Skip to main content
Log in

Mass Flux Experiments in Solid \(^4\)He: Some History, Recent Work and the Current Status

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Measurements that document a number of the characteristics of \(^{4}\hbox {He}\) mass flux through a cell filled with solid \(^{4}\hbox {He}\) carried out at the University of Massachusetts and elsewhere are reviewed. The mass flux is found to be a universal function of temperature, to have nonlinear behavior as a function of the driving chemical potential as might be expected for a Luttinger liquid and the flux can be extinguished at a concentration-dependent temperature by the presence of \(^{3}\hbox {He}\) . Strong evidence indicates that the flux is carried by the cores of dislocations present in the solid. Some contact with the history of quantum fluids and relevant early work in solid helium is made as is contact with theory related to the notion of a supersolid and mass flux in \(^{4}\hbox {He}\) .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Adapted from Fig. 1 in Ref. [81] (Color figure online)

Similar content being viewed by others

References

  1. E. Kim, M. Chan, Nature 427, 225 (2004)

    ADS  Google Scholar 

  2. E. Kim, M. Chan, Science 305, 1941 (2004)

    ADS  Google Scholar 

  3. R.B. Hallock, J. Low Temp. Phys. 180, 6 (2015)

    ADS  Google Scholar 

  4. R.B. Hallock, Phys. Today 68, 30 (2015)

    ADS  Google Scholar 

  5. H.K. Onnes, KNAW Proc. 11, 168 (1909)

    Google Scholar 

  6. H.K. Onnes, Commun. Phys. Lab Univ. Leiden Suppl. 29 (1911)

  7. H. Onnes, KNAW Proc. 16, 113 (1913)

    Google Scholar 

  8. H.K. Onnes, J. Boks, Commun. Phys. Lab Univ. Leiden 170b (1924)

  9. W. Keesom, K. Clusius, Leiden Comm. 219e; Proc. Sect. Sci. K. Ned. Acad. Wet. 35, 307 (1932). 219e (1932)

    Google Scholar 

  10. P. Kapitza, Nature 141, 74 (1938)

    ADS  Google Scholar 

  11. J. Allen, A. Misener, Nature 141, 75 (1938)

    ADS  Google Scholar 

  12. J. Allen, A. Misener, Nature 142, 643 (1938)

    ADS  Google Scholar 

  13. J. Allen, H. Jones, Nature 141, 243 (1938)

    ADS  Google Scholar 

  14. L. Tisza, Nature 141, 913 (1938)

    ADS  Google Scholar 

  15. F. London, Nature 141, 643 (1938)

    ADS  Google Scholar 

  16. H. London, Proc. R. Soc. A 171, 484 (1939)

    ADS  Google Scholar 

  17. L. Landau, J. Phys. (USSR) 5, 71 (1941)

    Google Scholar 

  18. S. Balibar, J. Low Temp. Phys. 146, 441 (2007)

    ADS  Google Scholar 

  19. J.M. Kosterlitz, D.J. Thouless, J. Phys. C 6, 1181 (1973)

    ADS  Google Scholar 

  20. D.J. Bishop, J.D. Reppy, Phys. Rev. Lett. 40, 1727 (1978)

    ADS  Google Scholar 

  21. D.J. Bishop, J.D. Reppy, Phys. Rev. B 22, 5171 (1980)

    ADS  Google Scholar 

  22. M.D. Agnolet, G.J.D. Reppy, Phys. Rev. B 39, 8934 (1989)

    ADS  Google Scholar 

  23. J. Berthold, D. Bishop, J.D. Reppy, Phys. Rev. Lett. 39, 348 (1977)

    ADS  Google Scholar 

  24. J. Maps, R. Hallock, Phys. Rev. B 26, 3979 (1982)

    ADS  Google Scholar 

  25. I. Rudnick, Phys. Rev. Lett. 40, 1454 (1978)

    ADS  Google Scholar 

  26. D. Nelson, J. Kosterlitz, Phys. Rev. Lett. 39, 1201 (1977)

    ADS  Google Scholar 

  27. D.N.V. Ambegaokar, B.I. Halperiin, E. Siggia, Phys. Rev. B 21, 1806 (1980)

    ADS  Google Scholar 

  28. W.H. Keesom, Nature 118, 81 (1926)

    ADS  Google Scholar 

  29. A. Andreev, I. Lifshitz, Sov. Phys. JETP 29, 1107 (1969)

    ADS  Google Scholar 

  30. G.V. Chester, Phys. Rev. A 2(1), 256 (1970). https://doi.org/10.1103/PhysRevA.2.256

    Article  ADS  Google Scholar 

  31. A.J. Leggett, Phys. Rev. Lett. 25(22), 1543 (1970). https://doi.org/10.1103/PhysRevLett.25.1543

    Article  ADS  Google Scholar 

  32. E. Andronikashvili, ZH. Eksp. Theo. Fiz 16, 780 (1946)

    Google Scholar 

  33. E. Andronikashvili, J. Phys. (USSR) 10, 201 (1946)

    Google Scholar 

  34. R.A. Guyer, Phys. Rev. Lett. 26(4), 174 (1971). https://doi.org/10.1103/PhysRevLett.26.174

    Article  ADS  MathSciNet  Google Scholar 

  35. H. Matsuda, T.T. Tsuneto, Prog. Theor. Phys. 46, 411 (1970)

    Google Scholar 

  36. W.J. Mullin, Phys. Rev. Lett. 26(11), 611 (1971). https://doi.org/10.1103/PhysRevLett.26.611

    Article  ADS  Google Scholar 

  37. A. Andreev, K. Keshishev, L. Mezhov-Deglin, A. Shal’nikov, Sov. Phys. JETP Lett. 9, 306 (1969)

    ADS  Google Scholar 

  38. H. Suzuki, J. Phys. Soc. Jpn. 35, 1472 (1973)

    ADS  Google Scholar 

  39. V.L. Tsymbalenko, Sov. Phys. JETP Lett. 23, 653 (1976)

    ADS  Google Scholar 

  40. D.S. Greywall, Phys. Rev. B 16(3), 1291 (1977). https://doi.org/10.1103/PhysRevB.16.1291

    Article  ADS  Google Scholar 

  41. D.J. Bishop, M.A. Paalanen, J.D. Reppy, Phys. Rev. B 24(5), 2844 (1981). https://doi.org/10.1103/PhysRevB.24.2844

    Article  ADS  Google Scholar 

  42. M.H.W. Chan, R.B. Hallock, L. Reatto, J. Low Temp. Phys. 172, 317 (2013)

    ADS  Google Scholar 

  43. G. Bonfait, H. Godfrin, B. Castaing, J. Phys. Fr. 50, 1997 (1989)

    Google Scholar 

  44. S.I. Shevchenko, Sov. J. Low Temp. Phys. 13(2), 61 (1987)

    Google Scholar 

  45. M. Meisel, Phys. B 178, 121 (1992)

    ADS  Google Scholar 

  46. P. Ho, I. Bindloss, J. Goodkind, J. Low Temp. Phys. 109, 409 (1997). https://doi.org/10.1007/s10909-005-0094-0

    Article  ADS  Google Scholar 

  47. J. Goodkind, Phys. Rev. Lett. 89(9), 095301 (2002). https://doi.org/10.1103/PhysRevLett.89.095301

    Article  ADS  Google Scholar 

  48. B. Hein, J. Goodkind, I. Iwasa, H. Kojima, J. Low Temp. Phys. 171, 322 (2013)

    ADS  Google Scholar 

  49. A.S.C. Rittner, J.D. Reppy, Phys. Rev. Lett. 97(16), 165301 (2006). https://doi.org/10.1103/PhysRevLett.97.165301

    Article  ADS  Google Scholar 

  50. M. Kondo, S. Takada, Y. Shibayama, K. Shirahama, J. Low Temp. Phys. 148, 695 (2007). https://doi.org/10.1007/s10909-007-9471-1

    Article  ADS  Google Scholar 

  51. Y. Aoki, J.C. Graves, H. Kojima, Phys. Rev. Lett. 99(1), 015301 (2007). https://doi.org/10.1103/PhysRevLett.99.015301

    Article  ADS  Google Scholar 

  52. Y. Aoki, J.C. Graves, H. Kojima, J. Low Temp. Phys. 150, 252 (2008)

    ADS  Google Scholar 

  53. A. Penzev, Y. Yasuta, M. Kubota, J. Low Temp. Phys. 148, 677 (2007). https://doi.org/10.1007/s10909-007-9452-4

    Article  ADS  Google Scholar 

  54. B. Hunt, E. Pratt, V. Gadagkar, M. Yamashita, A.V. Balatsky, J.C. Davis, Science 324(5927), 632 (2009). https://doi.org/10.1126/science.1169512

    Article  ADS  Google Scholar 

  55. R. Toda, P. Gumann, K. Kosaka, M. Kanemoto, W. Onoe, Y. Sasaki, Phys. Rev. B 81, 214515 (2010)

    ADS  Google Scholar 

  56. Z. Nussinov, A.V. Balatsky, M.J. Graf, S.A. Trugman, Phys. Rev. B 76(1), 014530 (2007). https://doi.org/10.1103/PhysRevB.76.014530

    Article  ADS  Google Scholar 

  57. A. Balatsky, M. Graf, Z. Nussinov, J.J. Su, J. Low Temp. Phys. 172(5–6), 388 (2013)

    ADS  Google Scholar 

  58. P. Anderson, W. Brinkman, D.A. Huse, Science 310, 1164 (2005)

    ADS  Google Scholar 

  59. N. Prokof’ev, B. Svistunov, Phys. Rev. Lett. 94(15), 155302 (2005). https://doi.org/10.1103/PhysRevLett.94.155302

    Article  ADS  Google Scholar 

  60. A.T. Dorsey, P.M. Goldbart, J. Toner, Phys. Rev. Lett. 96(5), 055301 (2006). https://doi.org/10.1103/PhysRevLett.96.055301

    Article  ADS  Google Scholar 

  61. P. Anderson, Nat. Phys. 3, 160 (2007). https://doi.org/10.1038/nphys539

    Article  Google Scholar 

  62. L. Pollet, M. Boninsegni, A.B. Kuklov, N.V. Prokof’ev, B.V. Svistunov, M. Troyer, Phys. Rev. Lett. 98(13), 135301 (2007). https://doi.org/10.1103/PhysRevLett.98.135301

    Article  ADS  Google Scholar 

  63. M. Boninsegni, A.B. Kuklov, L. Pollet, N.V. Prokof’ev, B.V. Svistunov, M. Troyer, Phys. Rev. Lett. 99(3), 035301 (2007). https://doi.org/10.1103/PhysRevLett.99.035301

    Article  ADS  Google Scholar 

  64. P. Anderson, Phys. Rev. Lett. 100, 215301 (2008)

    ADS  Google Scholar 

  65. Ş.G. Söyler, A.B. Kuklov, L. Pollet, N.V. Prokof’ev, B.V. Svistunov, Phys. Rev. Lett. 103(17), 175301 (2009)

    ADS  Google Scholar 

  66. J. Day, J. Beamish, Nature 450, 853 (2007)

    ADS  Google Scholar 

  67. J. Beamish, Private communication

  68. J. Beamish, This issue

  69. A. Haziot, X. Rojas, A. Fefferman, J. Beamish, S. Balibar, Phys. Rev. Lett. 110, 035301 (2013)

    ADS  Google Scholar 

  70. V. Zhuchkov, A. Lisunov, V. Maidanov, A. Neoneta, V. Rubanskyi, S. Rubets, E. Rudavskii, S. Smirnov, Low Temp. Phys. 41, 169 (2015)

    ADS  Google Scholar 

  71. H.J. Maris, Phys. Rev. B 86, 020502 (2012)

    ADS  Google Scholar 

  72. E.S. Reich, Nature 468, 748 (2010)

    ADS  Google Scholar 

  73. D.Y. Kim, M.H.W. Chan, Phys. Rev. Lett. 109, 155301 (2012)

    ADS  Google Scholar 

  74. J. Choi, J. Shin, E. Kim, Phys. Rev. B 92, 144505 (2015)

    ADS  Google Scholar 

  75. A. Eyal, X. Mi, L. Talanov, A.V.J. Reppy, Proc. Natl. Acad. Sci. 113, 6335 (2017)

    Google Scholar 

  76. J. Day, T. Herman, J. Beamish, Phys. Rev. Lett. 95(3), 035301 (2005). https://doi.org/10.1103/PhysRevLett.95.035301

    Article  ADS  Google Scholar 

  77. J. Day, J. Beamish, Phys. Rev. Lett. 96(10), 105304 (2006)

    ADS  Google Scholar 

  78. S. Sasaki, R. Ishiguro, F. Caupin, H. Maris, S. Balibar, Science 313, 1098 (2006)

    ADS  Google Scholar 

  79. S. Balibar, F. Caupin, J. Phys. Condens. Matter 20, 173201 (2008)

    ADS  Google Scholar 

  80. S. Sasaki, F. Caupin, S. Balibar, Phys. Rev. Lett. 99(20), 205302 (2007). https://doi.org/10.1103/PhysRevLett.99.205302

    Article  ADS  Google Scholar 

  81. M.W. Ray, R.B. Hallock, Phys. Rev. B 79(22), 224302 (2009). https://doi.org/10.1103/PhysRevB.79.224302

    Article  ADS  Google Scholar 

  82. Y. Vekhov, R.B. Hallock, Phys. Rev. Lett. 109, 045303 (2012)

    ADS  Google Scholar 

  83. V. Rubanskyi, R. Hallock, in APS March Meeting 2019, March 4–8, Boston, Massachusetts; V06.00004 (2019)

  84. V. Rubanskyi, R. Hallock, in preparation (2019)

  85. J.R. Beamish, A. Hikata, L. Tell, C. Elbaum, Phys. Rev. Lett. 50(6), 425 (1983). https://doi.org/10.1103/PhysRevLett.50.425

    Article  ADS  Google Scholar 

  86. E. Adams, Y. Tang, K. Uhlig, G. Haas, J. Low Temp. Phys. 66, 85 (1987). https://doi.org/10.1007/BF00681469

    Article  ADS  Google Scholar 

  87. C. Lie-zhao, D.F. Brewer, C. Girit, E.N. Smith, J.D. Reppy, Phys. Rev. B 33(1), 106 (1986). https://doi.org/10.1103/PhysRevB.33.106

    Article  ADS  Google Scholar 

  88. L. Pollet, A.B. Kuklov, Phys. Rev. Lett. 113, 045301 (2014)

    ADS  Google Scholar 

  89. Z.G. Cheng, M. Chan, New J. Phys. 15, 063030 (2013)

    ADS  Google Scholar 

  90. M.W. Ray, R.B. Hallock, Phys. Rev. Lett. 100(23), 235301 (2008)

    ADS  Google Scholar 

  91. M.W. Ray, R.B. Hallock, J. Low Temp. Phys. 158, 560 (2010)

    ADS  Google Scholar 

  92. J. Shin, D. Kim, A. Haziot, M. Chan, Phys. Rev. Lett. 118, 325301 (2017)

    Google Scholar 

  93. J. Shin, M. Chan, Phys. Rev. B 99, 140502 (2019)

    ADS  Google Scholar 

  94. L. Pollet, M. Boninsegni, A.B. Kuklov, N.V. Prokof’ev, B.V. Svistunov, M. Troyer, Phys. Rev. Lett. 101(9), 097202 (2008). https://doi.org/10.1103/PhysRevLett.101.097202

    Article  ADS  Google Scholar 

  95. M.W. Ray, R.B. Hallock, Phys. Rev. B 82(1), 012502 (2010)

    ADS  Google Scholar 

  96. M.W. Ray, R.B. Hallock, Phys. Rev. B 84(17), 144512 (2011)

    ADS  Google Scholar 

  97. Y. Vekhov, W.J. Mullin, R.B. Hallock, Phys. Rev. Lett. 113, 035302 (2014)

    ADS  Google Scholar 

  98. Y. Vekhov, W.J. Mullin, R.B. Hallock, Phys. Rev. Lett. 115, 019902 (2015)

    ADS  Google Scholar 

  99. Y. Vekhov, R.B. Hallock, Phys. Rev. B 92, 104509 (2015)

    ADS  Google Scholar 

  100. P. Corboz, L. Pollet, N.V. Prokof’ev, M. Troyer, Phys. Rev. Lett. 101, 155302 (2008)

    ADS  Google Scholar 

  101. D.O. Edwards, S. Balibar, Phys. Rev. B 39(7), 4083 (1989)

    ADS  Google Scholar 

  102. C. Huan, S. Kim, L. Yin, J. Xia, D. Candela, N. Sullivan, J. Low Temp. Phys. 162(3–4), 167 (2011)

    ADS  Google Scholar 

  103. C. Huan, L. Yin, J. Xia, D. Candela, B. Cowan, N. Sullivan, Phys. Rev. B 95, 104107 (2017)

    ADS  Google Scholar 

  104. Z. Cheng, J. Beamish, A. Fefferman, F. Souris, S. Balibar, Phys. Rev. Lett. 114, 165301 (2015)

    ADS  Google Scholar 

  105. Y. Vekhov, R.B. Hallock, Phys. Rev. B 91, 180506(R) (2015)

    ADS  Google Scholar 

  106. Z.G. Cheng, J. Beamish, Phys. Rev. Lett. 117, 025301 (2016)

    ADS  Google Scholar 

  107. A. Kuklov, L. Pollet, B. Prokofev, N.V. Svistunov, Phys. Rev. B 90, 184508 (2014)

    ADS  Google Scholar 

  108. A. Kuklov, Phys. Rev. B 92, 134504 (2015)

    ADS  Google Scholar 

  109. M. Yarmolinsky, A. Kuklov, Phys. Rev. B 96, 024505 (2017)

    ADS  Google Scholar 

  110. F.D.M. Haldane, Phys. Rev. Lett. 47(25), 1840 (1981)

    ADS  Google Scholar 

  111. B.V. Svistunov, N.V. Prokof’ev, private communication

  112. Y. Vekhov, R.B. Hallock, Phys. Rev. B 90, 134511 (2014)

    ADS  Google Scholar 

  113. Y. Vekhov, R. Hallock, to be published

  114. Z.G. Cheng, J. Beamish, Phys. Rev. Lett. 121, 225304 (2018)

    ADS  Google Scholar 

Download references

Acknowledgements

I very much appreciate the opportunity to contribute to this anniversary volume of the Journal of Low Temperature Physics. Our work at the University of Massachusetts Amherst has been done in collaboration with M. Ray, Ye. Vekhov and more recently with V. Rubanskyi. Without them, much of what has been reported here from UMass would not exist. We have benefitted from many discussions with numerous colleagues in the quantum solids community, particularly S. Balibar, J. Beamish, M.H.W. Chan, A. Kuklov, J.D. Reppy and, especially, our local colleagues W. Mullin, N. Prokofev, and B.V. Svistunov. We appreciate the permission to use the figures provided by Z. Cheng and J. Beamish and by J. Shin and M.H.W. Chan. Our most recent work was supported primarily through funds provided by NSF DMR 1205217 and DMR 1602616. Modest additional support was also available from funds provided by the Research Trust Fund administered by the University of Massachusetts Amherst.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. B. Hallock.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hallock, R.B. Mass Flux Experiments in Solid \(^4\)He: Some History, Recent Work and the Current Status. J Low Temp Phys 197, 167–186 (2019). https://doi.org/10.1007/s10909-019-02214-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-019-02214-6

Keywords

Navigation