Skip to main content
Log in

Excitation and quenching of detonation in gases

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

The results of investigations on the problems of initiation, propagation, and stabilization of detonation waves and flowing combustible gaseous mixtures are presented. To describe the flows, we used ideal perfect gas equations and two models of the detonation wave: the classical infinitely thin model and a model in which behind the shock wave chemical reactions described by the single-stage kinetics for propane– and methane–air combustible mixtures proceed. Investigations were carried out by both analytical and numerical methods based on the S. K. Godunov scheme on stationary and movable computational meshes with explicit resolution of the bow shock and the surfaces separating gases with different properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. I. Soloukhin, Detonation waves in gases, Usp. Fiz. Nauk, 80, Issue 4, 525–551 (1963).

    Google Scholar 

  2. R. I. Soloukhin, Exothermal zone reaction in a one-dimensional shock wave in a gas, Fiz. Goreniya Vzryva, No. 3, 12–18 (1966).

  3. R. I. Soloukhin, Measuring Methods and Principal Results of Experiments on Shock Tubes [in Russian], Novosibirsk (1969).

  4. J. H. Lee, R. I. Soloukhin, and A. K. Oppenheim, Current views on gaseous detonation, Astronautica Acta, 14, No. 5, 565–584 (1969).

    Google Scholar 

  5. V. F. Klimkin, R. I. Soloukhin, and P. Wolansky, Initial stages of a spherical detonation directly initiated by a laser spark, Combust. Flame, 21, No. 2, 73–77 (1973).

    Google Scholar 

  6. R. I. Soloukhin, Shock Waves and Detonation in Gases [in Russian], Fizmatgiz, Moscow (1963).

    Google Scholar 

  7. V. V. Mitrofanov and R. I. Soloukhin, On the diffraction of a multifront detonation wave, Dokl. Akad. Nauk SSSR, 159, No. 5, 1003–1006 (1964).

    Google Scholar 

  8. R. I. Soloukhin, The structure of a multifront detonation wave in a gas, Fiz. Goreniya Vzryva, No. 2, 35–42 (1965).

  9. A. K. Oppenheim and R. I. Soloukhin, Experiments in gasdynamics of explosions, Ann. Rev. Fluid Mech., 5, Palo Alto, USA (1973), pp. 31–55.

  10. V. P. Korobeinikov and V. A. Levin, Strong explosion in a combustible mixture of gases, Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 6, 48–51 (1969).

    Google Scholar 

  11. G. G. Chernyi, Asymptotic law of propagation of a plane detonation wave, Dokl. Akad. Nauk SSSR, 172, No. 3, 558–560 (1967).

    Google Scholar 

  12. V. A. Levin and G. G. Chernyi, Asymptotic laws of the behavior of detonation waves, Prikl. Mat. Mekh., 31, Issue 3, 383–405 (1967).

    Google Scholar 

  13. V. V. Markov, Point explosion in a detonating gas, in: Nauch. Tr., No. 31, Izd. MGU, Moscow (1974), pp. 93–99.

  14. V. P. Korobeinikov, Point explosion in a detonating gas, Dokl. Akad. Nauk SSSR, 177, No. 2, 295–298 (1967).

    Google Scholar 

  15. V. P. Korobeinikov, V. A. Levin, V. V. Markov, and G. G. Chernyi, Propagation of blast waves in a combustible gas, Astronautica Acta, 17, Nos. 5–6, 529–537 (1972).

    Google Scholar 

  16. V. A. Levin and V. V. Markov, On the initiation of detonation upon concentrated energy input, Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 5, 89–93 (1974).

    Google Scholar 

  17. V. A. Levin and V. V. Markov, Investigation of the initiation of detonation upon concentrated energy input, Fiz. Goreniya Vzryva, 2, No. 4, 623–629 (1975).

    Google Scholar 

  18. V. P. Korobeinikov and V. V. Markov, On propagation of combustion and detonation, Archiwum Procesow Spalania, 8, No. 1, 101–118 (1977).

    Google Scholar 

  19. L. I. Sedov, V. P. Korobeinikov, and V. V. Markov, The theory of propagation of explosive waves, in: Trudy MIAN SSSR, 225, 178–216 (1986).

  20. V. A. Levin, V. V. Markov, and S. F. Osinkin, Initiation of detonation by a piston in a hydrogen–air mixture, Dokl. Akad. Nauk SSSR, 258, No. 2, 288–291 (1981).

    MathSciNet  Google Scholar 

  21. V. A. Levin, V. V. Markov, and S. F. Osinkin, Modeling of electric discharge initiation of detonation in a combustible mixture of gases, Khim. Fiz., 3, No. 4, 611–613 (1984).

    Google Scholar 

  22. V. A. Levin, V. V. Markov, and S. F. Osinkin, Initiation of detonation in a hydrogen–air mixture by explosion of a spherical TNT charge, Fiz. Goreniya Vzryva, 31, No. 2, 91–95 (1995).

    Google Scholar 

  23. J. H. Lee, Initiation of gaseous detonation, Ann. Rev. Phys. Chem., 28, 75–104 (1977).

    Article  Google Scholar 

  24. V. A. Levin, V. V. Markov, and S. F. Osinkin, Initiation of detonation in an inhomogeneous hydrogen–air mixture, Report of the Institute of Mechanics of the Moscow State University, No. 4376 (1995).

  25. V. A. Levin, V. V. Markov, and S. F. Osinkin, Initiation of detonation in a hydrogen–air mixture by a charge of an explosive surrounded by an inert gas layer, Vestn. MGU, Ser. Mat., Mekh., No. 4, 32–34 (1997).

    Google Scholar 

  26. V. A. Levin, V. V. Markov, and S. F. Osinkin, Influence of air space on the explosion-induced initiation of detonation in a hydrogen–air mixture, in: Trudy MIAN, 223, 141–148 (1998).

  27. V. A. Levin, V. V. Markov, and S. F. Osinkin, Detonation recovery by means of a breaking shell, Dokl. Akad. Nauk SSSR, 352, No. 1, 48–50 (1997).

    Google Scholar 

  28. V. A. Levin, V. V. Markov, and S. F. Osinkin, Influence of a breaking shell on the detonation initiation in a hydrogen–air mixture, in: Proc. 11th Symp. on Combustion and Explosion, Vol. 2, Chernogolovka (1998), pp. 169–170.

  29. V. A. Levin, V. V. Markov, and S. F. Osinkin, Stabilization of detonation in supersonic flows of combustible gas mixtures, in: Proc. 16th Int. Colloq. on Dynamics of Explosions and Reactive Systems, Poland, Cracow (1997), pp. 529–537.

  30. V. A. Levin, V. V. Markov, and T. A. Zhuravskaya, Direct initiation of detonation in hydrogen–air mixtures by decomposition of a low-pressure domain without energy input, in: Proc. 16th Int. Colloq. on Dynamics of Explosions and Reactive Systems, USA, Boston (1998), pp. 529–537.

  31. V. A. Levin, V. V. Markov, and T. A. Zhuravskaya, Direct initiation of detonation in a hydrogen–air mixture by a converging shock wave, Khim. Fiz., 20, No. 5, 26–30 (2001).

    Google Scholar 

  32. V. A. Levin, V. V. Markov, S. F. Osinkin, and T. A. Zhuravskaya, Determination of the critical conditions of detonation initiation in a confined volume by a shock wave converging to the center, Fiz. Goreniya Vzryva, 38, No. 6, 96–102 (2002).

    Google Scholar 

  33. T. A. Zhuravskaya, V. A. Levin, V. V. Markov, and S. F. Osinkin, Influence of the breaking shell on the formation of detonation in a confined volume by a converging shock wave, Khim. Fiz., 22, No. 8, 34–37 (2003).

    Google Scholar 

  34. V. V. Markov, Numerical simulation of the formation of the multifront structure of a detonation wave, Dokl. Akad. Nauk SSSR, 258, No. 2, 158–163 (1981).

    Google Scholar 

  35. V. A. Levin, V. V. Markov, T. A. Zhuravskaya, and S. F. Osinkin, Nonlinear wave processes in the initiation and propagation of gas detonation, in: Trudy MIAN, 251, 200–214 (2005).

  36. V. A. Levin, V. V. Markov, T. A. Zhuravskaya, and S. F. Osinkin, Initiation of gas detonation by electric discharges, in: Pulsed Detonation Engines [in Russian], Moscow (2005), pp. 120–138.

  37. V. A. Levin, V. V. Markov, T. A. Zhuravskaya, and S. F. Osinkin, Initiation and propagation of detonation in channels of complex shape, in: G. D. Roy and S. M. Frolov (Eds.), Pulse and Continuous Detonation Propulsion, Torus Press, Moscow (2006), pp. 97–106.

    Google Scholar 

  38. V. A. Levin, V. V. Markov, T. A. Zhuravskaya, and S. F. Osinkin, Determination of the critical conditions for propagation of detonation waves in channels of complex shape, in: O. M. Belotserkovskii (Ed.), Current Problems of Investigation of Fast Processes and Phenomena of Catastrophic Character [in Russian], Nauka, Moscow (2007), pp. 75–88.

    Google Scholar 

  39. V. A. Levin, V. V. Markov, T. A. Zhuravskaya, and S. F. Osinkin, Influence of obstacles on detonation wave propagation, in: G. Roy and S. Frolov (Eds.), Deflagrative and Detonative Combustion, Torus Press, Moscow (2010), pp. 221–228.

    Google Scholar 

  40. V. A. Levin, V. V. Markov, T. A. Zhuravskaya, and S. F. Osinkin, Initiation, propagation and stabilization of detonation waves in the supersonic flow, in: Problems of Modern Mechanics, Omega-L Publishers, Moscow State University, Moscow (2008), pp. 240–259.

  41. V. Levin, V. Markov, T. Zhuravskaya, and S. Osinkin, Initiation, propagation and stabilization of detonation in the supersonic gas flow, in: Proc. Seventh Int. Symp. on Hazards, Prevention, and Migration of Industrial Explosions (ISHPMIE), St. Petersburg, Russia, 7–11 July, 2008, Vol. 2, (2008), pp. 110–118.

  42. C. K. Westbrook and F. L. Dryer, Chemical kinetic modeling of hydrocarbon combustion, in: Proc. Energy Combust. Sci., 10, 1–57 (1984).

  43. S. K. Gorbachev, A. V. Zabrodin, M. Ya. Ivanov, A. N. Kraiko, and G. P. Prokopov, Numerical Solution of Multidimensional Problems of Gas Dynamics [in Russian], Nauka, Moscow (1976).

    Google Scholar 

  44. V. V. Mitrofanov and S. A. Zhdan, Thrust characteristics of an ideal pulsating detonation engine, Fiz. Goreniya Vzryva, 40, No. 4, 380–385 (2004).

    Google Scholar 

  45. L. I. Sedov, Similarity and Dimensionality Methods in Mechanics [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  46. G. G. Chernyi, Unsteady flow of gases in channels. Stability of a breakdown shock wave, in: Transactions of the P. I. Baranov Central Scientific-Research Institute of Aircraft Engines, No. 244 (1953).

  47. V. T. Grin’, A. N. Kraiko, and N. I. Tillyaeva, Steadiness of the ideal gas flow in a quasi-cylindrical channel, Prikl. Mat. Mekh., 39, Issue 3, 473–484 (1975).

    Google Scholar 

  48. V. T. Grin’, A. N. Kraiko, and N. I. Tillyaeva, Steadiness of the flow in a channel upon reflection of acoustic and entropy waves from the outlet cross section, Prikl. Mat. Mekh., 40, Issue 3, 469–478 (1976).

    Google Scholar 

  49. A. A. Vasil’ev and D. V. Zak, Detonation of gas jets, Fiz. Goreniya Vzryva, 22, No. 4, 82–88 (1986).

    Google Scholar 

  50. H. F. Lehr, Experimente zur stossinduzierten Verbrenung in Wasserstoff Luft und Wasserstoff-Gemischen, Inst. Fllemand Rech. Saint Lous Rapp., Vol. 20/71, Berlin (1971).

  51. G. G. Chernyi and S. Yu. Chernyavskii, Motion of blunt bodies with a high velocity in a hydrogen–oxygen mixture, Dokl. Akad. Nauk SSSR, 212, No. 2, 316–319 (1973).

    Google Scholar 

  52. V. V. Mitrofanov, The Theory of Detonation [in Russian], NGU, Novosibirsk (1982).

    Google Scholar 

  53. I. V. Semenov, P. S. Utkin, and V. V. Markov, Numerical simulation of two-dimensional detonation flows on multiprocessor computers, Vych. Met. Programmir., 9, No. 1, 123–132 (2008).

    Google Scholar 

  54. I. V. Semenov, P. S. Utkin, and V. V. Markov, Numerical simulation of the initiation of detonation in tubes, Fiz. Goreniya Vzryva, 45, No. 6, 73–81 (2009).

    Google Scholar 

  55. A. A. Il’yushin, Law of plane sections in the aerodynamics of high supersonic velocities, Prikl. Mat. Mekh., 20, Issue 6, 733–755 (1956).

    Google Scholar 

  56. G. G. Chernyi, Gas Flow with a High Supersonic Velocity [in Russian], Fizmatgiz, Moscow (1959).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Markov.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 83, No. 6, pp. 1174–1201, November–December, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levin, V.A., Manuilovich, I.S. & Markov, V.V. Excitation and quenching of detonation in gases. J Eng Phys Thermophy 83, 1244–1274 (2010). https://doi.org/10.1007/s10891-010-0446-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-010-0446-8

Keywords

Navigation