Skip to main content
Log in

Synthesis and Crystal Structures of N,N′-Disubstituted Piperazines

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

The structure of 1,4-diphenylpiperazine (1) was determined; it crystallized in the orthorhombic space group Pbca, a = 8.6980(7), b = 8.4287(7), c = 17.6359(15), V = 1292.94(19), Z = 4. Three novel N,N′-disubstituted piperazines were synthesized via reductive amination of piperazine or N-diphenylmethylpiperazine. The products were characterized by NMR and X-ray crystallography. 1,4-Diphenethylpiperazine (2) crystallized in the monoclinic space group C2/c, a = 17.9064(13), b = 6.2517(5), c = 14.9869(11), β = 90.613(4), V = 1677.6(2), Z = 4. 1-Benzhydryl-4-benzylpiperazine (3) crystallized in the monoclinic space group Pn, a = 5.9450(2), b = 19.0722(4), c = 8.6084(2), β = 96.4600(10), V = 98.1790(10), Z = 2. 1-Benzhydryl-4-(pyridin-2-ylmethyl)piperazine (4) crystallized in the monoclinic space group P2/c, a = 13.5637(2), b = 5.82170(10), c = 24.0645(4), β = 90.613(4), V = 1888.16(5), Z = 4. Comparison of the structures showed significant sp2 character for the piperazine nitrogen atoms in 1. Each structure showed multiple intermolecular non-bonding interactions.

Graphical Abstract

The structures of 1,4-diphenylpiperazine, diphenethylpiperazine, 1-benzhydryl-4-benzylpiperazine, and 1-benzhydryl-4-(pyridin-2-ylmethyl)piperazine are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Chart 1
Scheme 1
Fig. 1
Scheme 2
Fig. 2

Similar content being viewed by others

References

  1. Choi Y-H, Baek DJ, Seo SH, Lee JK, Pae AN, Cho YS, Min S-J (2011) Bioorg Med Chem Lett 21:215–219

    Article  CAS  Google Scholar 

  2. Rossi C, Porcelloni M, D’Andrea P, Fincham C, Ettorre A, Mauro S, Squarcia A, Bigioni M, Parlani M, Nardelli F, Binaschi M, Maggi CA, Fattori D (2011) Bioorg Med Chem Lett 21:2305–2308

    Article  CAS  Google Scholar 

  3. Ratilainen J, Airola K, Fröhlich R, Nieger M, Rissanen K (1999) Polyhedron 18:2265–2273

    Article  CAS  Google Scholar 

  4. Halfen JA, Uhan JM, Fox DC, Mehn MP, Que L Jr (2000) Inorg Chem 39:4913–4920

    Article  CAS  Google Scholar 

  5. Ciccarese A, Clemente DA, Fanizzi FP, Marzotto A, Valle G (1998) Inorg Chim Acta 275:410–418

    Article  Google Scholar 

  6. Ciccarese A, Clemente DA, Fanizzi FP, Marzotto A, Valle G (1998) Acta Crystallogr C 54:1779–1781

    Article  Google Scholar 

  7. Beller M, Trauthwein H, Eichberger M, Breindl C, Muller TE, Zapf A (1998) J Organomet Chem 566:277–285

    Article  CAS  Google Scholar 

  8. Anderson CE, Apperley DC, Battsanov AS, Dyer PW, Howard JAK (2006) Dalton Trans 4134–4145

  9. Fritz T, Steinfeld G, Kersting B (2007) Z Naturforsch B 62:508–518

    CAS  Google Scholar 

  10. Hollo-Sitkei E, Tarkanyi G, Parkanyi L, Megyes T, Besenyi G (2008) Eur J Inorg Chem 1573–1583

  11. Zhang W, Xiong RG, Huang S (2008) J Am Chem Soc 130:10468–10469

    Article  CAS  Google Scholar 

  12. Obaidi NA, Harnor TA, Jones CJ, McCleverty JA, Paxton K (1987) J Chem Soc Dalton Trans 2653–2660

  13. Soma T, Miyamoto TK, Iwamoto T (1997) Chem Lett 319

  14. Stocker FB, Staeva TB, Rienstra CM, Britton D (1999) Inorg Chem 38:984–991

    Article  CAS  Google Scholar 

  15. Yang S, Zou Y, Zhu H-L (2005) Acta Crystallogr E 61:m219–m220

    Article  Google Scholar 

  16. Zhang R-F, Zhao B, Wang H-S, Cheng P (2007) Inorg Chem Commun 10:1226–1228

    Article  CAS  Google Scholar 

  17. Yilmaz VT, Guney S, Kazak C (2008) Polyhedron 27:1381–1386

    Article  CAS  Google Scholar 

  18. Farnum GA, Knapp WR, LaDuca RL (2009) Polyhedron 28:291–299

    Article  CAS  Google Scholar 

  19. Braga D, Maini L, Mazzeo PP, Ventura B (2010) Chem Eur J 16:1553–1559

    Article  CAS  Google Scholar 

  20. Lim MJ, Murray CA, Tronic TA, deKrafft KE, Ley AN, deButts JC, Pike RD, Lu H, Patterson HH (2008) Inorg Chem 47:6931–6947

    Article  CAS  Google Scholar 

  21. Hou Q, Yu J-H, Xu J-N, Yang Q-F, Xu J-Q (2009) Inorg Chim Acta 362:2802–2806

    Article  CAS  Google Scholar 

  22. Braga D, Grepioni F, Maini L, Mazzeo PP, Ventura B (2011) New J Chem 35:339–344

    Article  CAS  Google Scholar 

  23. Ley AN, Dunaway LE, Brewster TP, Dembo MD, Harris TD, Baril-Robert F, Li X, Patterson HH, Pike RD (2010) Chem Commun 46:4565–4567

    Article  CAS  Google Scholar 

  24. Dembo MD, Dunaway LE, Jones JS, Lepekhina EA, McCullough SM, Ming JL, Li X, Baril-Robert F, Patterson HH, Bayse CA, Pike RD (2010) Inorg Chim Acta 364:102–114

    Article  CAS  Google Scholar 

  25. Miller KM, McCullough SM, Lepekhina EA, Thibau IJ, Pike RD, Li X, Killarney JP, Patterson HH (2011) Inorg Chem 50:7239–7249

    Article  CAS  Google Scholar 

  26. Araki H, Tsuge K, Sasaki Y, Ishizaka S, Kitamura N (2005) Inorg Chem 44:9667–9675

    Article  CAS  Google Scholar 

  27. Denmark SE, Fu J (2002) Org Lett 4:1951–1953

    Article  CAS  Google Scholar 

  28. SAINT PLUS (2001) Bruker Analytical X-ray Systems, Madison, WI

  29. SADABS (2001) Bruker Analytical X-ray Systems, Madison, WI

  30. Sheldrick GM (2008) Acta Crystallogr A 64:112–122

    Article  Google Scholar 

  31. Owston PG, Peters R, Ramsammy E, Tasker PA, Trotter J (1980) J Chem Soc Chem Commun 1218–1220

  32. Gourdon A, Launay J-P, Bujoli-Doeuff M, Heisel F, Miehe J-A, Amouyal E, Boillet M-L (1993) J Photochem Photobiol A 71:13–25

    Article  CAS  Google Scholar 

  33. Spange S, El-Sayed M, Muller H, Rheinwald G, Lang H, Poppitz W (2002) Eur J Org Chem 4159–4168

  34. MacPhee JM, Guzman HL, Almarsson O (2003) J Am Chem Soc 125:8456–8457

    Article  Google Scholar 

  35. Lynch DE, McClenaghan I (2004) Acta Crystallogr C 60:o1–o5

    Article  Google Scholar 

  36. Cherkasov V, Druzhkov N, Kocherova T, Fukin G, Shavyrin A (2011) Tetrahedron 67:80–84

    Article  CAS  Google Scholar 

  37. Naveen S, Swamy SN, Basappa B, Rangappa KS (2006) Anal Sci 22:x41–x42

    CAS  Google Scholar 

  38. Kumar CSA, Prasad SBB, Thimmegowda NR, Rangappa KS, Chandrappa S, Naveen S, Sridhar MA, Prasad JS (2007) Mol Cryst Liq Cryst 469:111–119

    Article  Google Scholar 

  39. Vinaya K, Naveen S, Kumar CSA, Benakaprasad SB, Sridhar MA, Prasad JS, Rangappa KS (2008) Struct Chem 19:765–770

    Article  CAS  Google Scholar 

  40. Amor FB, M’hamed MO, Mrabet H, Driss A, Efrit ML (2008) Acta Crystallogr E 64:o1872

    Article  Google Scholar 

  41. Naveen S, Kumar CSA, Prasad SBB, Vinaya K, Prasad JS, Rangappa KS (2009) J Chem Crystallogr 39:395–398

    Article  CAS  Google Scholar 

  42. Naveen S, Kumar CSA, Manjunath HR, Prasad SBB, Sridhar MA, Rangappa KS, Prasad JS (2009) Mol Cryst Liq Cryst 503:151–158

    Article  CAS  Google Scholar 

  43. Zhang M, Zhou Y-H, Hou L-H, Yang X-H (2010) Acta Crystallogr E 66:o3336

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert D. Pike.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Safko, J.P., Pike, R.D. Synthesis and Crystal Structures of N,N′-Disubstituted Piperazines. J Chem Crystallogr 42, 981–987 (2012). https://doi.org/10.1007/s10870-012-0346-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-012-0346-1

Keywords

Navigation