Skip to main content

Advertisement

Log in

How to Choose a Mouse Model of Breast Cancer, a Genomic Perspective

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Human breast cancer is a heterogeneous disease with numerous subtypes that have been defined through immunohistological, histological, and gene expression patterns. The diversity of breast cancer has made the study of its various underlying causes complex. To facilitate the examination of particular facets of breast cancer, mouse models have been generated, ranging from carcinogen induced models to genetically engineered mice. While mouse models have been generated to mimic the initiating event, including p53 loss, BRCA loss, or overexpression of HER2 / Neu / erbB2, other genomic events are often not well characterized. However, these secondary genetic events are often critical to the mouse tumor evolution, subtype, and outcome, just as they are in human breast cancer. As such, these other genomic events are a critical component of what models are chosen to study specific subtypes of human breast cancer. Here we review the genomic analyses that have been completed for various genetically engineered mouse models, how they compare to human breast cancer, and detail how this information can be used in choosing a mouse model for analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Greenough RB (1925) Varying degrees of malignancy in cancer of the breast.

  2. Bloom HJG, Richardson WW. Histological grading and prognosis of breast cancer. Br J Cancer. 1957;11:359–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Perou CMCM, Sørile T, Eisen MBMB, et al. Molecular portraits of human breast tumours. Nature. 2000;406:747–52.

    CAS  PubMed  Google Scholar 

  4. Hollern DP, Andrechek ER. A genomic analysis of mouse models of breast cancer reveals molecular features of mouse models and relationships to human breast cancer. Breast Cancer Res. 2014;16:R59. https://doi.org/10.1186/bcr3672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Malhotra GK, Zhao X, Band H, Band V. Histological, molecular and functional subtypes of breast cancers. Cancer Biol Ther. 2010;10:955–60.

    PubMed  PubMed Central  Google Scholar 

  6. Tavassoli FA DP (2003) Tumours of the Breast World Heal Organ.

  7. Li CI, Anderson BO, Daling JR, Moe RE. Trends in incidence rates of invasive lobular and ductal breast carcinoma. JAMA. 2003;289:1421.

    PubMed  Google Scholar 

  8. Dieci MV, Orvieto E, Dominici M, Conte P, Guarneri V. Rare breast Cancer subtypes: histological, molecular, and clinical peculiarities. Oncologist. 2014;19:805–13.

    PubMed  PubMed Central  Google Scholar 

  9. Ellis IO, Galea M, Broughton N, Locker A, Blamey RW, Elston CW. Pathological prognostic factors in breast cancer. II. Histological type. Relationship with survival in a large study with long-term follow-up. Histopathology. 1992;20:479–89.

    CAS  PubMed  Google Scholar 

  10. Morrogh M, Andrade VP, Giri D, Sakr RA, Paik W, Qin L-X, et al. Cadherin-catenin complex dissociation in lobular Neoplasia of the breast HHS public access. Breast Cancer Res Treat. 2012;132:641–52.

    CAS  PubMed  Google Scholar 

  11. Ciriello G, Gatza ML, Beck AH, Wilkerson MD, Rhie SK, Pastore A, et al. Comprehensive molecular portraits of invasive lobular breast Cancer. Cell. 2015;163:506–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Wasif N, Maggard MA, Ko CY, Giuliano AE. Invasive lobular vs. ductal breast Cancer: a stage-matched comparison of outcomes. Ann Surg Oncol. 2010;17:1862–9.

    PubMed  Google Scholar 

  13. van de Vijver MJ, He YD, van ‘t Veer LJ, et al. A gene-expression signature as a predictor of survival in breast Cancer. N Engl J Med. 2002;347:1999–2009.

    PubMed  Google Scholar 

  14. Prat A, Parker JS, Karginova O, Fan C, Livasy C, Herschkowitz JI, et al. Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res. 2010;12:R68. https://doi.org/10.1186/bcr2635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Prat A, Pineda E, Adamo B, Galván P, Fernández A, Gaba L, et al. Clinical implications of the intrinsic molecular subtypes of breast cancer. Breast. 2015;24:S26–35.

    PubMed  Google Scholar 

  16. Prat A, Cheang MCU, Martín M, Parker JS, Carrasco E, Caballero R, et al. Prognostic significance of progesterone receptor-positive tumor cells within immunohistochemically defined luminal a breast cancer. J Clin Oncol. 2013;31:203–9.

    CAS  PubMed  Google Scholar 

  17. Parker JS, Mullins M, Cheung MCU, et al. Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol. 2009;27:1160–7.

    PubMed  PubMed Central  Google Scholar 

  18. Fan C, Oh DS, Wessels L, Weigelt B, Nuyten DSA, Nobel AB, et al. Concordance among gene-expression–based predictors for breast Cancer. N Engl J Med. 2006;355:560–9.

    CAS  PubMed  Google Scholar 

  19. Fan C, Prat A, Parker JS, Liu Y, Carey LA, Troester MA, et al. Building prognostic models for breast cancer patients using clinical variables and hundreds of gene expression signatures. BMC Med Genet. 2011;4(3).

  20. Prat A, Bianchini G, Thomas M, Belousov A, Cheang MCU, Koehler A, et al. Research-based PAM50 subtype predictor identifies higher responses and improved survival outcomes in HER2- positive breast cancer in the NOAH study. Clin Cancer Res. 2014;20:511–21.

    CAS  PubMed  Google Scholar 

  21. Banerjee S, Reis-Filho JS, Ashley S, Steele D, Ashworth A, Lakhani SR, et al. Basal-like breast carcinomas: clinical outcome and response to chemotherapy. J Clin Pathol. 2006;59:729–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Prat A, Cruz C, Hoadley KA, Díez O, Perou CM, Balmaña J. Molecular features of the basal-like breast cancer subtype based on BRCA1 mutation status. Breast Cancer Res Treat. 2014;147:185–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Derose YS, Wang G, Lin YC, et al. Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes. Nat Med. 2011;17:1514–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang X, Lewis MT. Establishment of patient-derived Xenograft (PDX) models of human breast Cancer. Curr Protoc Mouse Biol. 2013;3:21–9.

    PubMed  Google Scholar 

  25. Julien S, Merino-Trigo A, Lacroix L, Pocard M, Goere D, Mariani P, et al. Characterization of a large panel of patient-derived tumor xenografts representing the clinical heterogeneity of human colorectal cancer. Clin Cancer Res. 2012;18:5314–28.

    CAS  PubMed  Google Scholar 

  26. du Manoir S, Orsetti B, Bras-Gonçalves R, Nguyen TT, Lasorsa L, Boissière F, et al. Breast tumor PDXs are genetically plastic and correspond to a subset of aggressive cancers prone to relapse. Mol Oncol. 2014;8:431–43.

    PubMed  Google Scholar 

  27. Kuracha MR, Thomas P, Loggie BW, Govindarajan V. Patient-derived xenograft mouse models of pseudomyxoma peritonei recapitulate the human inflammatory tumor microenvironment. Cancer Med. 2016;5:711–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Villacorta-Martin C, Craig AJ, Villanueva A. Divergent evolutionary trajectories in transplanted tumor models. Nat Genet. 2017;49:1565–6.

    CAS  PubMed  Google Scholar 

  29. Guenot D, Guérin E, Aguillon-Romain S, Pencreach E, Schneider A, Neuville A, et al. Primary tumour genetic alterations and intra-tumoral heterogeneity are maintained in xenografts of human colon cancers showing chromosome instability. J Pathol. 2006;208:643–52.

    CAS  PubMed  Google Scholar 

  30. Yamagiwa K, Ichikawa K. Experimental study of the pathogenesis of carcinoma. J Cancer Res. 1918;27:123–81.

    Google Scholar 

  31. Pazos P, Lanari C, Meiss R, Charreau EH, Dosne Pasqualini C. Mammary carcinogenesis induced by N-methyl-N-nitrosourea (MNU) and medroxyprogesterone acetate (MPA) in BALB/c mice. Breast Cancer Res Treat. 1991;20:133–8.

    CAS  Google Scholar 

  32. Bonser M (1954) The Evolution of mammary cancer induced in female IF mice with minimal doses of locally acting methylcholanthrene.

  33. Abba MC, Zhong Y, Lee J, Kil H, Lu Y, Takata Y, et al. DMBA induced mouse mammary tumors display high incidence of activating Pik3ca and loss of function Pten mutations. Oncotarget. 2016;7:64289–99.

    PubMed  PubMed Central  Google Scholar 

  34. Currier N, Solomon SE, Demicco EG, Chang DLF, Farago M, Ying H, et al. Oncogenic signaling pathways activated in DMBA-induced mouse mammary tumors. Toxicol Pathol. 2005;33:726–37.

    CAS  PubMed  Google Scholar 

  35. Rehm S. Chemically induced mammary gland adenomyoepitheliomas and myoepithelial carcinomas of mice. Immunohistochemical and ultrastructural features. Am J Pathol. 1990;136:575–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Behbod F, Kittrell FS, LaMarca H, Edwards D, Kerbawy S, Heestand JC, et al. An intraductal human-in-mouse transplantation model mimics the subtypes of ductal carcinoma in situ. Breast Cancer Res. 2009;11:R66.

    PubMed  PubMed Central  Google Scholar 

  37. Valdez KE, Fan F, Smith W, Allred DC, Medina D, Behbod F. Human primary ductal carcinoma in situ (DCIS) subtype-specific pathology is preserved in a mouse intraductal (MIND) xenograft model. J Pathol. 2011;225:565–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. D’Cruz CM, Gunther EJ, Boxer RB, et al. C-MYC induces mammary tumorigenesis by means of a preferred pathway involving spontaneous Kras2 mutations. Nat Med. 2001;7:235–9.

    PubMed  Google Scholar 

  39. Andrechek ER, Cardiff RD, Chang JT, Gatza ML, Acharya CR, Potti A, et al. Genetic heterogeneity of Myc-induced mammary tumors reflecting diverse phenotypes including metastatic potential. Proc Natl Acad Sci U S A. 2009;106:16387–92.

    PubMed  PubMed Central  Google Scholar 

  40. Ivics ZN, Hackett PB, Plasterk RH, Izsvá Z. Molecular reconstruction of sleeping beauty, a Tc1-like transposon from fish, and its transposition in human cells its original location and promotes its reintegration else- where in the genome (Plasterk, 1996). Autonomous mem- bers of a transposon family can express an active trans- posase, the trans-acting factor for transposition, and thus are capable of transposing on their own. Nonauton Cell. 1997;91:501–10.

    CAS  PubMed  Google Scholar 

  41. Drabek D, Zagoraiou L, DeWit T, Langeveld A, Roumpaki C, Mamalaki C, et al. Transposition of the Drosophila hydei Minos transposon in the mouse germ line. Genomics. 2003;81:108–11.

    CAS  PubMed  Google Scholar 

  42. Ding S, Wu X, Li G, Han M, Zhuang Y, Xu T. Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell. 2005;122:473–83.

    CAS  PubMed  Google Scholar 

  43. Collier LS, Carlson CM, Ravimohan S, Dupuy AJ, Largaespada DA. Cancer gene discovery in solid tumours using transposon-based somatic mutagenesis in the mouse. Nature. 2005;436:272–6.

    CAS  PubMed  Google Scholar 

  44. Kas SM, De Ruiter JR, Schipper K, et al. Insertional mutagenesis identifies drivers of a novel oncogenic pathway in invasive lobular breast carcinoma. Nat Genet. 2017;49:1219–30.

    CAS  PubMed  Google Scholar 

  45. Stewart TA, Pattengale PK, Leder P. Spontaneous mammary adenocarcinomas in transgenic mice that carry and express MTV/myc fusion genes. Cell. 1984;38:627–37.

    CAS  PubMed  Google Scholar 

  46. Andres A-C, Schonenberger C-A, Groner B, Hennighausent L, Lemeur M, Gerlinger P. Ha-ras oncogene expression directed by a milk protein gene promoter: tissue specificity, hormonal regulation, and tumor induction in transgenic mice (whey acidic protein gene/whey acidic protein-ras transgene/Y chromosome integration/mammary gland tumors/salivary gland tumors). Dev Biol. 1987;84:1299–303.

    CAS  Google Scholar 

  47. Vassar R, Rosenberg M, Rosst S, Tyner A, Fuchs E (1989) Tissue-specific and differentiation-specific expression of a human K14 keratin gene in transgenic mice (stratified squamous epithelia), Tissue-specific and differentiation-specific expression of a human K14 keratin gene in transgenic mice.

  48. Jackson EL, Willis N, Mercer K, Bronson RT, Crowley D, Montoya R, et al. Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Genes Dev. 2001;15:3243–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Muller WJ, Sinn E, Pattengale PK, Wallace R, Leder P. Single-step induction of mammary adenocarcinoma in transgenic mice bearing the activated c-neu oncogene. Cell. 1988;54:105–15.

    CAS  PubMed  Google Scholar 

  50. Gunther EJ, Belka GK, Wertheim GBW, Wang J, Hartman JL, Boxer RB, et al. A novel doxycycline-inducible system for the transgenic analysis of mammary gland biology. FASEB J. 2002;16:283–92.

    CAS  PubMed  Google Scholar 

  51. Debies MT, Gestl SA, Mathers JL, Mikse OR, Leonard TL, Moody SE, et al. Tumor escape in a Wnt1-dependent mouse breast cancer model is enabled by p19Arf/p53 pathway lesions but not p16Ink4a loss. J Clin Invest. 2008;118:51–63.

    CAS  PubMed  Google Scholar 

  52. Moody SE, Sarkisian CJ, Hahn KT, Gunther EJ, Pickup S, Dugan KD, et al. Conditional activation of Neu in the mammary epithelium of transgenic mice results in reversible pulmonary metastasis. Cancer Cell. 2002;2:451–61.

    CAS  PubMed  Google Scholar 

  53. Podsypanina K, Politi K, Beverly LJ, Varmus HE. Oncogene cooperation in tumor maintenance and tumor recurrence in mouse mammary tumors induced by Myc and mutant Kras. Proc Natl Acad Sci. 2008;105:5242–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Demarest RM, Dahmane N, Capobianco AJ. Notch is oncogenic dominant in T-cell acute lymphoblastic leukemia. Blood. 2011;117:2901–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang X, Cunningham M, Zhang X, Tokarz S, Laraway B, Troxell M, et al. Phosphorylation regulates c-Myc’s oncogenic activity in the mammary gland. Cancer Res. 2011;71:925–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Andrechek ER. Amplification of the neu/erbB-2 oncogene in a mouse model of mammary tumorigenesis. Proc Natl Acad Sci. 2000;97:3444–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Andrechek ER, Hardy WR, Laing MA, Muller WJ (2004) Germ-line expression of an oncogenic erbB2 allele confers resistance to erbB2-induced mammary tumorigenesis.

  58. Liu DP, Song H, Xu Y. A common gain of function of p53 cancer mutants in inducing genetic instability. Oncogene. 2010;29:949–56.

    CAS  PubMed  Google Scholar 

  59. Yuan W, Stawiski E, Janakiraman V, et al. Conditional activation of Pik3ca H1047R in a knock-in mouse model promotes mammary tumorigenesis and emergence of mutations. Oncogene. 2013;3253:318–26.

    Google Scholar 

  60. Cressman VL, Backlund DC, Hicks EM, Gowen LC, Godfrey V, Koller BH. Mammary tumor formation in p53- and BRCA1-deficient mice. Cell Growth Differ. 1999;10:1–10.

    CAS  PubMed  Google Scholar 

  61. Rao T, Ranger JJ, Smith HW, Lam SH, Chodosh L, Muller WJ (2014) Inducible and coupled expression of the polyomavirus middle T antigen and Cre recombinase in transgenic mice: an in vivo model for synthetic viability in mammary tumour progression. doi: https://doi.org/10.1186/bcr3603.

  62. Ranger JJ, Levy DE, Shahalizadeh S, Hallett M, Muller WJ. Identification of a Stat3-dependent transcription regulatory network involved in metastatic progression. Cancer Res. 2009;69:6823–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Masuda T, Xu X, Dimitriadis EK, Lahusen T, Deng CX (2016) “DNA binding region” of BRCA1 affects genetic stability through modulating the intra-S-phase checkpoint. Int J Biol Sci 12:133–143.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Annunziato S, Kas SM, Nethe M, Yücel H, del Bravo J, Pritchard C, et al. Modeling invasive lobular breast carcinoma by CRISPR / Cas9-mediated somatic genome editing of the mammary gland. Genes Dev. 2016;30:1470–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Xue W, Chen S, Yin H, Tammela T, Papagiannakopoulos T, Joshi NS, et al. CRISPR-mediated direct mutation of cancer genes in the mouse liver HHS public access. Nature. 2014;514:380–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Platt RJ, Chen S, Zhou Y, Yim MJ, Swiech L, Kempton HR, et al. CRISPR-Cas9 Knockin mice for genome editing and Cancer modeling. Cell. 2014;159:440–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Gaj T, Gersbach CA, Barbas CF. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 2013;31:397–405.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Ahronian LG, Lewis BC. Using the RCAS-TVA system to model human Cancer in mice. Cold Spring Harb Protoc. 2014;2014:pdb.top069831.

    Google Scholar 

  69. Guy CT, Cardiff RD, Muller WJ. Induction of mammary tumors by expression of polyomavirus middle T oncogene: a transgenic mouse model for metastatic disease. Mol Cell Biol. 1992;12:954–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Golovkina TV, Prakash O, Ross SR. Endogenous mouse mammary tumor virus Mtv-17 is involved in Mtv-2-induced tumorigenesis in GR mice. Virology. 1996;218:14–22.

    CAS  PubMed  Google Scholar 

  71. Andrechek ER. HER2/Neu tumorigenesis and metastasis is regulated by E2F activator transcription factors. Oncogene. 2015;34:217–25. https://doi.org/10.1038/onc.2013.540.

    Article  CAS  PubMed  Google Scholar 

  72. Jhan J-R, Andrechek ER. Stat3 accelerates Myc induced tumor formation while reducing growth rate in a mouse model of breast cancer. Oncotarget. 2016;7:65797–807.

    PubMed  PubMed Central  Google Scholar 

  73. Hollern DP, Honeysett J, Cardiff RD, Andrechek ER. The E2F transcription factors regulate tumor development and metastasis in a mouse model of metastatic breast Cancer. Mol Cell Biol. 2014;34:3229–43.

    PubMed  PubMed Central  Google Scholar 

  74. Cardiff RD, Anver MR, B a G, et al. The mammary pathology of genetically engineered mice: the consensus report and recommendations from the Annapolis meeting. Oncogene. 2000;19:968–88.

    CAS  PubMed  Google Scholar 

  75. Cardiff RD, Wellings SR. The comparative pathology of human and mouse mammary glands. J Mammary Gland Biol Neoplasia. 1999;4:105–22.

    CAS  PubMed  Google Scholar 

  76. Ponzo MG, Lesurf R, Petkiewicz S, O'Malley FP, Pinnaduwage D, Andrulis IL, et al. Met induces mammary tumors with diverse histologies and is associated with poor outcome and human basal breast cancer. Proc Natl Acad Sci U S A. 2009;106:12903–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Hollern DP, Swiatnicki MR, Andrechek ER. Histological subtypes of mouse mammary tumors reveal conserved relationships to human cancers. PLoS Genet. 2018;14. https://doi.org/10.1371/journal.pgen.1007135.

    PubMed  PubMed Central  Google Scholar 

  78. Lifsted T, Le Voyer T, Williams M, Muller W, Klein-Szanto A, Buetow KH, et al. Identification of inbred mouse strains harboring genetic modifiers of mammary tumor age of onset and metastatic progression. Int J Cancer. 1998;77:640–4.

    CAS  PubMed  Google Scholar 

  79. Jeffers M, Fiscella M, Webb CP, Anver M, Koochekpour S, Vande Woude GF. The mutationally activated met receptor mediates motility and metastasis. Med Sci. 1998;95:14417–22.

    CAS  Google Scholar 

  80. Seth P, Porter D, Lahti-Domenici J, Geng Y, Richardson A, Polyak K, et al. Cellular and molecular targets of estrogen in normal human breast tissue. Cancer Res. 2002;62:4540–4.

    CAS  PubMed  Google Scholar 

  81. Lukes L, Crawford NPS, Walker R, Hunter KW. The origins of breast Cancer prognostic gene expression profiles. Cancer Res. 2009;69:310–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Flowers M, Schroeder JA, Borowsky AD, Besselsen DG, Thomson CA, Pandey R, et al. Pilot study on the effects of dietary conjugated linoleic acid on tumorigenesis and gene expression in PyMT transgenic mice. Carcinogenesis. 2010;31:1642–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Eilon T, Barash I. Forced activation of Stat5 subjects mammary epithelial cells to DNA damage and preferential induction of the cellular response mechanism during proliferation. J Cell Physiol. 2011;226:616–26.

    CAS  PubMed  Google Scholar 

  84. Lou Y, Preobrazhenska O, Auf Dem Keller U, Sutcliffe M, Barclay L, McDonald PC, et al. Epithelial-Mesenchymal transition (EMT) is not sufficient for spontaneous murine breast cancer metastasis. Dev Dyn. 2008;237:2755–68.

    CAS  PubMed  Google Scholar 

  85. Kretschmer C, Sterner-Kock A, Siedentopf F, Schoenegg W, Schlag PM, Kemmner W. Identification of early molecular markers for breast cancer. Mol Cancer. 2011;10:15.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Zhang M, Tsimelzon A, Chang C-H, Fan C, Wolff A, Perou CM, et al. Intratumoral heterogeneity in a Trp53-null mouse model of human breast Cancer. Cancer Discov. 2015;5:520–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. McBryan J, Howlin J, Kenny PA, Shioda T, Martin F. ERalpha-CITED1 co-regulated genes expressed during pubertal mammary gland development: implications for breast cancer prognosis. Oncogene. 2007;26:6406–19.

    CAS  PubMed  Google Scholar 

  88. Herschkowitz JI, Simin K, Weigman VJ, Mikaelian I, Usary J, Hu Z, et al. Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol. 2007;8:R76.

    PubMed  PubMed Central  Google Scholar 

  89. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, Mcguire WL. Human breast Cancer: correlation of relapse and survival with amplification of the HER-2lneu oncogene. Science (80- ). 1987;235:177–82.

    CAS  Google Scholar 

  90. Kirouac DC, Du J, Lahdenranta J, Onsum MD, Nielsen UB, Schoeberl B, et al. HER2+ Cancer cell dependence on PI3K vs. MAPK signaling axes is determined by expression of EGFR, ERBB3 and CDKN1B. PLoS Comput Biol. 2016;12:1004827.

    Google Scholar 

  91. Rennhack J, To B, Wermuth H, Andrechek ER. Mouse models of breast cancer share amplification and deletion events with human breast cancer. J Mammary Gland Biol Neoplasia. 2017;22:71–84. https://doi.org/10.1007/s10911-017-9374-y.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Santarpia L. Lippman SL. El-Naggar AK Targeting the Mitogen-Activated Protein Kinase RAS-RAF Signaling Pathway in Cancer Therapy. 2012. https://doi.org/10.1517/14728222.2011.645805.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Martini M, Chiara M, Santis D, Braccini L, Gulluni F, Hirsch E (2014) PI3K/AKT signaling pathway and cancer: an updated review. doi: https://doi.org/10.3109/07853890.2014.912836org/10.3109/07853890.2014.912836.

  94. Bild AH, Yao G, Chang JT, Wang Q, Potti A, Chasse D, et al. Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature. 2006;439:353–7.

    CAS  PubMed  Google Scholar 

  95. Pfefferle AD, Herschkowitz JI, Usary J, Harrell J, Spike BT, Adams JR, et al. Transcriptomic classification of genetically engineered mouse models of breast cancer identifies human subtype counterparts. Genome Biol. 2013;14:R125. https://doi.org/10.1186/gb-2013-14-11-r125.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Nik-Zainal S, Davies H, Staaf J, Ramakrishna M, Glodzik D, Zou X, et al. Landscape of somatic mutations in 560 breast cancer whole-genome sequences. Nature. 2016;534:47–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Bose R, Kavuri SM, Searleman AC, Shen W, Shen D, Koboldt DC, et al. Activating HER2 mutations in HER2 gene amplification negative breast cancer. Cancer Discov. 2013;3:224–37.

    CAS  PubMed  Google Scholar 

  98. Samuels Y, Wang Z, Bardelli A, et al. High frequency of mutations of the PIK3CA gene in human cancers. Science. 2004;80(304):554.

    Google Scholar 

  99. McFadden DG, Politi K, Bhutkar A, et al. Mutational landscape of EGFR- , MYC- , and Kras- driven genetically engineered mouse models of lung adenocarcinoma. Proc Natl Acad Sci. 2016;113:E6409–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Govindan R, Ding L, Griffith M, Subramanian J, Dees ND, Kanchi KL, et al. Genomic landscape of non-small cell lung cancer in smokers and never-smokers. Cell. 2012;150:1121–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Rennhack JP, Swiatnicki M, Zhang Y, et al Integrated sequence and gene expression analysis of mouse models of breast cancer reveals critical events with human parallels Fax Running Title: Integrated genomic characterization of mouse models of breast cancer. doi: https://doi.org/10.1101/375154

  102. Pfefferle AD, Agrawal YN, Koboldt DC, Kanchi KL, Herschkowitz JI, Mardis ER, et al. Genomic profiling of murine mammary tumors identifies potential personalized drug targets for p53-deficient mammary cancers. Dis Model Mech. 2016;9:749–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Gerlinger M, Rowan AJ, Horswell S, Math M, Larkin J, Endesfelder D, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med. 2012;366:883–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Navin N, Kendall J, Troge J, Andrews P, Rodgers L, McIndoo J, et al. Tumor evolution inferred by single-cell sequencing. Nature. 2011;472:90–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Pal B, Chen Y, Vaillant F, Jamieson P, Gordon L, Rios AC, et al. Construction of developmental lineage relationships in the mouse mammary gland by single-cell RNA profiling. Nat Commun. 2017;8:1627.

    PubMed  PubMed Central  Google Scholar 

  106. Dai C, Arceo J, Arnold J, Sreekumar A, Dovichi NJ, Li J, Littlepage LE Metabolomics of oncogene-specific metabolic reprogramming during breast cancer. doi: https://doi.org/10.1186/s40170-018-0175-6.

  107. Pitteri SJ, Faca VM, Kelly-Spratt KS, Kasarda AE, Wang H, Zhang Q, et al. Plasma proteome profiling of a mouse model of breast Cancer identifies a set of up-regulated proteins in common with human breast Cancer cells. J Proteome Res. 2008;7:1481–9.

    CAS  PubMed  Google Scholar 

  108. Schoenherr RM, Kelly-Spratt KS, Lin C, Whiteaker JR, Liu T, Holzman T, et al. Proteome and Transcriptome profiles of a Her2/Neu-driven mouse model of breast Cancer. Proteomics Clin Appl. 2011;5:179–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Andrechek ER, Cardiff RD, Chang JT, Gatza ML, Acharya CR, Potti A, Nevins JR (2009) Genetic heterogeneity of Myc-induced mammary tumors reflecting diverse phenotypes including metastatic potential.

  110. Ponzo MG, Lesurf R, Petkiewicz S, O'Malley FP, Pinnaduwage D, Andrulis IL, et al. Met induces mammary tumors with diverse histologies and is associated with poor outcome and human basal breast cancer. Proc Natl Acad Sci U S A. 2009;106:12903–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Fluck MM, Schaffhausen BS. Lessons in signaling and tumorigenesis from Polyomavirus middle T antigen. Microbiol Mol Biol Rev. 2009;73:542–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Guy CT, Webster MA, Schaller M, Parsons TJ, Cardiff RD, Muller WJ. Expression of the neu protooncogene in the mammary epithelium of transgenic mice induces metastatic disease. Proc Natl Acad Sci. 1992;89:10578–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Tsukamoto AS, Grosschedl R, Guzman RC, Parslow T, Varmus HE. Expression of the int-1 gene in transgenic mice is associated with mammary gland hyperplasia and adenocarcinomas in male and female mice. Cell. 1988;55:619–25.

    CAS  PubMed  Google Scholar 

  114. Bocchinfuso WP, Hively WP, Couse JF, Varmus HE, Korach KS (1999) A mouse mammary tumor virus-Wnt-1 transgene induces mammary gland hyperplasia and tumorigenesis in mice lacking estrogen receptor.

  115. Jiang Z, Deng T, Jones R, Li H, Herschkowitz JI, Liu JC, et al. Rb deletion in mouse mammary progenitors induces luminal-B or basal-like/EMT tumor subtypes depending on p53 status. J Clin Invest. 2010;120:3296–309.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Dj J, Kittrell FS, Kuperwasser C, Laucirica R, Dickinson ES, Bonilla PJ, et al. A mammary-specific model demonstrates the role of the p53 tumor suppressor gene in tumor development. Oncogene. 2000;19:1052–8.

    Google Scholar 

  117. Deng C-X, Xu X, Wagner K-U, Larson D, Weaver Z, Li C, et al. Conditional mutation of Brca1 in mammary epithelial cells results in blunted ductal morphogenesis and tumour formation. Nat Genet. 1999;22:37–43.

    PubMed  Google Scholar 

  118. Chan SR, Vermi W, Luo J, Lucini L, Rickert C, Fowler AM, et al. STAT1-deficient mice spontaneously develop estrogen receptor α-positive luminal mammary carcinomas. Breast Cancer Res. 2012;14:R16.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Meraz MA, White JM, Sheehan KCF, Bach EA, Rodig SJ, Dighe AS, et al. Targeted disruption of the Stat1 gene in mice reveals unexpected physiologic specificity in the JAK-STAT signaling pathway. Cell. 1996;84:431–42.

    CAS  PubMed  Google Scholar 

  120. Maroulakou IG, Anver M, Garrett L, Green JE. Prostate and mammary adenocarcinoma in transgenic mice carrying a rat C3(1) simian virus 40 large tumor antigen fusion gene. Proc Natl Acad Sci. 1994;91:11236–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Jones RA, Campbell CI, Gunther EJ, Chodosh LA, Petrik JJ, Khokha R, et al. Transgenic overexpression of IGF-IR disrupts mammary ductal morphogenesis and induces tumor formation. Oncogene. 2007;26:1636–44.

    CAS  PubMed  Google Scholar 

  122. Moorehead RA, Barnett EF, Franks SE, Campbell CI, Siwicky MD, Livingstone J, et al. Transgenic IGF-IR overexpression induces mammary tumors with basal-like characteristics, whereas IGF-IR-independent mammary tumors express a claudin-low gene signature. Oncogene. 2011;31:3298–309.

    PubMed  PubMed Central  Google Scholar 

  123. Iavnilovitch E, Groner B, Barash I. Overexpression and forced activation of stat5 in mammary gland of transgenic mice promotes cellular proliferation, enhances differentiation, and delays postlactational apoptosis. Mol Cancer Res. 2002;1:32–47.

    CAS  PubMed  Google Scholar 

  124. Bultman SJ, Herschkowitz JI, Godfrey V, Gebuhr TC, Yaniv M, Perou CM, et al. Characterization of mammary tumors from Brg1 heterozygous mice. Oncogene. 2008;27:460–8.

    CAS  PubMed  Google Scholar 

  125. Tremblay PJ, Pothier F, Hoang T, Tremblay G, Brownstein S, Liszauer A, et al. Transgenic mice carrying the mouse mammary tumor virus ras fusion gene: distinct effects in various tissues. Mol Cell Biol. 1989;9:854–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Kuraguchi M, Ohene-Baah NY, Sonkin D, Bronson RT, Kucherlapati R. Genetic mechanisms in Apc-mediated mammary tumorigenesis. PLoS Genet. 2009;5:1000367.

    Google Scholar 

  127. Liu S, Umezu-Goto M, Murph M, Lu Y, Liu W, Zhang F, et al. Expression of Autotaxin and Lysophosphatidic acid receptors increases mammary tumorigenesis, invasion, and metastases. Cancer Cell. 2009;15:539–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Hu C, Diévart A, Lupien M, Calvo E, Tremblay G, Jolicoeur P. Overexpression of activated murine Notch1 and Notch3 in transgenic mice blocks mammary gland development and induces mammary tumors. Am J Pathol. 2006;168:973–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Usary J, Zhao W, Darr D, Roberts PJ, Liu M, Balletta L, et al. Predicting drug responsiveness in human cancers using genetically engineered mice. Clin Cancer Res. 2013;19:4889–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Jhan J-R, Andrechek ER. Effective personalized therapy for breast cancer based on predictions of cell signaling pathway activation from gene expression analysis. Oncogene. 2017;36:3553–61.

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported with NIH R01CA160514 to E.R.A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eran R. Andrechek.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swiatnicki, M.R., Andrechek, E.R. How to Choose a Mouse Model of Breast Cancer, a Genomic Perspective. J Mammary Gland Biol Neoplasia 24, 231–243 (2019). https://doi.org/10.1007/s10911-019-09433-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-019-09433-3

Keywords

Navigation