Skip to main content
Log in

Mechanical Activation of Terpyridine Metal Complexes in Polymers

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The mechanical addressability of specific chemical bonds holds a high potential for the improvement of polymeric materials. While in many cases, mechanical forces applied to polymers lead to bond scissoring and materials failure, including mechanophores into the polymer structure can lead to stimuli-responsive materials reacting to an applied force in a predefined manner. In this contribution, the mechanical addressability of bis-terpyridine metal complexes embedded into a polymer structure is investigated. The activation of the transition metal complexes in the metallopolymer is monitored by adding a fluorescent sensor molecule to the metallopolymer solution during ultrasonication. Upon sonication, the activation of the complexes leads to fluorescence-quenching of the sensor. The dependency of the metal ion and the type of polymer as well as their molar mass is investigated in detail, showing that this concept could possibly be used in further application of stimuli-responsive or self-healing materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. J. Li, T. Shiraki, B. Hu, R.A.E. Wright, B. Zhao, J.S. Moore, J. Am. Chem. Soc. 136, 15925–15928 (2014)

    Article  CAS  Google Scholar 

  2. J.N. Brantley, K.M. Wiggins, C.W. Bielawski, Polym. Int. 62, 2–12 (2013)

    Article  CAS  Google Scholar 

  3. J.M. Lenhardt, A.L. Black, S.L. Craig, J. Am. Chem. Soc. 131, 10818–10819 (2009)

    Article  CAS  Google Scholar 

  4. G.R. Gossweiler, G.B. Hewage, G. Soriano, Q. Wang, G.W. Welshofer, X. Zhao, S.L. Craig, ACS Macro Lett. 3, 216–219 (2014)

    Article  CAS  Google Scholar 

  5. D.A. Davis, A. Hamilton, J. Yang, L.D. Cremar, D. Van Gough, S.L. Potisek, M.T. Ong, P.V. Braun, T.J. Martínez, S.R. White, J.S. Moore, N.R. Sottos, Nature 459, 68–72 (2009)

    Article  CAS  Google Scholar 

  6. A.P. Haehnel, Y. Sagara, Y.C. Simon, C. Weder, in Polymer Mechanochemistry, ed. by R. Boulatov (Springer, Cham, 2015), pp. 345–375

    Chapter  Google Scholar 

  7. D.W.R. Balkenende, S. Coulibaly, S. Balog, Y.C. Simon, G.L. Fiore, C. Weder, J. Am. Chem. Soc. 136, 10493–10498 (2014)

    Article  CAS  Google Scholar 

  8. S. Bode, L. Zedler, F.H. Schacher, B. Dietzek, M. Schmitt, J. Popp, M.D. Hager, U.S. Schubert, Adv. Mater. 25, 1634–1638 (2013)

    Article  CAS  Google Scholar 

  9. C. Heinzmann, S. Coulibaly, A. Roulin, G.L. Fiore, C. Weder, ACS Appl. Mater. Interfaces 6, 4713–4719 (2014)

    Article  CAS  Google Scholar 

  10. R. Groote, R.T.M. Jakobs, R.P. Sijbesma, Polym. Chem. 4, 4846–4859 (2013)

    Article  CAS  Google Scholar 

  11. A. Piermattei, S. Karthikeyan, R.P. Sijbesma, Nat. Chem. 1, 133 (2009)

    Article  CAS  Google Scholar 

  12. R.T.M. Jakobs, R.P. Sijbesma, Organometallics 31, 2476–2481 (2012)

    Article  CAS  Google Scholar 

  13. P. Michael, W.H. Binder, Angew. Chem. Int. Ed. 54, 13918–13922 (2015)

    Article  CAS  Google Scholar 

  14. A. Wild, A. Winter, F. Schlütter, U.S. Schubert, Chem. Soc. Rev. 40, 1459–1511 (2011)

    Article  CAS  Google Scholar 

  15. R. Shunmugam, G.J. Gabriel, K.A. Aamer, G.N. Tew, Macromol. Rapid Commun. 31, 784–793 (2010)

    Article  CAS  Google Scholar 

  16. S. Schmatloch, M.F. González, U.S. Schubert, Macromol. Rapid Commun. 23, 957–961 (2002)

    Article  CAS  Google Scholar 

  17. S. Schmatloch, A.M.J. van den Berg, A.S. Alexeev, H. Hofmeier, U.S. Schubert, Macromolecules 36, 9943–9949 (2003)

    Article  CAS  Google Scholar 

  18. S. Bode, M. Enke, R.K. Bose, F.H. Schacher, S.J. Garcia, S. van der Zwaag, M.D. Hager, U.S. Schubert, J. Mater. Chem. A 3, 22145–22153 (2015)

    Article  CAS  Google Scholar 

  19. D. Maheshwaran, T. Nagendraraj, P. Manimaran, B. Ashokkumar, M. Kumar, R. Mayilmurugan, Eur. J. Inorg. Chem. 2017, 1007–1016 (2017)

    Article  CAS  Google Scholar 

  20. P.R. Andres, R. Lunkwitz, G.R. Pabst, K. Böhn, D. Wouters, S. Schmatloch, U.S. Schubert, Eur. J. Inorg. Chem. 2003, 3769–3776 (2003)

    Article  Google Scholar 

  21. M. Grube, M.N. Leiske, U.S. Schubert, I. Nischang, Macromolecules 51, 1905–1916 (2018)

    Article  CAS  Google Scholar 

  22. I. Nischang, I. Perevyazko, T. Majdanski, J. Vitz, G. Festag, U.S. Schubert, Anal. Chem. 89, 1185–1193 (2017)

    Article  CAS  Google Scholar 

  23. R.T.M. Jakobs, S. Ma, R.P. Sijbesma, ACS Macro Lett. 2, 613–616 (2013)

    Article  CAS  Google Scholar 

  24. H. Hofmeier, U.S. Schubert, Macromol. Chem. Phys. 204, 1391–1397 (2003)

    Article  CAS  Google Scholar 

  25. E. Belhadj, A. El-Ghayoury, E. Ripaud, L. Zorina, M. Allain, P. Batail, M. Mazari, M. Sallé, New J. Chem. 37, 1427–1436 (2013)

    Article  CAS  Google Scholar 

  26. S. Perrier, Macromolecules 50, 7433–7447 (2017)

    Article  CAS  Google Scholar 

  27. H. Willcock, R.K. O’Reilly, Polym. Chem. 1, 149–157 (2010)

    Article  CAS  Google Scholar 

  28. S.Y. Wong, D. Putnam, Bioconjugate Chem. 18, 970–982 (2007)

    Article  CAS  Google Scholar 

  29. M.A.R. Meier, B.G.G. Lohmeijer, U.S. Schubert, J. Mass Spectrom. 38, 510–516 (2003)

    Article  CAS  Google Scholar 

  30. M.W.A. Kuijpers, P.D. Iedema, M.F. Kemmere, J.T.F. Keurentjes, Polymer 45, 6461–6467 (2004)

    Article  CAS  Google Scholar 

  31. M.B. Gordon, S. Wang, G.A. Knappe, N.J. Wagner, T.H. Epps, C.J. Kloxin, Polym. Chem. 8, 6485–6489 (2017)

    Article  CAS  Google Scholar 

  32. S.L. Potisek, D.A. Davis, N.R. Sottos, S.R. White, J.S. Moore, J. Am. Chem. Soc. 129, 13808–13809 (2007)

    Article  CAS  Google Scholar 

  33. K. Wei, Z. Gao, H. Liu, X. Wu, F. Wang, H. Xu, ACS Macro Lett. 6, 1146–1150 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Deutsche Forschungsgemeinschaft (DFG, SCHU 1229/26-1). Furthermore, S.Z. is grateful to the Carl-Zeiss foundation for funding. I.N. acknowledges support from the Thüringer Ministerium für Wirtschaft, Wissenschaft und Digitale Gesellschaft (TMWWDG, ProExzellenz II, NanoPolar) for funding the Solution Characterization Group (SCG) at the Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich S. Schubert.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 6489 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hannewald, N., Enke, M., Nischang, I. et al. Mechanical Activation of Terpyridine Metal Complexes in Polymers. J Inorg Organomet Polym 30, 230–242 (2020). https://doi.org/10.1007/s10904-019-01274-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-019-01274-1

Keywords

Navigation