOD offers a possible remedy to the well-known bottleneck of an offline/online
paradigm, i.e., the computational burden characterizing the offline phase. The idea is to
replace the “truth” model in the offline phase of the Proper Orthogonal Decomposition
(POD) [18–20, 38] with a HiMod discretization, namely, more in general, with a reduced-
order model characterized by a high accuracy and a contained computational demand. Then,
the online phase recovers the HiMod approximation for a not yet sampled value of the
selected parameter, after solving a problemof a very small dimensionality. The computational
advantages led by a HiPOD approximation have been numerically investigated both on scalar
and vector problems [3, 21].

In [21] two HiPOD model reduction procedures are presented, namely the basic and the
directional HiPOD approaches. Here, we focus on the directional method, that combines
HiMod and POD by exploiting the decoupling between leading and secondary dynamics at
the basis of a HiMod formulation. Such an approach proved to outperform the basic one
when dealing with phenomena which are of interest in this paper, i.e., characterized by a
significant horizontal dynamics [21].

In this work, we show that the presence of noise in the data can make directional HiPOD
unstable, due to an interpolation over the parametric space to estimate the online solu-
tion. Actually, interpolation reproduces, instead of filtering out, the noise affecting data.
To overcome this issue, we propose to replace interpolation with Machine Learning (ML)
fitting models which better discriminate relevant physical features in the data from irrelevant
unstructured noise, thus allowing the model to retain and leverage the former and discard
the latter. The numerical assessment we carried out shows that the ML methodology reduces
the L2- and the H1-norm of the HiPOD relative error up to an order of magnitude with
respect to state-of-the-art interpolation techniques, thus confirming the strong potentiality of
the proposed approach.
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The paper is structured as follows. Section 2 addresses the mathematical background
exploited to upgrade the directional HiPOD procedure in [21], namely the basics to perform
aHiPODmodel reduction and somemachine learning regressionmodels. Section3 introduces
the new HiPOD approach and analyzes the effect of the noise propagation onto the response
matrix. In Sect. 4, we carry out a numerical assessment of the proposed methodology, by
comparing the state-of-the-art HiPOD approach with the new ML version, both in terms of
accuracy and robustness to the level of noise. Finally, some conclusions and perspective are
supplied in the last section.

2 Mathematical Background

HiPOD model reduction and Machine Learning (ML) models for a regression analysis rep-
resent the main methodological tools supporting the new approach proposed in this paper.
The next sections are devoted to introduce such tools, for the reader completeness.

In particular, we choose as a reference problem a parametrized elliptic Partial Differential
Equation (PDE), defined on a domain Ω ⊂ R

2, whose weak form is

find u(α) ∈ V s.t. a(u(α), v;α) = f (v;α) ∀v ∈ V , (1)

where α ∈ P ⊂ R
p is the selected parameter varying in the set P of the admissible values;

a(·, ·;α) : V × V × P → R and f (·;α) : V × P → R denote the parametrized bilinear
and linear forms characterizing the differential problem at hand, the linearity being meant
with respect to the variables different from α, and with V ⊆ H1(Ω) a suitable Hilbert space
depending on the specific PDE problem as well as on the assigned boundary conditions,
standard notation being adopted for function spaces [10]. To simplify the exposition, we focus
here on the case of a standard scalar linear advection-diffusion-reaction (ADR) problem,
completed with full homogeneous Dirichlet boundary conditions (see Sect. 4 for a more
general setting), so that the bilinear and the linear forms in (1) are

a(w, z;α) =
∫

Ω

μ∇w · ∇z dΩ +
∫

Ω

(
b · ∇w + σw

)
z dΩ, f (z;α) =

∫
Ω

f z dΩ, (2)

with w, z ∈ V = H1
0 (Ω), and where parameter α coincides with some of the problem data,

i.e., the viscosity μ, the advective field b = [b1, b2]T , the reaction σ , the source term f (or a
boundary value when non homogeneous or more general boundary conditions are assigned).

Suitable assumptions are advanced on the problem data in order to guarantee the well-
posedness of formulation (1), for any α ∈ P . Finally, we conjecture an affine parameter
dependence [17, 35].

2.1 The HiPOD Approach

The HiPODmethod provides the parametric counterpart of a Hierarchically Model (HiMod)
reduction, by properly combining a HiMod discretization with the standard Proper Orthog-
onal Decomposition (POD) [18–20, 38]. In the next section we recap the main features
characterizing a HiMod reduction, being instrumental in the setting of HiPOD procedures.
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2.1.1 Hierachical Model Reduction

HiMod reductionproved to be an idealmethod for themodelingof scenarioswhere a dominant
direction is evident in the global dynamics of the considered phenomenon. This modeling
property is, in general, mirrored by the geometric design of the computational domain,
which is assumed to coincide with a pipe where the centerline is parallel to the dominant
dynamics. Thus, Ω , is identified by the fiber bundle

⋃
x∈Ω1D

{x} × Σx , where Ω1D is the
one-dimensional (1D) supporting fiber paraller to the leading dynamics, while Σx denotes
the transverse section at the generic point x along Ω1D [11, 29, 30, 33]. For simplicity, we
focus on rectilinear domains, so that Ω1D ≡ (a, b) ⊂ R (we refer the interested reader to [7,
28, 31] for pipes with a bent centerline).

HiMod reduction exploits the geometric requirement on Ω to discretize a PDE problem,
so that the leading and the transverse dynamics are approximated with different methods,
according to a separation of variable criterion. In this work, we adopt the approach pro-
posed in [1] where finite elements model the main dynamics, while a basis of customized
modal functions describes the dynamics parallel to the transverse sections of the pipe. This
decoupling of leading and secondary dynamics allows us to commute the full problem into
a system of coupled 1D problems, independently of the original model dimensionality, with
a consequent considerable benefit in terms of computational effort [1, 7, 16, 23].

Additionally, as it is recurrent in severalwell-known contexts, computations are performed
in a reference domain Ω̂ (where, e.g., constants can be explicitly computed) and successively
moved to the physical domain Ω . This is performed by means of a map Ψ : Ω → Ω̂ which
is assumed to be differentiable with respect to both the independent variables x and y.
The domain Ω̂ shares a fiber structure as Ω , being Ω̂ = Ω1D × Σ̂ , with Σ̂ the reference
transverse fiber and where the supporting fiber is the same as for Ω . In particular, for any
point z = (x, y) ∈ Ω , there exists a point ẑ = (̂x, ŷ) ∈ Ω̂ , such that ẑ = Ψ (z), with
x̂ ≡ x and ŷ = ψx (y), ψx : Σx → Σ̂ being the map between the generic and the reference
transverse fiber. Hereafter, we assumeψx to be aC1-diffeomorphism, for all x ∈ Ω1D (more
details about maps Ψ and ψx are available in [30]).

The separation of variables combined with the mapping to Ω̂ leads us to define the
parametric HiMod reduced space

Vm(α) =
⎧⎨
⎩vm(x, y;α) =

m∑
k=1

Nh∑
j=1

ṽα
k, jϑ j (x)ϕk(ψx (y)), (x, y;α) ∈ Ω1D × Σx × P

⎫⎬
⎭ ,

(3)

where m ∈ N
+ is the modal index setting the level of detail of the HiMod approximation

in the hierarchy; B1 = {ϑ j }Nh
j=1 is a basis for the 1D space, V1D ⊂ H1

0 (Ω1D), of the finite
element functions associated with the supporting fiber Ω1D and vanishing at a and b, with
dim(V1D) = Nh < +∞; B2 = {ϕk}k∈N+ denotes the basis of modal functions defined on
the reference transverse fiber Σ̂ , orthonormal with respect to the L2(Σ̂)-scalar product and
including, in an essentialway [1], the data assigned on the lateral boundary
L = ∪x∈Ω1D∂Σx

of Ω (the reader interested to different possible choices both for basis B1 and B2 may refer,
e.g., to [7, 11, 16, 30, 31]). In particular, function ṽk(x;α) = ∑Nh

j=1 ṽα
k, jϑ j (x) ∈ V1D

identifies the frequency coefficient associated with the k-th modal function ϕk .
As far as the modal index m is concerned, it may be assigned thanks to a trial-and-

error procedure (see, e.g., [11, 30]) or starting from some preliminary (geometric or physic)
information about the problem at hand (as, e.g., in [16]) or via an automatic selection based
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on an a posteriori modeling error analysis (we refer, e.g., to [32, 34]). We adopt the same
value form in the wholeΩ , although themodal indexmay be locally varied along the domain
to match possible heterogeneities of the solution (see [29, 30, 32–34] for further details).

Thus, the HiMod approximation to problem (1), associated with the modal coefficient m,
reads

find um(α) ∈ Vm(α) s.t. a(um(α), vm;α) = f (vm;α) ∀vm ∈ Vm(α), (4)

with um(α) = um(x, y;α). To ensure the well-posedness of formulation (4), we endow the
space Vm(α) both with a conformity and a spectral approximability assumption, while the
convergence of the HiMod approximation um(α) to the full solution u(α) in (1) is guaranteed
by introducing a standard density assumption on the discrete space V1D .

After applying the HiMod representation in (3) to um(α) in (4), and choosing the test
function vm as ϑtϕq , for t = 1, . . . , Nh and q = 1, . . . ,m, the HiMod formulation turns into
the system of m coupled 1D problems,

Am(α)um(α) = fm(α), (5)

with Am(α) ∈ R
mNh×mNh denoting the HiMod stiffness matrix, fm(α) ∈ R

mNh representing
the HiMod right-hand side, and where vector

um(α) = [
ũα
1,1, . . . , ũ

α
1,Nh

, ũα
2,1, . . . , ũ

α
2,Nh

, . . . , ũα
m,1, . . . , ũ

α
m,Nh

]T ∈ R
mNh (6)

collects the modal coefficients {ũα
k, j }m,Nh

k=1, j=1, namely the actual unknowns of the HiMod
discretization

um(x, y;α) =
m∑

k=1

Nh∑
j=1

ũα
k, jϑ j (x)ϕk(ψx (y)) (7)

[11, 30]. It has been numerically checked that, when themainstream dominates the transverse
dynamics (i.e., for small values of m), the HiMod approximation demands a considerably
lower computational effort if compared with a standard (e.g., finite element) discretization
of problem (1), without giving up the accuracy of the simulation [1, 7, 16, 23].

2.1.2 Directional HiPOD Reduction

A HiPOD approach offers a new way to yield a HiMod approximation, as an alternative to
the resolution of the HiMod system (5). According to a data-driven procedure, the idea is to
replace the HiMod discretization in (7) with a surrogate solution obtained by resorting to a
POD reduced basis generated by HiMod approximations. A standard offline/online paradigm
drives the computation of the HiPOD approximation. In particular, during the offline phase,
we compute the HiMod solution in (5) for different choices of α, to extract the POD basis. In
the online step, such a basis is employed to approximate the HiMod solution in (5) associated
with a value of the parameter not sampled during the offline phase.

As shown in [3, 21], aHiPODprocedure considerably lowers computational costs, without
compromising the quality of the reduced solution.

Two HiPOD approaches have been explored so far. The basic method coincides with a
straightforward application of a projection-based POD to HiMod solutions [3]. An advanced
procedure, referred to as directional HiPOD, takes advantage of the separation of variables
implied by a HiMod discretization [21], the SVD being used to remove the redundancy
along the main stream and the transverse direction, separately. In addition, the online phase
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is carried out by interpolation instead of projection, thus relieving us from assembling the
HiMod stiffness matrix and the right-hand side associated with the online parameter, as
expected by the basic HiPOD approach.

Below, we detail the directional HiPOD method, since instrumental to the new approach
proposed in Sect. 3.

The goal of the offline phase is to identify the POD basis to be used in an online mode. To
this aim, we build the response matrix by collecting the HiMod solution to problem (1) for p
different values, αi , of the parameter α, with i = 1, . . . , p. In more detail, the generic HiMod
solution um(x, y;αi ) is identified with the corresponding modal coefficients, {ũαi

k, j }m,Nh
k=1, j=1,

collected by mode into the m vectors

Uk(αi ) =
[
ũαi
k,1, ũ

αi
k,2, . . . , ũ

αi
k,Nh

]T ∈ R
Nh k = 1, . . . ,m, (8)

so that the response matrix is assembled as

U = [
U1(α1) · · ·Um(α1)|U1(α2) · · ·Um(α2)|· · · · · · · · · | U1(αp) · · ·Um(αp)

]

=

⎡
⎢⎢⎢⎢⎣

ũα1
1,1 · · · ũα1

m,1 ũα2
1,1 · · · ũα2

m,1 · · · · · · ũ
αp
1,1 · · · ũ

αp
m,1

ũα1
1,2 · · · ũα1

m,2 ũα2
1,2 · · · ũα2

m,2 · · · · · · ũ
αp
1,2 · · · ũ

αp
m,2

...
...

...
...

...
...

...
...

...
...

...

ũα1
1,Nh

· · · ũα1
m,Nh

ũα2
1,Nh

· · · ũα2
m,Nh

· · · · · · ũαp
1,Nh

· · · ũαp
m,Nh

⎤
⎥⎥⎥⎥⎦ .

(9)

The blocks are associated with the different parameters, while, for each block, columns run
over modes, rows over the finite element nodes. In order to extract the POD basis, we apply
the Singular Value Decomposition (SVD) [15] to matrix U , so that

U = ΞΛKT , (10)

with Ξ ∈ R
Nh×Nh and K ∈ R

(mp)×(mp) unitary matrices, and Λ ∈ R
Nh×(mp) a pseudo-

diagonal matrix. Each column in U can be expanded in terms of the left singular vectors
{ξ j }Nh

j=1 of U since constituting an orthogonal basis for RNh , so that

Uk(αi ) =
Nh∑
j=1

T k
j (αi )ξ j k = 1, . . . ,m, i = 1, . . . , p. (11)

It is customary to select the first, say L with L ≤ Nh , most meaningful singular vectors of
U to identify the reduced POD space V L

POD,1 = span{ξ1, . . . , ξ L }, with dim(V L
POD,1) = L .

As a consequence, the vectors in (11) are approximated as

Uk(αi ) ∼=
L∑
j=1

T k
j (αi )ξ j k = 1, . . . ,m, i = 1, . . . , p, (12)

the equality being ensured for L = Nh . The directional HiPOD reduction involves a reorgani-
zation of coefficients {T k

j (αi )} first into the vectors T j (αi ) = [T 1
j (αi ), . . . , Tm

j (αi )]T ∈ R
m

with i = 1, . . . , p, and successively into the matrices

S j = [
T j (α1), . . . ,T j (αp)

] =
⎡
⎢⎣

T 1
j (α1) . . . T 1

j (αp)

...
...

Tm
j (α1) . . . Tm

j (αp)

⎤
⎥⎦ ∈ R

m×p,
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with j = 1, . . . , L , in order to associate a reduced POD basis with each index j . To this aim,
we factorize the matrices S j via SVD, so that

S j = R j D j P
T
j , (13)

with R j ∈ R
m×m and Pj ∈ R

p×p unitary matrices, and Dj ∈ R
m×p the pseudo-diagonal

matrix collecting the singular values of S j . It follows that each column T j (αi ) of S j can be
approximated by resorting to the POD orthogonal basis {rkj }

μ j
k=1, with μ j ≤ m, constituted

by the most significant μ j left singular vectors of S j , namely

T j (αi ) ∼=
μ j∑
k=1

Qk
j (αi )rkj j = 1, . . . , L, i = 1, . . . , p. (14)

Thus, a POD space V
μ j
POD,2, j = span{r1j , . . . , r

μ j
j } can be defined for each j , with

dim(V
μ j
POD,2, j ) = μ j .

The offline phase endswith the overall generation of (L+1) POD reduced bases to be used
in the online phase in order to predict the HiMod approximation to problem (1) for a value,
α∗, of the parameter, such that α∗ �= αi for i = 1, . . . , p. The idea is to go backward through
the directional procedure, starting from the coefficients Qk

j (α
∗) in (14), with j = 1, . . . , L ,

k = 1, . . . , μ j , which are approximated by interpolating the (known) values Qk
j (αi ) for

i = 1, . . . , p. Coefficients Qk
j (α

∗), together with the L POD bases {rkj }
μ j
k=1, allow us to

compute the vectors

T j (α
∗) =

[
T 1
j (α

∗), . . . , Tm
j (α∗)

]T =
μ j∑
k=1

Qk
j (α

∗)rkj j = 1, . . . , L (15)

in Rm and, consequently, by exploiting the POD basis, {ξ j }Lj=1, generated first, to assemble
the m vectors

Uk
HiPOD(α∗) =

[
uα∗
POD,k,1, . . . , u

α∗
POD,k,Nh

]T =
L∑
j=1

T k
j (α

∗)ξ j k = 1, . . . ,m (16)

inRNh , which represent the online counterpart of vectors in (12). TheHiMod solution um(α∗)
can thus be approximated by means of the expansion

uL,ML
HiPOD(α∗) =

m∑
k=1

⎡
⎣ Nh∑

j=1

uα∗
POD,k, j ϑ j (x)

⎤
⎦ϕk(ψx (y)), (17)

with ML = {μ j }Lj=1. In particular, coefficients uα∗
POD,k, j provide an approximation of the

actual coefficient ũα∗
k, j in (8) for αi = α∗.

The procedure adopted to predict the coefficients Qk
j (α

∗) plays an important role. When
the offline solution data is not affected by noise, interpolation techniques are an effective tool.
In [21], we assess different intepolations, namely, standard linear interpolation, a piecewise
cubic Hermite (PCH) interpolant, and interpolating Radial Basis Functions (RBF), to infer
that PCH and RBF interpolants slightly outperform the linear approach.

Vice versa, when the offline data is affected by noise, interpolation is not recommended
because it does not discriminate between relevant features of the problem and noise, thus not
being able to retain the former and discard the latter. This limit motivated us in the proposal
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of a new tool, in order to guarantee a reliable HiMod approximation also in the presence of
noisy data.

Finally, to select the dimension of the POD spaces V L
POD,1 and V

μ j
POD,2, j , we resort to a

control on the variance, i.e., after setting the tolerances ε1 and ε2, with 0 ≤ ε1, ε2 ≤ 1, we
keep the first L left singular vectors ξ j of U and the first μ j left singular vectors rkj of S j ,
such that

L∑
j=1

λ2j

Nh∑
j=1

λ2j

≥ ε1,

μ j∑
j=1

d2j,k

m∑
j=1

d2j,k

≥ ε2, (18)

respectively, with λ j the singular value ofU associated with ξ j , for j = 1, . . . , Nh , and d j,k

the singular value of S j corresponding to the k-th singular vector rkj , with k = 1, . . . ,m.

2.2 Machine LearningModels for Regression

In this sectionwe focus onMachine Learning (ML)models to approximate data distributions.
The final goal is to replace the interpolation step in the online phase of the directional

HiPOD procedure with a regression technique, in order to address situations where the data
in the offline phase may be noisy. In particular, to estimate the coefficients Qk

j (α
∗) in (15),

we resort to aML fitting model since the offline solution is related to parameter αi by a highly
nonlinear relation.

Now, in order to understand how the noise in the data may affect the accuracy of the
predictions yielded by aML fitting model, we have to make some preliminary assumption on
the noise properties. The most common hypothesis leads us to consider an additive indepen-
dent identically distributed (i.i.d.) Gaussian noise, η̃ ∼ N (0, η), in the output, with η > 0,
namely, we assume to have

Qk
j (αi ) + η̃ k = 1, . . . ,m, j = 1, . . . , L, i = 1, . . . , p. (19)

In the next sections, we consider two ML regression models that operate under the additive
noise assumption, i.e., the polynomial [12, 13, 22, 37] and the Gaussian process regression
[8, 9, 24, 25].

2.2.1 Polynomial Regression

Polynomial regression is a form of regression analysis where the relationship between the
independent and the dependent variables is modeled as a polynomial in the independent
variable, of a certain degree n. With reference to our specific context, a polynomial regression
model of degree n estimates the nonlinear dependence of Qk

j (αi ) from the parameter αi

according to the formula

Qk
j (αi ) =

n∑
�=0

βk
j,� α�

i + η̃, k = 1, . . . ,m, j = 1, . . . , L, i = 1, . . . , p, (20)

whereβk
j,� are unknownparameters to be computed in order to optimize thematching between

predictions and observations of the dependent variable,while η̃ denotes a zero-meanGaussian
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noise as in (19). Although relation (20) is nonlinear in the independent variable αi , this
model is categorized as linear since the regression function is linear in terms of the unknown
parameters βk

j,�.
With a view to the directional HiPOD procedure, the quantity

n∑
�=0

βk
j,� [α∗]� k = 1, . . . ,m, j = 1, . . . , L (21)

will be used as an estimate for the online coefficient Qk
j (α

∗).

2.2.2 Gaussian Process Regression

The goal of a Gaussian process regression is to determine the best set of random variables that
describes the relation between input features and outputs. In the specific setting of interest,
we denote the random variables we are looking for by Qk

j , while αi and Qk
j (αi ) represent

the inputs and the outputs, respectively.
A Gaussian process is fully characterized by its mean function and covariance function.

Therefore, Gaussian process regression reduces to calculating the best values for the mean
and the covariance functions in order to minimize the mismatch between outputs (Qk

j (αi ))
and the predictions produced by the finite set of random variables selected from the Gaussian
process, evaluated at the available inputs (αi ).

Bayesian statistics combines prior Gaussian processes, that retain preliminary knowledge
and information from the offline data samples (also known as likelihood), to construct an
updated posteriorGaussian process.According to theBayes’ rule [5], a priorGaussian process
is iteratively updated using the information from the data till it converges to a stationary state
defined by a posterior Gaussian process.

Now, we specify such a workflow onto our setting of interest. We denote a prior Gaussian
process by Qk

j,prior, so that

Qk
j,prior ∼ GP

(
qkj,prior, z

k
j,prior + η

)
k = 1, . . . ,m, j = 1, . . . , L, (22)

where qkj,prior = qkj,prior(α) is the mean function, zkj,prior = zkj,prior(α, α̃) is the covariance
function, and η is the noise function. The restriction of the prior Gaussian process in (22) at
the input points αi , for i = 1, . . . , p, is a multivariate p-dimensional Gaussian distribution
N (mk

j,prior, Z
k
j,prior), where themean vector,mk

j,prior = [mk
j,prior,r ] ∈ R

p , and the covariance

matrix, Zk
j,prior = [Zk

j,prior,rs] ∈ R
p×p , are identified by relations

mk
j,prior,r = qkj,prior(αr ) = 1

4
α2
r r = 1, . . . , p, (23)

Zk
j,prior,rs = zkj,prior(αr , αs) = exp

[
− 1

2
(αr − αs)

2
]

r , s = 1, . . . , p, (24)

respectively. The Gaussian process Qk
j,like associated with the data, is defined as

Qk
j,like ∼ GP

(
qkj,like, z

k
j,like

)
k = 1, . . . ,m, j = 1, . . . , L, (25)

with qkj,like denoting the mean function and zkj,like the covariance function. The Gaus-

sian process Qk
j,like is not fully characterizable using the data, meaning that the mean

and the covariance functions cannot be uniquely determined. However, the values attained
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by qkj,like and zkj,like at the input points αi , for i = 1, . . . , p, are known and corre-

spond to a p-dimensional Gaussian distribution N (mk
j,like, Z

k
j,like), where the mean vector

mk
j,like = [mk

j,like,r ] ∈ R
p and the covariance matrix Zk

j,like = [Zk
j,like,rs] ∈ R

p×p are
defined by

mk
j,like,r = Qk

j (αr ) r = 1, . . . , p,

Zk
j,like,rs = exp

[
−1

2

(
Qk

j (αr ) − Qk
j (αs)

)2]
r , s = 1, . . . , p. (26)

Now, the posterior can be used to make predictions for unseen values of α (namely, to
predict coefficients Qk

j (α
∗) with α∗ the online parameter). The joint distribution of the

Gaussian processes evaluated at the pointsαi , for i = 1, . . . , p, is a 2p-dimensional Gaussian
distribution

N
([

mk
j,prior

mk
j,like

]
,

[
Zk
j,prior Zk

j,pl
Zk
j,pl Zk

j,like

])
, (27)

where the symmetric matrix Zk
j,pl ∈ R

p×p is the correlation matrix between prior and
likelihood. Using Bayes’ Theorem, the posterior p-dimensional Gaussian distribution is

N
(
mk

j,prior − Zk
j,pl

[
Zk
j,prior

]−1
mk

j,like, Z
k
j,prior − Zk

j,pl

[
Zk
j,like

]−1
Zk
j,pl

)
. (28)

The posterior Gaussian process associated with the distribution in (28) is consequently given
by

Qk
j,posterior ∼ GP

(
qkj,posterior, z

k
j,posterior

)
. (29)

The evaluation of the mean function qkj,posterior at the new input parameter value α∗ is

qkj,posterior
(
α∗) = qkj,prior

(
α∗)− [

Z
(
α, α∗)]T [Zk

j,prior

]−1
mk

j,like, (30)

with qkj,prior(α
∗) defined as in (23), Z(α, α∗) ∈ R

p denoting the covariance vector between

the offline data sampled at α = [α1, . . . , αp]T ∈ R
p and the new sampled parameter α∗.

The covariance function in (29) evaluated at α∗ is

zkj,posterior
(
α∗) = zkj,prior

(
α∗, α∗)− [

Z
(
α, α∗)]T [Zk

j,like

]−1
Z
(
α, α∗) , (31)

with zkj,prior(α
∗, α∗) = 1. The value qkj,posterior(α

∗) will be used as an estimate for Qk
j (α

∗).

3 HiPOD Reduction for Data Affected by Gaussian Noise

To address situations where the offline data is noisy, we propose here a variant of the direc-
tional HiPOD reduction presented in Sect. 2.1.2.

The idea is very straightforward. In the online phase we replace the initial interpolation
step used to estimate coefficients Qk

j (α
∗)with a regression technique. In particular, formulas

(21) and (30) provide us the desired estimate for the coefficients Qk
j (α

∗), when resorting to a
polynomial or to a Gaussian process regression, respectively. Successively, the online phase

123



Journal of Scientific Computing (2023) 94 :36 Page 11 of 22 36

is performed exactly as in Sect. 2.1.2, going through the reconstructions (15)-(16), to obtain
the final expansion in (17).
The choice for the ML regression models in Sects. 2.2.1, 2.2.2 is motivated by the highly
nonlinear dependence of the offline HiMod solution onto the offline parameters.

The improvement led by the new HiPOD approach is numerically checked in Sect. 4.
In the next section, we list some numerical quantities that can help us monitor the noise
propagation throughout the HiPOD procedure.

3.1 Noise Propagation on the ResponseMatrix

In this section we compare the standard directional HiPOD procedure and the new variant
proposed in this paper for different noise levels in the offline data. In particular, hereafter,
we refer to the standard and to the new directional HiPOD approach as to the interpolation-
HiPOD and the regression-HiPOD, respectively.

The data noise affects theHiPOD approximation by perturbing the (L+1) SVD’s involved
in the offline phase. In [21], we showed that an inaccurate calculation of the first SVD
(i.e., of the SVD of the response matrix U ) compromises the reliability of the directional
interpolation-HiPOD. For this reason, here we focus on the effect of the data noise onto the
decomposition in (10).

Let us assume that a Gaussian noise affects the linear form in (1) (e.g., by perturbing the
source term f or the boundary data of the PDE problem at hand). As a consequence, the
HiMod system in (5) is replaced by the perturbed problem

Am(α)ũm(α) = fm(α) + ηm, (32)

where ηm ∼ N (0mNh , ηImNh ) identifies the noise, with 0mNh ∈ R
mNh the null vector,

ImNh ∈ R
mNh × R

mNh the identity matrix, η > 0 the noise level, and ũm(α) denotes the
associated noisy HiMod discretization.

The solution to (32) can be regarded as a perturbation of the HiMod solution, um(α), in
(5) by an additive white noise (A−1

m (α)ηm), being

ũm(α) = A−1
m (α)fm(α) + A−1

m (α)ηm = um(α) + A−1
m (α)ηm . (33)

To simplify the notation, we define the random variable η̃m(α) = A−1
m (α)ηm , with

η̃m(α) ∼ N
(
0, η

[
Am(α)AT

m(α)
]−1

)
, (34)

so that the solution ũm(α) to the perturbed HiMod linear system (32) can be recast as

ũm(α) = um(α) + η̃m(α). (35)

This decomposition finds a counterpart when assembling the response matrix, Ũ , associated
with the offline noisy data. Indeed, thanks to the additive property assumed for the noise ηm ,
matrix Ũ , which collects the perturbed HiMod solutions ũm(αi ) in (32), for the p values,
α1, . . . , αp , of the parameter α, can be conceived as a perturbation of matrixU in (9). Thus,
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after introducing the noise matrix

E = [
E1(α1) · · ·Em(α1)|E1(α2) · · ·Em(α2)|· · · · · · · · · | E1(αp) · · ·Em(αp)

]

=

⎡
⎢⎢⎢⎢⎢⎣

η̃
α1
1,1 · · · η̃

α1
m,1 η̃

α2
1,1 · · · η̃

α2
m,1 · · · · · · η̃

αp
1,1 · · · η̃

αp
m,1

η̃
α1
1,2 · · · η̃

α1
m,2 η̃

α2
1,2 · · · η̃

α2
m,2 · · · · · · η̃

αp
1,2 · · · η̃

αp
m,2

...
...

...
...

...
...

...
...

...
...

...

η̃
α1
1,Nh

· · · η̃
α1
m,Nh

η̃
α2
1,Nh

· · · η̃
α2
m,Nh

· · · · · · η̃
αp
1,Nh

· · · η̃
αp
m,Nh

⎤
⎥⎥⎥⎥⎥⎦

,
(36)

where the vectors

Ek(αi ) =
[
η̃

αi
k,1, η̃

αi
k,2, . . . , η̃

αi
k,Nh

]T ∈ R
Nh k = 1, . . . ,m, i = 1, . . . , p,

gather, by mode, the noise affecting the modal coefficients {ũαi
k, j }m,Nh

k=1, j=1 in (6) for α = αi ,

the response matrix Ũ ∈ R
Nh×(mp) associated with the noisy HiMod solutions coincides

with

Ũ = U + E, (37)

with U the response matrix in (9). The SVD

Ũ = Ξ̃Λ̃K̃ (38)

will consequently replace the factorization of matrix U in (10), with Ξ̃ ∈ R
Nh×Nh and

K̃ ∈ R
(mp)×(mp) the unitary matrices of the left and of the right singular vectors of Ũ , and

Λ̃ ∈ R
Nh×(mp) the pseudo-diagonal matrix of the singular values.

Remark 1 The injection of a noise in the problem data involved in the bilinear form in (2)
would still affect the HiMod solution um(α), in (5), but not in an additive fashion. This would
unavoidably make the perturbation propagation analysis more complex, and is beyond the
purpose of this paper.

Some results are available in the literature which relate both the singular values and the
singular vectors of matrices U and Ũ .

As for the singular values, we remind theWeyl theorem [40] and theMirsky theorem [26].
The first result controls the discrepancy between the i-th singular value λi of U and the
corresponding singular value λ̃i of Ũ in terms of the spectral norm, ‖E‖S , of the noise
matrix, being

|λ̃i − λi | ≤ ‖E‖S i = 1, . . . ,min{Nh,mp}. (39)

Mirsky theorem provides an upper bound on the sum of the quadratic deviations of values
λ̃i ’s with respect to λi ’s in terms of the Frobenius norm, ‖E‖F , of the noise matrix, given by

min{Nh ,mp}∑
i=1

(
λ̃i − λi

)2 ≤ ‖E‖F . (40)

Of course, inequalities (39) and (40) are completely useless when norms ‖E‖S and ‖E‖F
become larger and larger.

The reference result on the singular vectors is represented by the generalized sin θ theo-
rem [39]. To state such a result, it is instrumental to introduce an appropriate rewriting of the
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SVD’s in (10) and (38). By exploiting that matrices Ξ , K , and Ξ̃ , K̃ are unitary, it follows
that

U = U1 +U0, Ũ = Ũ1 + Ũ0,

where Us = ΞsΛs K T
s , Ũs = Ξ̃sΛ̃s K̃ T

s , for s = 0, 1, with K1 = [k1, . . . ,kr ], K0 =
[kr+1, . . . ,kmp], Ξ1 = [ξ1, . . . , ξ r ], Ξ0 = [ξ r+1, . . . , ξ Nh

],

Λ1 =
⎧⎨
⎩

[
diag(λ1, . . . , λr , 0, . . . , 0)

0(Nh−r)×Nh

]
if Nh ≥ mp

[
diag(λ1, . . . , λr , 0, . . . , 0), 0mp×(mp−r)

]
if Nh < mp,

Λ0 =
⎧⎨
⎩
[
diag(0, . . . , 0, λr+1, . . . , λmin{Nh ,mp})

0(Nh−r)×Nh

]
if Nh ≥ mp[

diag(0, . . . , 0, λr+1, . . . , λmin{Nh ,mp}), 0mp×(mp−r)
]
if Nh < mp,

matrices K̃1, K̃0, Ξ̃1, Ξ̃0, Λ̃1, Λ̃0 being defined accordingly.
Moreover, we denote by C1 and C2 two generic Euclidean subspaces of RNh , and by PC1 ,

PC2 ∈ R
Nh the associated orthogonal projection operators. Thus, the angle θ between a vector

x ∈ R
Nh and the subspace C1 (which, among all the mathematically equivalent formulations,

by convention is always taken acute and positive) can be defined by

sin θ(x, C1) = min
y∈C1

‖x − y‖2, (41)

with ‖·‖2 denoting the Euclidean norm of a vector, and with ‖x‖2 = 1. From the projection
theorem, it follows that

min
y∈C1

‖x − y‖2 = ‖(I − PC1x
)‖2. (42)

When considering the angle between the subspaces C1 and C2, it is common to define

sin θ(C1, C2) = ‖(I − PC2
)
PC1‖S . (43)

Now, if there exists a pair of values γ > 0, δ > 0 such that

λmin(Ũ1) ≥ γ + δ, λmax(U0) ≤ γ, (44)

with λmin(Ũ1) and λmax(U0) the minimum and the maximum eigenvalue of Ũ1 and U0,
respectively, the generalized sin θ theorem [39] ensures that the following perturbation bound
on the column space of Ξ̃ holds

sin θ
(
R(Ξ̃1), R (Ξ1)

)
≤ ‖E‖S

δ
= PB1, (45)

with R(W ) the column space associated with the generic matrix W . The relation (45) is not
always computationally convenient to provide meaningful insight on the actual perturbation
triggered by the noise in the data. Indeed, computing the perturbation between the two column
spaces R(Ξ̃1) and R(Ξ1) might be unpractical from a computational view point, due to the
infinite vectors to be spanned.

In order to make the control in (45) more computationally convenient, i.e., to restrict the
dimensionality of the spaces to be spanned, we consider the alternative inequality

sin θ
(
R(Ξ̃1), R(Ξ1)

)
≤ sin θ

(
ξ̃1, ξ1

)
= PB2, (46)
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with ξ1 and ξ̃1 denoting the first left singular vectors of the response matrix U and Ũ ,
respectively. The result in (46) can be easily proved, moving from the following chain of
inequalities:

sin θ
(
ξ̃1, ξ1

)
≥ sin θ

(
ξ̃1, span{ξ1, ξ2}

)
≥ sin θ

(
ξ̃1, span{ξ1, ξ2, ξ3}

)

≥ . . . ≥ sin θ
(
ξ̃1, R (Ξ)

)
≥ sin θ

(
span{ξ̃1, ξ̃2}, R (Ξ)

)

≥ sin θ
(
span{ξ̃1, ξ̃2, ξ̃3}, R(Ξ)

)
≥ . . .

≥ sin θ
(
R(Ξ̃1), R (Ξ1)

)
.

Bounds (39), (40), (45), together with the new one in (46), will be used in the next section
to assess the sensitivity both of the interpolation-HiPOD and of the regression-HiPOD to the
noise level.

4 Numerical Results

In this section we compare the interpolation-HiPOD with the regression-HiPOD methods.
The comparison in carried out on two test cases, in terms of accuracy and robustness to the
noise level. For the formermethod, we resort to the PCH interpolant, while the latter approach
is assessed both with the polynomial and with the Gaussian process regression.

4.1 Test Case 1

We choose as reference setting the ADR problem (1)-(2) solved on the rectangular domain
Ω = (0, 6) × (0, 1), after setting the problem data to

μ(x, y) = 0.24, b(x, y) = [5, sin(6x)]T , σ (x, y) = 0.1,

f (x, y) = 10χE1(x, y) + 10χE2(x, y),
(47)

with χω the characteristic function associated with the generic region ω ⊂ R
2, E1 and

E2 the ellipsoidal areas in Ω given by {(x, y) : (x − 0.75)2 + 0.4(y − 0.25)2 < 0.01}
and {(x, y) : (x − 0.75)2 + 0.4(y − 0.75)2 < 0.01}, respectively. The ADR problem is
completed with a homogeneous Neumann data on 
N = {(x, y) : x = 6, 0 ≤ y ≤ 1}, while
a homogeneous Dirichlet condition is assigned on 
D = ∂Ω \ 
N , so that space V in (1)
coincides with H1


D
(Ω).

From a modeling viewpoint, this setting can be adopted to simulate the propagation of a
pollutant released by two localized sources within a straight channel, under the effect of a
sinusoidal horizontal convection.

We parametrize the ADR problem with respect to the diffusivity μ. The offline phase is
set up so that the coefficient μ uniformly spans the range [0.2, 0.8]. All the other problem
data remain the same as in (47) through the entire offline phase. We hierarchically reduce
100 ADR problems, after discretizing the main dynamics with linear finite elements on
a uniform partition of Ω1D into 40 sub-intervals, while using 20 sinusoidal modal basis
functions to approximate the transverse dynamics. To investigate the robustness to the noise
of the interpolation- and of the regression-HiPOD procedures, we carry out different offline
phases, where the source term f is injected by different levels of white noise, thus changing
f into f + η, with η = 0.01, 0.05, 0.1, 0.25. Independently of the selected noise, the
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Fig. 1 Test case 1. HiMod reference solution (top panel); interpolation-HiPOD approximation for different
noise levels: η = 0.01, 0.1, 0.25 (second-fourth row)

online phase is used to recover the reference setting in (47), i.e., to reconstruct the HiMod
solution for μ∗ = 0.24. The top panel in Fig. 1 shows the approximation yielded by the
HiMod discretization adopted for the offline phase. The resolution of such a discretization
is sufficiently accurate to capture the oscillatory dynamics induced by the sinusoidal field,
together with the presence of the two localized sources in E1 and E2. Such a discretization
represents the reference solution HiPOD approximations will be compared with.

A unique threshold tolerance, ε, is used to automatically select the number of PODmodes
to bepreserved at thefirst and at the second stageof the directionalmethod,which is equivalent
to setting ε1 = ε2 = ε in (18) (we refer the reader to [21] for a thorough investigation about
the interplay between tolerances ε1 and ε2). Table 1 collects the distribution of the number
μ j of the left singular vectors retained at each finite element node, for different choices of
the tolerance ε (by rows) and of the noise η (by columns). As expected, number μ j increases
for larger and larger values both of ε and η. Indeed, in the former case, the procedure is
intrinsically requested to retain more information about the variability of the offline dataset.
In the latter case, the quality of information retained by the offline solution deteriorates with
increasing values of noise. This leads the HiPOD procedure to retain more singular vectors
with respect to the case of a low (or of the absence of) noise, in order to capture the same
amount of information from the offline data.

Figure 1 displays the interpolation-HiPOD approximation reconstructed from offline data
with an increasing level of noise, i.e., η = 0.01, η = 0.1, η = 0.25 (the contourplot for
η = 0.05 is omitted since it is very similar to the one associated with η = 0.1). As expected,
the quality of the HiPOD solution deteriorates with increasing values of η. In particular, the
wake behind the sources is completely lost by the HiPOD approximation for η = 0.25.
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Table 1 Test case 1

η = 0.01 η = 0.1 η = 0.25

Distribution of the number of the POD modes retained at each finite element node for ε = 0.9 (first row),
0.99 (second row), 0.999 (third row), and for a different noise η. The supporting fiber is discretized by 41
uniformly distributed nodes

Fig. 2 Test case 1. Regression-HiPOD approximation for a cubic polynomial fitting (top) and for a Gaussian
process regression (bottom); the noise level is set to η = 0.25

Figure 2 highlights the benefits obtained by replacing the interpolation step in the HiPOD
online phase with a regressione process. In particular, the two panels show the regression-
HiPOD approximation when resorting to a cubic polynomial fitting and to a Gaussian process
regression, for the largest level of noise analyzed in Fig. 1 (i.e., η = 0.25). Both fittingmodels
clearly outperform the interpolation-HiPOD. In particular, the Gaussian process generates a
solution of a better quality with respect to the one yielded by the cubic polynomial fitting.

This trend is confirmed by the values in Table 2, which gathers the L2(Ω)- and the
H1(Ω)-norm of the relative modelig error obtained when replacing the reference HiMod
discretization in Fig. 1 (top) with the interpolation- rather than the regression-HiPOD approx-
imation. To ensure a high accuracy to the HiPOD solutions, we have set the thresholds driving
the selection of the POD bases in (18) very close to 1, picking ε1 = ε2 = ε = 0.9999. The
interpolation-HiPOD scheme is compared with the regression-HiPOD approach when both
a cubic polynomial fitting and a Gaussian process are used, for the four levels of noise
considered above. Although the general trend confirms that the error increases with the
noise, cubic polynomial fitting and Gaussian process regression outperform considerably the
interpolation-HiPOD, in particular for high noise levels.

Finally, we quantify the perturbation bounds in (45) and (46), for the considered four
levels of noise. Actually, Table 3 shows that the new bound allows us to gain up to three
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Table 2 Test case 1

η = 0.01 η = 0.05 η = 0.1 η = 0.25

PCH L2(Ω)-norm 0.0222 0.0960 0.2258 0.5521

H1(Ω)-norm 0.0434 0.2209 0.4460 1.1431

CP L2(Ω)-norm 0.0060 0.0247 0.0648 0.1414

H1(Ω)-norm 0.0132 0.0592 0.1282 0.3913

GP L2(Ω)-norm 0.0096 0.0229 0.0742 0.1521

H1(Ω)-norm 0.0169 0.0559 0.1087 0.2730

Relative modeling error associated with the interpolation-HiPOD (PCH) and with the cubic polynomial (CP)
and the Gaussian process (GP) regression-HiPOD, for different levels of noise

Table 3 Test case 1
η = 0.01 η = 0.05 η = 0.1 η = 0.25

PB1 2.2819 3.3340 2.6980 3.9770

PB2 0.0032 0.0072 0.0173 0.0517

Perturbation bounds for the noise propagation in the response matrix

orders of magnitude with respect to quantifier PB1, thus offering an effective tool to evaluate
the noise propagation on the response matrix U in (9).

4.2 Test Case 2

As a second reference setting, we hierarchically reduce the ADR problem in (1)-(2) identified
by the data

μ(x, y) = 0.24, b(x, y) = [20, 2 sin(6x)]T , σ (x, y) = 0.1,

f (x, y) = 1000χR1(x, y) + 1000χR2(x, y),
(48)

on the same domain, Ω = (0, 6) × (0, 1), as in Test case 1, with R1 = {(x, y) : 1 < x <

2, 0 < y < 0.1} and R2 = {(x, y) : 1 < x < 2, 0.9 < y < 1.0} two rectangular regions of
interest. The problem is completed by homogeneous Neumann data on 
N = {(x, y) : x =
6, 0 ≤ y ≤ 1} and by a homogeneous Dirichlet condition on 
D = ∂Ω \ 
N , so that we
have V ≡ H1


D
(Ω) in (1).

We can adopt this configuration tomodel, for instance, the transport of a drug released by a
medical stent applied to thewalls of a cardiovascular vessel, under the effect of incompressible
fluid convection.

The HiMod discretization adopted to build the reference solution as well as to perform
the offline phase of the HiPOD procedure employs linear finite elements along Ω1D after
subdiving the supporting fiber into 60 uniform subintervals, and a modal basis consisting of
20 sinusoidal functions to capture the dynamics along the transverse direction. The top panel
in Fig. 3 displays the contour plot of the HiMod reference solution. We clearly distinguish
the drug release in the regions R1 and R2, together with the transport of the medicine along
the pipe. The offline phase is driven by the diffusivity, which is identified with parameter α.
In particular, we uniformly cover the range [0.2, 0.8] with 100 samples, while keeping the
same values as in (48) for all the other problem data.
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Fig. 3 Test case 2. HiMod reference solution (top panel); interpolation-HiPOD approximation for different
noise levels: η = 0.01, 0.05, 0.1, 0.25 (second-fifth row)

The performance of the interpolation- and of the regression-HiPOD approaches in the
presence of noise is analyzed by affecting the forcing term in (2) with an increasing white
noise η, set to η = 0.01, 0.05, 0.1, 0.25, respectively. For each choice of η, we replicate
the offline phase set above, before predicting the HiMod approximation associated with
parameter μ∗ = 0.24 (i.e., with the reference configuration) in the online phase.

The selection of the POD bases {ξ j }Lj=1 and {rkj }
μ j
k=1, for j = 1, . . . , L , is driven by

the variance-based criteria in (18), for a unique choice of the threshold tolerance (i.e., for
ε1 = ε2 = ε). The trend of the number μ j of the left singular vectors selected by the HiPOD
approach at the finite element nodes for different values of ε and η is very similar to the one
in Table 1 (and, consequently, skipped for shortness).

Figure 3 shows the interpolation-HiPOD solution for the four noise levels η = 0.01,
0.05, 0.1, 0.25. As for Test case 1, the quality of the HiPOD approximation deteriorates very
quickly when increasing the level of noise. In particular, for η = 0.25, the HiPOD solution
is fully noisy, the problem dynamics being completely lost.

On the contrary, the regression-HiPOD discretization significantly outperforms the
approximation quality provided by the interpolation. Figure 4 shows such an improvement
when resorting to a cubic polynomial fitting and to a Gaussian process regression. Analo-
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Fig. 4 Test case 2. Regression-HiPOD approximation for a cubic polynomial fitting (top) and for a Gaussian
process regression (bottom); the noise level is set to η = 0.25

Table 4 Test case 2

η = 0.01 η = 0.05 η = 0.1 η = 0.25

PCH L2(Ω)-norm 0.0446 0.1917 0.4310 1.0589

H1(Ω)-norm 0.0626 0.3177 0.6723 1.6280

CP L2(Ω)-norm 0.0163 0.0887 0.1408 0.3067

H1(Ω)-norm 0.0213 0.0928 0.1875 0.4052

GP L2(Ω)-norm 0.0137 0.0832 0.1617 0.3593

H1(Ω)-norm 0.0182 0.0982 0.1758 0.3703

Relative modeling error associated with the interpolation-HiPOD (PCH) and with the cubic polynomial (CP)
and the Gaussian process (GP) regression-HiPOD, for different levels of noise

Table 5 Test case 2
η = 0.01 η = 0.05 η = 0.1 η = 0.25

PB1 2.4175 3.3268 3.7613 4.9623

PB2 0.0030 0.0208 0.0841 0.4279

Perturbation bounds for the noise propagation in the response matrix

gously to Fig. 2, Gaussian process regression yields a solution of a better quality than cubic
polynomial fitting.

These qualitative considerations are confirmed by the values in Table 4, which gathers
the L2(Ω)- and the H1(Ω)-norm of the relative modeling error associated with both the
interpolation- and the regression-HiPODapproximations, for the considered noise levels. The
results corroborate what already remarked for the first test case, namely cubic polynomial
fitting and Gaussian process regression outperform the interpolation-HiPOD for high noise
levels.

As a last check, we compute the quantifiers PB1 and PB2 of the noise propagation in the
response matrix defined in (45) and (46), respectively (see Table 5). Also for this test case,
the bound in (45) is relatively large, and the discrepancy between PB1 and PB2 grows with
the level of noise.
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5 Conclusions and Future Developments

In this work we present a first-of-its-kind approach to make the directional HiPOD approach
robust when the offline data is noisy. To this aim, we modify the interpolation-HiPOD pro-
posed in [21] by replacing interpolation techniques with ML regression, which gives rise to
what we name the regression-HiPOD method.

Numerical results, although preliminary, showcase the performance of the new HiPOD
approach in ideal situations, where both the noisy and clean data is available. This allows
for a practical validation of the quality of the reconstruction yielded by interpolation-HiPOD
against regression-HiPOD.

In particular, when the level of noise in the data is large, regression-HiPOD outperforms
interpolation-HiPOD in terms of accuracy, by gaining up to an order in the L2(Ω)- and
H1(Ω)-norm of the relative modeling error. Moreover, the regression-HiPOD succeeds in
accurately reproducing the HiMod solution also in the presence of localized abrupt dynamics
(where interpolation-HiPOD plainly fails), as in the second test case where the forcing term
is localized in narrow regions close to the boundary.

Additionally, we provide a new upper bound that estimates the effect of the noise level on
the deformation of the subspace spanned by the left singular vectors of the response matrix.
The new quantity we propose is more practical to compute and provides a more meaningful
estimate with respect to some upper bounds available in the literature, as confirmed by the
values in Tables 3 and 5.

Concerning possible future developments, we plain to include uncertainty quantification
in the analysis, to extend the directional regression-HiPOD approach to handle multiple
parameters simultaneously and to model vector PDEs such as the incompressible Stokes and
Navier-Stokes equations, with a view to haemodynamics modeling [7].
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