Skip to main content
Log in

Review of Spinal Muscular Atrophy (SMA) for Prenatal and Pediatric Genetic Counselors

  • Review Paper
  • Published:
Journal of Genetic Counseling

Abstract

Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular condition with degeneration of the anterior horn cells in the spinal column. Five SMA subtypes exist with classification dependent upon the motor milestones achieved. Study of the SMN1 (survival motor neuron) and SMN2 genes as well as the concepts of the “2 + 0” carriers, gene conversion, de novo mutations and intragenic mutations allow for a better understanding of SMA. Detailing the carrier and diagnostic testing options further deepens the genetic counselor’s knowledge of SMA. A review of care guidelines and research options is included as this information gives a patient a well-rounded view of SMA. Although SMA is most commonly associated with the SMN1 gene, a number of spinal muscular atrophies not caused by genetic changes in this gene may be included as differential diagnoses until confirmatory testing can be completed. SMA is a complex condition requiring a detailed knowledge on the genetic counselor’s part in order to explain the disorder to the patient with clarity thus facilitating increased communication and decision making guidance with the patient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ACOG Committee Opinion No. 432. (2009). Spinal muscular atrophy. Obstetrics and Gynecology, 113, 1194–1196.

  • American Society of Human Genetics Board of Directors, American College of Medical Genetics Board of Directors. (1995). ASHG/ACMG report: points to consider: ethical, legal and psychosocial implications of genetic testing in children and adolescents. American Journal of Human Genetics, 57, 1233–1241.

    Google Scholar 

  • Andreassi, C., Jarecki, J., Zhou, J., Coovert, D., Monani, U., Chen, X., et al. (2001). Aclarubicin treatment restores SMN levels to cell derived from type I spinal muscular atrophy patients. Human Molecular Genetics, 10, 2841–2849.

    Article  CAS  PubMed  Google Scholar 

  • Bach, J. R., Baird, J. S., Plosky, D., Navado, J., & Weaver, B. (2002). Spinal muscular atrophy type 1: management and outcomes. Pediatric Pulmonology, 34, 16–22.

    Article  PubMed  Google Scholar 

  • Baumbach-Reardon, L., Sacharow, S., & Ahearn, M. E. (2012). Spinal muscular atrophy, X-linked infantile. GeneReviews [Internet]. Retrieved from http://www.genetests.org/by-genereview.

  • Birnkrant, D., Pope, J., Martin, J., Repucci, A., & Eiben, R. (1998). Treatment of type I spinal muscular atrophy with noninvasive ventilation and gastrostomy feeding. Pediatric Neurology, 18, 407–410.

    Article  CAS  PubMed  Google Scholar 

  • Bowerman, M., Murray, L., Boyer, J., Anderson, C., & Kothary, R. (2012). Fasudil improves survival and promotes skeletal muscle development in a mouse model of spinal muscular atrophy. BMC Medicine, 10, 24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Braun, S. (2013). Gene-based therapies of neuromuscular disorders: an updated and pivotal role of patient organizations in their discovery and implementation. The Journal of Gene Medicine, 15, 397–413.

    Article  CAS  PubMed  Google Scholar 

  • Brichta, L., Hofmann, Y., Hahnen, E., Siebzehnrubi, F. A., Raschke, H., Blumcke, I., et al. (2003). Valproic acid increases the SMN2 protein level: a well-known drug as a potential therapy for spinal muscular atrophy. Human Molecular Genetics, 12, 2481–2489.

    Article  CAS  PubMed  Google Scholar 

  • Burghes, A. (1997). When is a deletion not a deletion? When it is converted. American Journal of Human Genetics, 61, 9–15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bürglen, L., Lefebvre, S., Clermont, O., Burlet, P., Viollet, L., Cruaud, C., et al. (1996). Structure and organization of the human survival motor neuron (SMN) gene. Genomics, 15, 479–482.

    Article  Google Scholar 

  • Campbell, L., Potter, A., Ignatius, J., Dubowitz, V., & Davies, K. (1997). Genomic variation and gene conversion in spinal muscular atrophy: implications for disease process and clinical phenotype. American Journal of Human Genetics, 61, 40–50.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Castro, D., & Iannaccone, S. (2014). Spinal muscular atrophy: therapeutic strategies. Current Treatment Options in Neurology, 16, 316.

    Article  PubMed  Google Scholar 

  • Chang, J. G., Hsieh-Li, H. M., Jong, Y. J., Wang, N., Tsai, C. H., & Li, H. (2001). Treatment of spinal muscular atrophy by sodium butyrate. Proceedings of the National Academy of Sciences of the United States of America, 98, 9808–9813.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen, K., Wang, Y., Rennert, H., Joshi, I., Mills, J., Leonard, D., et al. (1999). Duplications and de novo deletions of the SMNt gene demonstrated by fluorescence-based carrier testing for spinal muscular atrophy. American Journal of Medical Genetics, 85, 463–469.

    Article  CAS  PubMed  Google Scholar 

  • Corti, S., Nizzardo, M., Nardini, M., Donadoni, C., Salani, S., Ronchi, D., et al. (2008). Neural stem cell transplantation care can ameliorate the phenotype of a mouse model of spinal muscular atrophy. Journal of Clinical Investigation, 118, 3316–3330.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Feldkötter, M., Schwarzer, V., Wirth, R., Wienker, T., & Wirth, B. (2002). Quantitative analyses of SMN1 and SMN2 based on real-time lightcycler PCR: fast and highly reliable carrier testing and prediction of severity of spinal muscular atrophy. American Journal of Human Genetics, 70, 358–368.

    Article  PubMed Central  PubMed  Google Scholar 

  • Glascock, J., Shababi, M., Wetz, M., Krogman, M., & Lorson, C. (2011). Direct central nervous system delivery provides enhanced protection following vector mediated gene replacement in a severe model of spinal muscular atrophy. Biochemical and Biophysical Research Communications, 417, 376–381.

    Article  PubMed Central  PubMed  Google Scholar 

  • Haaker, G., & Fujak, A. (2013). Proximal spinal muscular atrophy: current orthopedic perspective. The Application of Clinical Genetics, 6, 113–120.

    PubMed Central  PubMed  Google Scholar 

  • Hausmanowa-Petrusewicz, I., & Karwańska, A. (1986). Electromyographic findings in different forms of infantile and juvenile proximal spinal muscular atrophy. Muscle & Nerve, 9, 37–46.

    Article  CAS  Google Scholar 

  • Iannaccone, S. (2007). Modern management of spinal muscular atrophy. Journal of Child Neurology, 22, 974–978.

    Article  PubMed  Google Scholar 

  • Irobi, J., DeJonghe, P., & Timmerman, V. (2004). Molecular genetics of distal hereditary motor neuropathies. Human Molecular Genetics, 13(rev. 2), R195–R202.

    Article  CAS  PubMed  Google Scholar 

  • Isozumi, K., DeLong, R., & Kaplan, J. (1996). Linkage of scapuloperoneal spinal muscular atrophy to chromosome 12q24.1-q24.31. Human Molecular Genetics, 5, 1377–1382.

    Article  CAS  PubMed  Google Scholar 

  • Johnson, W. G., Wigger, H. J., Karp, H. R., Glaubiger, L. M., & Roland, L. P. (1982). Juvenile spinal muscular atrophy: a new hexosaminidase deficiency phenotype. Annals of Neurology, 11, 11–16.

    Article  CAS  PubMed  Google Scholar 

  • Karni, A., Navon, R., & Sadeh, M. (1988). Hexosaminidase A deficiency manifesting as spinal muscular atrophy of late onset. Annals of Neurology, 24, 451–453.

    Article  CAS  PubMed  Google Scholar 

  • Kerr, D., Llado, J., Shamblott, M., Maragakis, N., Irani, D., Crawford, T., et al. (2003). Human embryonic germ cell derivatives facilitate motor recovery of rats with diffuse motor neuron injury. The Journal of Neuroscience, 23, 5131–5140.

    CAS  PubMed  Google Scholar 

  • Kissel, J., Scott, C., Reyna, S., Crawford, T., Simard, L., & Krosschell, K., et al. (2011). SMA CARNI-VAL trial part II: a prospective, single-armed trial of L-carnitine and valproic acid in ambulatory children with spinal muscular atrophy. PLoS ONE, 6, e21296.

  • La Spada, A. (2011). Spinal and bulbar muscular atrophy. GeneReviews [Internet]. Retrieved from http://www.genetests.org/by-genereview.

  • Lefebvre, S., Bürglen, L., Reboullet, S., Clermont, O., Burlet, P., Viollet, L., et al. (1995). Identification and characterization of a spinal muscular atrophy-determining gene. Cell, 80, 155–165.

    Article  CAS  PubMed  Google Scholar 

  • Lefebvre, S., Bürglen, L., Frézal, J., Munnich, A., & Melki, J. (1998). The role of the SMN gene in proximal spinal muscular atrophy. Human Molecular Genetics, 7, 1531–1536.

    Article  CAS  PubMed  Google Scholar 

  • Luo, M., Liu, L., Peter, I., Zhu, J., Scott, S., Zhao, G., et al. (2014). An Ashkenazi Jewish SMN1 haplotype specific to duplication alleles improves pan-ethnic carrier screening for spinal muscular atrophy. Genetics in Medicine, 16, 149–156.

    Article  CAS  PubMed  Google Scholar 

  • MacLeod, M., Taylor, J., Lunt, P., Mathew, C., & Robb, S. (1999). Prenatal onset spinal muscular atrophy. European Journal of Paediatric Neurology, 3, 65–72.

    Article  CAS  PubMed  Google Scholar 

  • Mariotti, C., Castellotti, B., Pareyson, D., Testa, D., Eoli, M., Antozzi, C., et al. (2000). Phenotypic manifestations associated with CAG-repeat expansion in the androgen receptor gene in male patients and heterozygous females: a clinical and molecular study of 30 families. Neuromuscular Disorders, 10, 391–397.

    Article  CAS  PubMed  Google Scholar 

  • Marteau, T. M. (1999). Communicating genetic risk information. British Medicine Bulletin, 55, 414–428.

    Article  CAS  Google Scholar 

  • McAndrew, P. E., Parsons, D. W., Simard, L. R., Rochette, C., Nay, P. N., Mendell, J. R., et al. (1997). Identification of proximal spinal muscular atrophy carriers and patients by analysis of SMN T and SMN C gene copy number. American Journal of Human Genetics, 60, 1411–1422.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Meiser, B., Butow, P., Barratt, A., Suthers, G., Smith, M., Colley, A., et al. (2000). Attitudes to genetic testing for breast cancer susceptibility in women at increased risk developing hereditary breast cancer. Journal of Medical Genetics, 37, 472–476.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • O’Doherty, K., & Suthers, G. K. (2007). Risky communication: pitfalls in counseling about risk, and how to avoid them. Journal of Genetic Counseling, 16, 409–417.

    Article  PubMed  Google Scholar 

  • Ogino, S., & Wilson, R. (2002). Genetic testing and risk assessment for spinal muscular atrophy (SMA). Human Genetics, 111, 477–500.

    Article  CAS  PubMed  Google Scholar 

  • Ogino, S., & Wilson, R. (2004). Spinal muscular atrophy: molecular genetics and diagnostics. Expert Review of Molecular Diagnostics, 4, 15–29.

    Article  CAS  PubMed  Google Scholar 

  • Ogino, S., Leonard, D., Rennert, H., Ewens, W., & Wilson, R. (2002a). Genetic risk assessment in carrier testing for spinal muscular atrophy. American Journal of Medical Genetics, 110, 301–307.

    Article  PubMed  Google Scholar 

  • Ogino, S., Leonard, D., Rennert, H., & Wilson, R. (2002b). Spinal muscular atrophy genetic testing experience at an academic medical center. Journal of Molecular Diagnostics, 4, 53–58.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ogino, S., Wilson, R., & Gold, B. (2004). New insights on the evolution of the SMN1 and SMN2 region: simulation and meta-analysis for allele and haplotype frequency calculations. European Journal of Human Genetics, 12, 1015–1023.

    Article  CAS  PubMed  Google Scholar 

  • Pane, M., Staccioli, S., Messina, S., D’Amico, A., Pelliccioni, M., Mazzone, E., et al. (2008). Daily salbutamol in young patients with SMA type II. Neuromuscular Disorders, 18, 536–540.

    Article  PubMed  Google Scholar 

  • Pearn, J. (1978). Autosomal dominant spinal muscular atrophy: a clinical and genetic study. Journal of Neurological Sciences, 38, 263–275.

    Article  CAS  Google Scholar 

  • Prior, T. (2007). Spinal muscular atrophy diagnostics. Journal of Child Neurology, 22, 952–956.

    Article  PubMed  Google Scholar 

  • Prior, T. (2008). ACMG practice guidelines: carrier screening for spinal muscular atrophy. Genetics in Medicine, 10, 840–842.

    Article  PubMed Central  PubMed  Google Scholar 

  • Prior, T. (2009). A positive modifier of spinal muscular atrophy in the SMN2 gene. The American Journal of Human Genetics, 85, 408–413.

    Article  CAS  PubMed  Google Scholar 

  • Prior, T., & Russman, B. (2013). Spinal muscular atrophy. GeneReviews [Internet]. Retrieved from http://www.genetests.org/by-genereview.

  • Prior, T., Swoboda, K., Scott, H., & Hejmanowski, A. (2004). Homozygous SMN1 deletions in unaffected family members and modification of the phenotype by SMN2. American Journal of Medical Genetics, 130A, 307–310.

    Article  PubMed  Google Scholar 

  • Prior, T., Narasimhan, N., Sugarman, E., Batish, S. D., & Braastad, C. (2011). Technical standards and guidelines for spinal muscular atrophy testing. Genetics in Medicine, 13, 686–694.

    Article  PubMed  Google Scholar 

  • Renbaum, P., Kellerman, E., Jaron, R., Geiger, D., Segel, R., Lee, M., King, M., et al. (2009). Spinal muscular atrophy with pontocerebellar hypoplasia is caused by a mutation in the VRK1 gene. The American Journal of Human Genetics, 85, 281–289.

    Article  CAS  PubMed  Google Scholar 

  • Rietschel, M., Rudnik-Schöneborn, S., & Zerres, K. (1992). Clinical variability of autosomal dominant spinal muscular atrophy. Journal of Neurological Sciences, 107, 65–73.

    Article  CAS  Google Scholar 

  • Rigo, F., Hua, Y., Krainer, A., & Bennett, C. F. (2012). Antisense-based therapy for the treatment of spinal muscular atrophy. Journal of Cell Biology, 199, 21–25.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rigo, F., Chun, S., Norris, D., Hung, G., Lee, S., Matson, J., Fey, R., et al. (2014). Pharmacology of a central nervous system delivered 2′-O-Methoxyethyl-modified survival of motor neuron splicing oligonucleotide in mice and nonhuman primates. The Journal of Pharmacology and Experimental Therapeutics, 350, 46–55.

    Article  PubMed Central  PubMed  Google Scholar 

  • Rodrigues, N. R., Owen, N., Talbot, K., Ignatius, J., Dubowitz, V., & Davies, K. E. (1995). Deletions in the survival motor neuron gene on 5q13 in autosomal recessive spinal muscular atrophy. Human Molecular Genetics, 4, 631–634.

    Article  CAS  PubMed  Google Scholar 

  • Rudnik-Schöneborn, S., Heller, R., Berg, C., Betzler, C., Grimm, T., Eggermann, T., et al. (2008). Congenital heart disease is a feature of severe infantile spinal muscular atrophy. Journal of Medical Genetics, 45, 635–638.

    Article  PubMed  Google Scholar 

  • Russman, B. (2007). Spinal muscular atrophy: clinical classification and disease heterogeneity. Journal of Child Neurology, 20, 946–951.

    Article  Google Scholar 

  • Scheffer, H., Maarten Cobben, J., Mensink, R., Stulp, R., van der Stegge, G., & Buys, C. (2000). SMA carrier testing – validation of hemizygous SMN exon 7 deletion test for the identification of proximal spinal muscular atrophy carriers and patients with a single allele deletion. European Journal of Human Genetics, 8, 79–86.

    Article  CAS  PubMed  Google Scholar 

  • Slovic, P. (1987). Perception of risk. Science, 236, 280–286.

    Article  CAS  PubMed  Google Scholar 

  • Slovic, P., Fischhoff, B., & Lichtenstein, S. (1982). Facts versus fears: Understanding perceived risk. In D. Kahneman, P. Slovic, & A. Tversky (Eds.), Judgment under uncertainty: Heuristics and biases. Cambridge: Cambridge University Press.

    Google Scholar 

  • Smith, M., Calabro, V., Chong, B., Gardiner, N., Cowie, S., & du Sart, D. (2007). Population screening and cascade testing for carriers of SMA. European Journal of Human Genetics, 15, 759–766.

    Article  CAS  PubMed  Google Scholar 

  • Sugarman, E., Nagan, N., Zhu, H., Rohlfs, E., Flynn, K., Hendrickson, B., et al. (2012). Pan-ethnic carrier screening and prenatal diagnosis for spinal muscular atrophy: clinical laboratory analysis of 472 400 specimens. European Journal of Human Genetics, 20, 1–6.

    Article  Google Scholar 

  • Swoboda, K., Scott, C., Reyna, S., Prior, T., LaSalle, B., & Sorenson, S., et al. (2009). Phase II open label study of valproic acid in spinal muscular atrophy. PLoS ONE, 4, e5268.

  • Swoboda, K., Scott, C., Crawford, T., Simard, L., Reyna, S., & Krosschell, K., et al. (2010). SMA CARNI-VAL trial part I: double-blind, randomized, placebo-controlled trial of L-carnitine and valproic acid in spinal muscular atrophy. PLoS ONE, 5, e12140.

  • Tsai, L. (2012). Therapy development for spinal muscular atrophy in SMN independent targets. Neural Plasticity, 2012, e456478.

  • von Gontard, A., Zerres, K., Backes, M., Laufersweiler-Plass, C., Wendland, C., Melchers, P., et al. (2002). Intelligence and cognitive function in children and adolescents with spinal muscular atrophy. Neuromuscular Disorders, 12, 130–136.

    Article  Google Scholar 

  • Wang, C., Finkel, R., Bertini, E., Schroth, M., Simonds, A., Wong, B., et al. (2007). Consensus statement for the standard of care in spinal muscular atrophy. Journal of Child Neurology, 22, 1027–1049.

    Article  PubMed  Google Scholar 

  • Wirth, B. (2000). An update of the mutation spectrum of the survival motor neuron gene (SMN1) in the autosomal recessive spinal muscular atrophy (SMA). Human Mutation, 15, 228–237.

    Article  CAS  PubMed  Google Scholar 

  • Wirth, B., Herz, M., Wetter, A., Moskau, S., Hahnen, E., Rudnik-Schöneborn, S., et al. (1999). Quantitative analysis of survival motor neuron copies: identification of subtle SMN1 mutations in patients with spinal muscular atrophy, genotype-phenotype correlation, and implications for genetic counseling. American Journal of Human Genetics, 64, 1340–1356.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zanetta, C., Nizzardo, M., Simone, C., Monguzzi, E., Bresolin, N., Comi, G., & Corti, S. (2014a). Molecular therapeutic strategies for spinal muscular atrophies: current and future clinical trials. Clinical Therapeutics, 36, 128–140.

    Article  PubMed  Google Scholar 

  • Zanetta, C., Riboldi, G., Nizzardo, M., Simone, C., Faravelli, I., Bresolin, N., Comi, G., et al. (2014b). Molecular, genetic and stem cell-mediated therapeutic strategies for spinal muscular atrophy (SMA). Journal of Cellular and Molecular Medicine, 18, 187–196.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Kenny Wong, Meghan Wayne, Patricia Page and Natalie Beck for their help in gathering data for this paper. We also gratefully thank Dr. Alan Donnenfeld and Dr. Geraldine McDowell for their review of this manuscript.

Compliance with Ethical Standards

Please refer to this section which is located on page 33. It contains the conflict of interest statements, research involving human/animal participants’ statement, and the informed consent statement.

Conflict of Interest

Amanda Carré declares that she has no conflict of interest.

Candice Empey was a past employee of Integrated Genetics, Laboratory Corporation of America® Holdings, which performs Spinal Muscular Atrophy testing.

Research Involving Human Participants and/or Animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

As this article does not contain any studies with human participants or animals, informed consent was not necessary to obtain.

Comments

This manuscript is submitted solely to the Journal of Genetic Counseling and has not been published elsewhere or submitted to any other journal for publication purposes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amanda Carré.

Additional information

We began our research for this paper by conducting multiple PubMed searches. These searches were completed to locate papers included in the reference section. Keyword combinations utilized during the searches included: spinal muscular atrophy, spinal muscular atrophy carrier screening, and spinal muscular atrophy diagnostic testing. No publishing date limitations were used during the searches. A review of the reference sections in the papers found through the PubMed searches allowed for the collection of additional publications. Finally, a search for spinal muscular atrophy on GeneTests (http://www.genetests.org/ ) demonstrated numerous differential diagnoses for spinal muscular atrophy as caused by changes in the SMN1 gene.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 17.6 kb)

Appendices

Appendix A

Fig. 1
figure 1

Prenatal general population carrier screen flowchart

Appendix B

Fig. 2
figure 2

Pediatric diagnostic testing flowchart

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carré, A., Empey, C. Review of Spinal Muscular Atrophy (SMA) for Prenatal and Pediatric Genetic Counselors. J Genet Counsel 25, 32–43 (2016). https://doi.org/10.1007/s10897-015-9859-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10897-015-9859-z

Keywords

Navigation