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ABSTRACT

In recent years, nanomaterials have aroused extensive research interest in the

world’s material science community. Electrospinning has the advantages of

wide range of available raw materials, simple process, small fiber diameter and

high porosity. Electrospinning as a nanomaterial preparation technology with

obvious advantages has been studied, such as its influencing parameters,

physical models and computer simulation. In this review, the influencing

parameters, simulation and models of electrospinning technology are summa-

rized. In addition, the progresses in applications of the technology in biome-

dicine, energy and catalysis are reported. This technology has many applications

in many fields, such as electrospun polymers in various aspects of biomedical

engineering. The latest achievements in recent years are summarized, and the

existing problems and development trends are analyzed and discussed.

Introduction

Nanowires, nanowhiskers, nanofibers, nanotubes

and other one-dimensional nanostructured materials

have excellent performance in improving the optical,

electrical, thermal and mechanical properties of

functional materials and composites. Dielectric and

semiconductor nanomaterials made of these one-di-

mensional materials are widely used in the fields of

photocatalysis, sensors, drug delivery, bifunctional

materials and so on [1–10].

Many nanofiber fabrication techniques have been

developed [11], such as splitting of bicomponent
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fibers [12], melt blowing [13], physical drawing [14],

dry–wet spinning [15], phase separation [16], self-

assembling [17], centrifugal spinning [18] and elec-

trospinning [19].

Electrospinning is one of the most versatile, sim-

plest and effective technologies compared with tem-

plate polymerization and melt spraying [20–23]. It is

also the only method for large-scale production of

continuous nanofibers in industry [24, 25]

Electrospinning also has the advantages of wide

range of available raw materials, simple process,

small fiber diameter and high porosity. Although

electrospinning technology originated in the early

twentieth century, it was not widely used until

around 2000. There are quite a few research results on

the instrument development and the influence of

process parameters.

History

Electrospinning technology can be traced back to

1897. Rayleigh et al. [26–29] studied the phenomenon

of charged liquid changing from cylinder to bead. In

1900, Cooley [30] applied for the world’s first patent

for electrospinning and invented four types of indi-

rectly charged spinning heads—a conventional head,

a coaxial head, an air assisted model and a spinneret

featuring a rotating distributor. It generally believes

that this is the beginning of electrospinning indus-

trialization. However, Morton’s 1902 patent on elec-

trospinning lacks some key details [31]. Then, Zeleny

[32–37] mathematically simulated the behavior of a

fluid under static electricity. Anton [38–44] applied

for many patents in the USA, France and other

countries between 1931 and 1944, contributing to the

electrospinning technology. In 1936, Norton [45]

applied for the patent of melt electrospinning. Cel-

lulose acetate nanofibers were prepared by electro-

spinning with dichloroethane and ethanol as solvents

in 1938 by N.D. Rozenblum and I.V. Petryanov

Sokolov in 1938. The cellulose acetate nanofibers

were applied to filter materials to enhance the

toughness and durability of the materials. The

materials were produced in a large quantity by Tver

antivirus surface ware factory in 1939 [46]. From 1964

to 1966, Taylor [47–49] established the ‘‘leaky dielec-

tric model’’ for electrospinning technology, which

laid a theoretical foundation for the ‘‘Taylor cone.’’ In

1966, Simons [50] invented a process for printing

nonwoven fabrics using electrospinning technology.

In 1971, Baumgarten [51] prepared acrylic fibers with

DMF as solvent by electrospinning. In 1978, Annis

et al. [52] published work examining electrospun

polyurethane mats for use as vascular pros thesis. In

1981, Larrondo and St. John Manley [53–55] carried

out electrospinning of polyethylene and polypropy-

lene fibers from the melt. In 1985, Fisher et al. [56]

studied electrospinning applications in arterial repair

materials. In 1996, Reneker and Chun [57] success-

fully prepared more than 20 kinds of polymer

nanofibers by electrospinning technology. In 2009,

Jirsak et al. [58] invented a needleless electrospinning

technology, and then, the Czech company Elmarco

produced the world’s first industrial electrospinning

machine, Nanospider.

In the next decade or so, electrospinning technol-

ogy was not only widely used in the biomedical field

[59–61], but also widely used in energy [62–64],

catalysis [65–67] and other fields because of its simple

process and wide applicability. In addition, electro-

spinning can also be used to prepare self-assembled

nanocomposites [68–72]. The number of publications

and cited frequency of electrospinning increased year

by year, as shown in Fig. 1. Figure 2 shows the

number of publications on electrospinning in various

countries. It can be seen that China published the

most, followed by the USA and South Korea.

Process

The basic principle of electrospinning is that solution,

suspension or melt is sprayed in a strong electric field

to form continuous fibers. The basic electrospinning

device consists of three parts (a) a high voltage power

supply (b) a spinneret (c) a collector. Figure 3 shows

the basic device of electrospinning. In the case of

solution electrospinning, first, because of the surface

tension of the solution, droplets are formed on the

spinneret with induced charge on the surface [73].

When the electrostatic force is equivalent to the sur-

face tension of the solution, the droplet changes from

hemispheric shape to cone shape, which is called

Taylor cone [49]. When the electrostatic force is

greater than the surface tension, the solution can

overcome the surface tension and form jets. In the

process of reaching the collection device, the elec-

trostatic force makes the jets stretched and the solvent

evaporated, leaving only solid fibers. The collection

device can collect the solid fibers with complex
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network structure [74]. The same is true for melt and

suspension electrospinning.

There are many types of electrospinning equip-

ment on the market, most of which is innovative only

in the jet device and collection device [75]. The tra-

ditional instrument uses electrode material as spin-

neret. In recent years, the needleless nozzle has been

developed, which can be divided into two types: the

rotary nozzle and the static nozzle. It can address the

problems of needle clogging and low yield. It can be

used in industrial production, but it is difficult to

control the morphology and distribution of nanofi-

bers [76]. The collection device is generally divided

into vertical arrangement and horizontal arrange-

ment [77, 78]. The difference between the two is the

droplet formation power is different. When the

spinneret and collecting plate are arranged horizon-

tally, droplets are generated by electrostatic force,

Figure 1 Number of publications and times cited on electrospinning. All the data used are from Web of Science. The functions we used

are analyze results and create citation report.

Figure 2 Number of publications on electrospinning in various

countries. All the data used are from Web of Science. The

functions we used are analyze results and create citation report.
Figure 3 The basic equipment of electrospinning. https://en.wik

ipedia.org/wiki/Electrospinning. Accessed 3 August 2021.
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and gravity is also involved in the horizontal

arrangement [79, 80].

Up to now, more than 100 kinds of nanofibers of

polymers and blends have been successfully pre-

pared by electrospinning, with diameters ranging

from several nanometers to hundreds of microns [81].

Besides, if the same polymer is dissolved in different

solvents, the morphology of nanofibers prepared will

be different [82, 83].

Electrospun nanofibers can be classified into many

types according to different classification methods

[11]. According to the chemical composition, they can

be divided into inorganic nanofibers [84], organic

nanofibers [85, 86], carbonaceous nanofibers [87, 88]

and inorganic–organic hybrid nanofibers [89].

According to the morphology of nanofibers, as

shown in Fig. 4, they can be divided into columnar

nanofibers [90], beaded nanofibers [91], porous

nanofibers [92], grooved nanofibers [93], nanograin

nanofibers [94], nanobelt nanofibers [95] and so on.

As shown in Fig. 5, according to the fiber orientation,

it can be divided into random-distributed nanofibers

[96], aligned nanofibers [96], crimped nanofibers [97]

and so on.

Parameters

Besides the advantages of simple process and wide

range of raw materials, electrospinning can control

the morphology, orientation and pore size of nano-

fibers by adjusting the parameters [98, 99]. There are

many parameters affecting electrospinning, some of

which are uncontrollable. The controllable parame-

ters can be divided into solution parameters, pro-

cessing parameters and ambient parameters [100].

The solution parameters include concentration, vis-

cosity, molecular weight, conductivity, surface ten-

sion and solvent type. The process parameters

include applied voltage, flow rate and distance from

jet device to collection device. The ambient parame-

ters include temperature and humidity. However, if

the parameters are adjusted appropriately, uniform

and bead-free nanofibers with suitable diameter can

be prepared. Although the National Science Foun-

dation defines fibers with diameter less than 100 nm

as nanofibers, in fact, submicron fibers are more

widely used in many fields such as tissue engineering

[101].

Figure 4 Morphology of electrospun nanofibers a columnar

nanofibers [90] b beaded nanofibers [91] c porous nanofibers [92]

d grooved nanofibers [93] e nanobelt nanofibers [95] f nanograin

nanofibers [94]. Reproduced with permission from reference [90].

Copyright 2019, Elsevier B.V. Reproduced with permission from

reference [91]. Copyright 2012, Elsevier B.V. Reproduced with

permission from reference [92]. Copyright 2015, Elsevier Ltd.

Reproduced with permission from reference [93]. Copyright 2016,

Elsevier B.V. Reproduced with permission from reference [94].

Copyright 2013, Elsevier B.V. Reproduced with permission from

reference [95]. Copyright 2011, Elsevier Ltd.
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Solution parameters

Concentration

The concentration of the solution plays a decisive role

in forming nanofibers. There is a minimum

spinnability concentration. When the solution con-

centration is lower than this value, because of the low

concentration and high surface tension, the interac-

tion between the electric field force and surface ten-

sion will cause the entangled polymer to be

disentangled before reaching the collection device

[102, 103]. This produces many beads rather than

fibers [104–106]. With the increase in the concentra-

tion and viscosity, the entanglement concentration of

polymer increases and the surface tension decreases,

resulting in more and more fibers, and finally, uni-

form and smooth nanofibers without beads are

formed [107]. At this time, the concentration is the

best. When the solution concentration is higher than

the optimal concentration, the solution is easy to

block the spinneret, resulting in coarse and uneven

ribbon fiber [103, 108]. The optimal concentration is a

range. As shown in Fig. 6, the nanofibers become

coarser with the increase in the concentration in this

range [105, 106, 109–111]. Some studies have also

shown the solution viscosity can be improved by

adding cosolvents at a certain polymer concentration.

Increasing the concentration can usually improve the

morphology of nanofibers or make it easier to elec-

trospin polymers that are difficult. For example,

sodium alginate can be electrospun into uniform and

smooth nanofibers by adding glycerol or PEO

[112, 113]. It has been found that if there are many

kinds of polymers in the solution, even if the viscosity

is the same, different polymer concentration ratio will

change the diameter of nanofibers, which is caused

by the interaction between polymers [113]. Some

researchers have also changed the solution concen-

tration and prepared microspheres instead of nano-

fibers by electrospinning, which provides a new idea

[114].

Viscosity

The viscosity of the solution is closely related to the

concentration and molecular weight, which is one of

the main parameters affecting the diameter and

morphology of nanofibers [115]. If the viscosity is too

low or too high, the bead structure will be formed

[75]. If the viscosity is too low, it means the polymer

entanglement is low and the surface tension is dom-

inant, the droplets cannot connect into fibers and

form spray [116]. With the increase in the viscosity,

the stress relaxation time of the polymer becomes

longer, which is conducive to forming nanofibers

with larger and uniform diameter, as shown in Fig. 7

[117]. However, when the viscosity is too high, it is

difficult for jets to form fiber [118]. Therefore, there is

a best range of viscosity suitable for electrospinning

nanofibers [102]. Some studies have shown the solu-

tion with viscosity of 1–20 P and surface tension of

35–55 dyn/cm2 is suitable for electrospinning nano-

fibers [119]. When the solution viscosity is too high to

carry out electrospinning, some researchers propose

using vibration technology to solve this problem

[120]. For example, ultrasonic vibration can decrease

the van der Waals force between polymer chains to

achieve the purpose of temporarily reducing the

viscosity of the solution, as shown in Fig. 8. At the

same time, attention should be paid to avoid the

rapid evaporation of the solvent during the vibration

Figure 5 Orientation of electrospun nanofibers a random-

distributed arrangement [96] b aligned nanofibers [96] c crimped

nanofibers [97]. Reproduced with permission from reference [96].

Copyright 2015, Elsevier B.V. Reproduced with permission from

reference [97]. Copyright 2014, American Chemical Society.
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Figure 6 SEM images of

electrospun polyimide

nanofibers with different

concentrations a 10%, b 15%

c 20% d 25% [105].

Reproduced with permission

from reference [105].

Copyright 2017, De Gruyter.

Figure 7 Morphology of nanofibers with increasing viscosity a–

d schematic diagram [123] and e–h SEM images of electrospun

PEO nanofibers [104]. Reproduced with permission from

reference [104]. Copyright 1999, Elsevier B.V. Reproduced with

permission from reference [123]. Copyright 2013, MDPI (Basel,

Switzerland).
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process [121]. The viscosity of the solution can be

controlled by adjusting the polymer concentration.

The viscosity of the solution can be increased with the

increase in the solubility when the conductivity is

high, but the change of the diameter of the nanofiber

can be ignored, because the conductivity will also

increase with the increase in the concentration. The

increase in the conductivity will cause the diameter of

the nanofiber to become smaller [110]. The solution

concentration can also be increased by adding

nanoparticles to the solution. Although the diameter

of the nanofibers increases with the increase in the

content of nanoparticles, the nanofibers will be

rougher and more uneven because of the increase in

the friction and viscosity between particles [122].

Molecular weight

The molecular weight of the polymer can affect the

rheological and electrical properties of the solution

such as viscosity, surface tension and conductivity

[124]. When the molecular weight is large, the inter-

molecular force is large, and the polymer may also

generate more hydrogen bonds between the solvents,

making the polymer expand, thus increasing the

viscosity value [125, 126]. Because of the inhomo-

geneity of polymer conductive system, the interchain

conductivity is much lower than intrachain, and the

larger the molecular weight, the smaller the degree of

interchain discontinuity, the larger the interchain

conductivity, and the larger the macroscopic con-

ductivity [127–129]. However, some experiments

have found the molecular weight has little relation-

ship with the conductivity [130]. Similar to the effect

of viscosity and concentration, the polymer with low

molecular weight has insufficient entanglement

degree, short chain length, small molecular friction

force, difficult to resist unstable whipping, inter-

rupted jet and difficult to form fibers [131]. In general,

the diameter of nanofibers will also increase with the

increase in the molecular weight. However, excessive

molecular weight will produce ribbon fibers

[132, 133]. Researchers have also found that inter-

molecular forces can be used to counter surface ten-

sion when the molecular weight is low [98].

Conductivity

The charged particles of polymer have great influ-

ence on jet formation. When the conductivity of the

solution is too low, there will be beads and it is dif-

ficult to form uniform nanofibers. However, high

conductivity may lead to bending whiplash and

uneven diameter or formation of ribbon fibers [134].

The diameter of nanofibers decreases with the

increase in the conductivity [113, 135]. Some

researchers also found the conductivity has negligible

effect on the fiber diameter [126]. It has been found

Figure 8 Influence of ultrasonic vibration on polymer molecular

chain. a Entangled molecular chains in polymer solution without

sonic vibration treatment, b entangled molecular chains in

electrospun fiber without sonic vibration treatment, c molecular

chains in polymer solution disentangled after sonic vibration

treatment and d disentangled molecular chains in electrospun fiber

with sonic vibration treatment [121]. Reproduced with permission

from reference [121]. Copyright 2019, SAGE Publications Ltd.
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that theoretically the jet radius is inversely propor-

tional to the cube root of the solution conductivity

[51]:

r0 ¼
ffiffiffiffiffiffiffiffiffiffiffi

4eQ

kprq

3

s

ð1Þ

where r0 is jet or filament radius, Q is the mass flow

rate, e is the permittivity, r is the electric conduc-

tivity, q is the density. The conductivity of the solu-

tion can be improved by adding some inorganic salts

such as sodium chloride, lithium chloride, magne-

sium chloride and copper chloride to the solution.

This helps forming beadless fibers with smaller

diameters and increases uniformity [136]. Some

researchers discovered the opposite [137]. Some

organic compounds are also feasible, such as pyri-

dinium formate [138], benzyl trialkylammonium

chloride [139], dodecyltrimethyl ammonium bromide

(DTAB) [140], tetrabutylammonium chloride (TBAC)

[140], triethylbenzyl ammonium chloride (TEBAC)

[141] and tetraethylammonium bromide (TEAB).

However, their conclusions are not compatible. PH

also affects the conductivity of the solution [106]. The

electrospinning properties of polystyrene solutions

with 18 kinds of common organic solvents were

measured [142]. It was found that only 1,2-dichlor-

oethane, DMF, ethylacetate, MEK and THF could

meet the needs of electrospinning.

Surface tension

Surface tension is affected by many factors, including

molecular weight, solution concentration, solvent

type and temperature [126]. However, adding sur-

factant can also effectively decrease the surface ten-

sion, which only has to be removed in the subsequent

process. When the surface tension is low, the beads

are fewer and the nanofibers are finer and smoother

[143, 144]. Some researchers believe the surface ten-

sion has little effect on the fiber diameter [145].

However, if the surface tension is too low, the jet will

be unstable, the diameter distribution of nanofibers

will be uneven [146] or even beads will be formed

[147, 148]. In general, the surface tension of water is

higher than that of ethanol. Ethanol can be added to

the solution to decrease the surface tension [104]. A

little surfactant can decrease the surface tension of

the solution, such as sodium dodecyl benzene sul-

fonate (SDBS) [149], dodecyltrimethylammonium

bromide (DTAB) [140], tetrabutylammonium chlo-

ride (TBAC) [140] and Tween 80 [110]. However,

some surfactants, such as Triton X-405 [140], have

little effect, and even more Triton X-100 (TX100) may

increase the fiber diameter [150].

Solvent

There is no doubt the choice of solvent is important.

The properties of the solvent, including surface ten-

sion, dielectric constant, boiling point, density, as

well as the interaction between solvent and solute, as

shown in Fig. 9, will affect electrospinning [145]. For

example, the volatility of the solvent is directly rela-

ted to whether it can volatilize before reaching the

collection device, and has a great impact on whether

beads will appear or not [151]. The polarity and

dielectric constant of the solvent will affect the con-

ductivity of the solution [151]. Because of the toxicity

of many organic solvents, if they cannot be com-

pletely removed, they would not be used in biological

and food fields [152]. The influence of solvent types

on electrospinning is complex. There is no clear the-

ory to judge whether electrospinning can be carried

out with a certain solvent [153–155]. According to

Hansen solubility parameters, a ternary solubility

diagram has been made by some researchers, as

shown in Fig. 10. The three edges represent the dis-

persion component (dd), polar component (dp) and

hydrogen bonding component (dh), respectively,

which can be used for in-depth study of solvent sol-

ubility [156–160]. The solvents in the green region is

expected to dissolve the polymer. For example, when

MeOH and PrOH are mixed, a good solvent such as

EtOH can be found near their connecting line. The

volume ratio of the two solvents can be calculated by

the length ratio from the closest point to EtOH to both

ends. The effects of solubility of polycaprolactone

[161], polyethylene terephthalate (PET) [162] and

polymethylsilsesquioxane (PMSQ) [159] in different

solvents on electrospinning have been studied. When

the solubility is low, it is easy to form nanofibers, and

high dielectric constant will make the diameter of

nanofibers smaller [159]. Kohse et al. [105] found the

electrospinning of polyimide in N,N-dimethylfor-

mamide (DMF) produced smooth and round shaped

nanofibers, but only ribbon shaped fibers were

formed in 1,1,1,3,3,3-jexafluoro-2propanol (HFIP) and

smooth but stucked fibers in dimethylsulfoxide

(DMSO).
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Figure 9 SEM of electrospun

polyimide nanofibers in

different solvents [105].

a DMF, b HFIP, c and

d DMSO. Reproduced with

permission from reference

[105]. Copyright 2017, De

Gruyter.

Figure 10 Ternary solubility diagram of polymethylsilsesquioxane in different solvents. The solvent with good solubility is in the green

region [159]. Reproduced with permission from reference [159]. Copyright 2010, Elsevier B.V.
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Processing parameters

Applied voltage

The applied voltage is also a key parameter in the

electrospinning process. Only when the critical volt-

age is reached can the droplet be ejected and finally

reach the collection device. The applied voltage also

affects the morphology and diameter of nanofibers. If

the applied voltage is too high or too low, it will lead

to forming beads [163]. The diameter of nanofibers

decreases with the increase in the applied voltage;

because the electrostatic force is large, the droplets

are stretched longer [164–169]. But in fact, according

to previous studies, there is no consensus on the

effect of applied voltage on nanofibers. Some

researchers believe the diameter of nanofibers will

increase with the increase in the voltage because of

the increase in the jet velocity [170–172]. Kim et al.

[173] also found the nanofibers first decreased and

then increased with the increase in the applied volt-

age, and made some mechanical analysis. In addition,

some researchers found that with the increase in the

voltage, the diameter distribution of nanofibers is

more uneven [168, 171]. The effect of applied voltage

on the diameter of nanofibers may vary with the

polymer solution concentration and the distance from

jet device to collection device [174–176]. More

research is needed on the effect of applied voltage on

the diameter of nanofibers.

Flow rate

The flow rate also affects the diameter and mor-

phology of nanofibers. The diameter of nanofibers

increases with the increase in the flow rate

[146, 168, 176, 177]. If the flow rate is too high, the

solvent cannot completely evaporate before reaching

the collection device, which will lead to forming

beads [178] or ribbons [177]. Therefore, when the flow

rate is moderate, the Taylor cone is more stable, and it

is easier to generate smooth and uniform nanofibers

[179]. Some researchers believe there is an ideal flow

rate, and deviation from the optimal value will lead

to the coarsening of nanofibers [180]. When the

solution viscosity is low, the flow rate has little effect

on the diameter of nanofibers [175, 176]. When the

applied voltage is higher, the effect of flow rate is

more significant.

Distance from jet device to collection device

The distance from jet device to collection device can

also be used to control the diameter and morphology

of electrospun nanofibers [181]. The distance from jet

device to collection device needs to be large enough

to allow the solvent to evaporate. If the distance is too

small, there will be beads [177]. However, the dis-

tance should not be too large. If the distance is too

large, the jet will not be stable enough, and there will

be beads. In fact, the distance from jet device to col-

lection device has less effect on the diameter of

nanofibers than other parameters [170, 176, 182].

However, some researchers believe the distance has a

great influence on the fiber diameter [183]. Generally

speaking, the larger the distance, the greater the

bending instability, resulting in the overlap of some

nanofibers, resulting in larger fiber diameter

[173, 184]. However, if the distance is small, the sol-

vent evaporation time is not enough, and coarse

nanofibers will be formed [116, 178, 185, 186].

Ambient parameters

Temperature

Generally speaking, the higher the temperature, the

lower the viscosity and surface tension, the higher the

solubility [147, 187, 188]. The increase in the tem-

perature will lead to the decrease in the diameter of

nanofibers and smoother surface [147, 187–189]. Yang

et al. [189] studied the relationship between temper-

ature and evaporation rate of PVP anhydrous ethanol

solution using Knudsen layer theory. They found

there was an inflection point in the relationship

between temperature and nanofiber diameter, which

was related to many properties of solution affected

by temperature. However, De Vrieze et al. [147] also

used the absolute ethanol solution of PVP and drew

the opposite conclusion for the same temperature

range.

Humidity

The influence of environmental humidity on electro-

spinning is also complex. When the humidity is low,

the evaporation rate of solvent is faster, which will

make the diameter of nanofibers larger

[147, 190–193]. However, because of the different

hydrophilicity of solvents, some organic solvents
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such as ethanol will absorb the moisture in the air,

which makes the solvent more difficult to evaporate,

and the electrostatic force is decreased, which makes

the nanofibers thinner [147, 194]. Therefore, this

should depend on the type and solubility of solvents

[195]. Some researchers have also found there is no

obvious relationship between ambient humidity and

the thickness of nanofiber mats [106, 196, 197]. When

the humidity is too high, the diameter distribution of

nanofibers is more uneven, the surface is more rough,

and the pores or fibers are less [106, 191, 197, 198].

Ding et al. [199] found that under the condition of

high voltage and low humidity, the rapid separation

of polymer and solvent can produce nanowebs with

overlapping layers, uniform pore size and fine fiber.

Models and simulation

It is of great significance to simulate electrospinning

by computer. Because the phenomena observed in

many experiments are sometimes difficult to explain,

we need to use theoretical models and computer

simulation to help us better understand various

problems. Although electrospinning technology has

been widely concerned, there are few studies on

simulation. In fact, because of the complex parame-

ters affecting electrospinning, many researchers have

put forward some empirical relationships. For

example, Wang et al. [200, 201] obtained some

empirical scaling laws of parameters and diameter

through experiments, and Yousefi et al. [202] did

some similar experiments. However, because of the

lack of systematization and characterization, the

applicability of the empirical model is limited [203].

By establishing a perfect mathematical and physical

model for electrospinning simulation, the morphol-

ogy and properties of nanofibers can be well pre-

dicted, which could improve the work efficiency of

researchers and expand the electrospinning technol-

ogy application.

Physical models

Models of electric field

Taylor [49] first studied the initial stage of the jet. In

principle, when the electric field force and surface

tension are equal, the viscous droplet will form a

cone with the half vertex angle of 49.3� and the state

is called the Rayleigh stability limit [28].

Taylor [48] gave the critical voltage of viscous fluid

jet:

V2
k ¼

4H2

L2
ln

2L

R
� 3

2

� �

1:30pRTð Þ 0:09ð Þ ð2Þ

where Vk is the potential at breakdown, H is the

distance between jet device and collection device, L is

the injector length, R is the injector radius and T is the

surface tension of the liquid.

Besides, they introduced the leaky dielectric model

to explain the behavior of droplets deformed by a

steady field, which laid the foundation for the later

theoretical research.

Hendricks et al. [204] gave an empirical formula for

the critical voltage of hemispheric suspension

droplets:

V ¼ 300
ffiffiffiffiffiffiffiffiffiffiffiffi

20pca
p

ð3Þ

where V is the critical voltage, c is the surface tension,

and a is the capillary radius.

Of course, Taylor’s and Hendricks’ studies

assumed the droplet is in a stable state at the capillary

port, and the model only applies to weakly conduc-

tive liquids, without considering the effects of liquid

conductivity and viscosity.

Interestingly, Yarin et al. [205] confirmed theoreti-

cally and experimentally the half angle of Taylor cone

should be 33.5� instead of 49.3�. This may be because

of the existence of non-self-similar solutions for

hyperboloid shape in equilibrium with its own elec-

tric field under the surface tension action.

Models of jet

When the applied voltage is higher than the critical

voltage and the electric field force is greater than the

surface tension, the jet will first go through the

stable stage and then enter the unstable stage.

Stable stage In the stable stage, the polymer jet does

uniaxial stretching, and the jet shape does not change

with time. In this process, the jet radius is the focus of

research, because it directly affects the diameter of

nanofibers.

Baumgarten [51] derived the jet radius from the

relationship between transfer current and conduction

current:
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r0 ¼
ffiffiffiffiffiffiffiffiffiffiffi

4eQ

kprq

3

s

ð4Þ

where r0 is jet or filament radius, Q is the mass flow

rate, e is the permittivity, r is the electric conductivity

and q is the density.

However, the axial voltage gradient in jet in units

still needs to be obtained.

According to the equations of mass balance, elec-

tric charge balance and momentum balance, Spivak

et al. [206, 207] established a simple one-dimensional

model of nonlinear power-law fluid:

d

d�
z

�
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�
R

� ��1

� N�1
E

�
R

�2 � N�1
R

d�
R

�2

d�
z

 !m" #

¼ 1

ð5Þ

where z is the axial coordinate, R is the dimensionless

jet radius, NW is the dimensionless Weber number,

NE is the dimensionless parameter, NR is the effective

Reynolds number and m is the flow index.

However, the one-dimensional linear symmetrical

model is too simple, which is different from the

actual.

Later, according to the leaky dielectric model and

the slender body theory, Hohman et al. [208, 209]

introduced the free charge and obtained the

approximate model of jet dynamics:
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where h is the radius of jet, v is the fluid velocity

parallel to axis of jet, r is the surface charge density,

K* is the dimensionless conductivity, E is the electric

field parallel to axis of jet, b ¼ ε
ε
� 1, m* is the dimen-

sionless viscosity, V is the aspect ratio and X0 is the

dimensionless external field strength.

However, this model is not suitable for non-New-

tonian fluid. After that, Feng [210] improved it and

considered the non-Newtonian fluid:

R2v ¼ 1
ER2 þ PeRvr ¼ 1

vv
0 ¼ 1
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where v is the axial velocity, Pe is the Electric Peclet

number, Fr is the Froude number, Re is the Reynolds

number, g is the viscosity, E is the axial field, z is the

axial position, We is the Weber number, e ¼ εE2
0

qv2
0

, ε is

the dielectric constant of the ambient air, b ¼ ε
ε
� 1, V

is the aspect ratio and E? is the external field.

Unstable Stage The unstable stage is much more

complicated than the stable stage, and researchers

have made great efforts. The instability is caused by

the charge repulsion in the jet. There are three kinds

of instability in the unstable stage of electrospinning

[211]: the classical Rayleigh mode (axisymmetric)

instability, electric field-induced axisymmetric con-

ducting mode (bending) instability and whipping

conducting mode instabilities. These instabilities

change with the applied voltage, the distance from jet

device to collection device and the solution parame-

ters, which affect the morphology and distribution of

nanofibers [212].

Strutt and Rayleigh [26] first proposed and found

the axisymmetric instability, and derived the rela-

tionship between the instability deviation distance

and the potential and other factors. Unfortunately,

there is no effective experimental support.

Huebner and Chu [213] analyzed the influence of

surface tension and electrodynamic effect on jet

radius on the basis of empirical formula, but also

lacked experimental support.

Reneker et al. [214] established a three-point-like

charges model and analyzed the cause of the bending

instability:

m
d2d

dt2
¼ 2e2

l31
d ð8Þ

where m is the mass, d is the distance, l is the length

and e is the charge.

They also proposed a viscoelastic model of a rec-

tilinear electrified liquid jet. The linear Maxwell

equations were used to describe the jet flow. The

spinning process was simplified as a system of
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beads:where r is the stress, t is the time, l is the

length, G is the elastic modulus, l is the viscosity,

ri ¼ ixi þ jxi þ kxi , m is the mass, e is the charge,

Rij ¼ xi � xj
� �2 þ yi � yið Þ2 þ zi � zj

� �2
h i1

2

, V0 is the

voltage, h is the distance from pendent drop to

grounded collector, a is the radius and ki is the jet

curvature.
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According to Yarin et al. [215], the main cause of

instability is the electric bending force, and the wave

number V* and the growth rate c of the fastest

growing bending perturbation are derived:
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where q is the density, a0 is the jet cross-sectional

radius which does not change for small perturba-

tions, l is the viscosity, L is the cutoff length, a is the

cross-sectional radius of the jet element and r is the

surface tension.

Hohman et al. [208, 209] developed the slender

body theory and established a jet dynamic model to

clarify the influence of the surrounding electric field

on the jet charge:
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where X is the oscillation of the centerline, s is the arc

length, m* is the dimensionless viscosity, � is the air

dielectric constant, b ¼ ε
ε
� 1, X0 is the dimensionless

external field strength, P is the dipole density, r0 is

the dimensionless background free charge density, R

is the radius, rD is the dipolar component of free

charge density, V is the aspect ratio and n is the

coordinate in the principal normal direction.

Shin et al. [216] also proposed the whipping

instability model and gave the amplification factor

for a perturbation convected a distance downstream:

C E1;Qð Þ ¼ ln
A dð Þ
A 0ð Þ

	 


¼
Z d

0

x h;E; rð Þph2

Q
ð14Þ

where C is the amplification factor, E? is the applied

electric field, Q is the flow rate, A is the amplitude of

a perturbation, d is the distance, x is the growth rates,

E is the local electric field, h is the radius of the jet

and r is the surface charge distribution.

After that, Fridrikh et al. [217] established a

mathematical model of the influence of parameters

and obtained the equation of motion of the jet:

qph2€x ¼ 2phr0E1 � bn
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e
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where q is the density, h is the jet diameter, x is the

motion for normal displacements of the centerline of

the jet, E? is the applied electric field, bn is the unit
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vectors normal to the centerline of the jet, c is the

surface tension, e is the dielectric constant, bt is the

unit vectors tangential to the centerline of the jet, V is

the dimensionless wavelength of the instability

responsible for the normal displacements and R is the

radius of curvature.

Theron et al. [218] studied the parameters of elec-

trospinning with the help of empirical formulas.

Carroll et al. [219] calculated the expected growth

rate of the axisymmetric beads, as well as the

expected bead wave number, and analyzed the

instability mechanism from the perspective of energy.

They found that electrical forces mainly drive the

unstable axisymmetric mode for electrically driven,

highly conducting jets:
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Using JETSPIN software package, Carroll and Joo

[219] studied the effect of gas flow on electrospinning

by using nonlinear Langevin-like approach and made

experimental comparison:
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where ri is the stress on the ith dumbbell which

connects the bead i with the bead i ? 1, li is the

length of the element, G is the elastic modulus, l is

the viscosity of the fluid jet, t is the time, vi is the

velocity of the ith bead, fel,i is the electric force, fc,i is

the net coulomb force, fve,i is the viscoelastic force, fst,i

is the force due to the surface tension, fg,i is the force

due to the gravity, fdiss,i is the dissipative force, frand

is the random force and ri is the position vector of the

ith bead.

Yousefi et al. [220] used a physics-based compu-

tational model, mass–springdamper (MSD) approach

to incorporate the mechanical properties of the fibers

in predicting the formation and morphology of the

electrospun fibers:

d

dt
vi
ri

	 


¼ f
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i




mi

vi

2

4

3

5 ð18Þ

where ri is the position vector of bead i, mi is the mass

of bead i, fRi ¼ fvei þ f sti þ f eli þ fCi , fvei , fvei is the vis-

coelastic forces acting on bead i, f sti is the surface

tension force, f eli is the electric attraction force and fCi
is the Columbic force.

Molecular simulation

Molecular simulation technology includes Monte

Carlo method and molecular dynamics method

[83, 221]. Monte Carlo method is based on statistics

and is suitable for equilibrium system. Molecular

dynamics method is a deterministic method based on

classical mechanics, which can solve the equations of

motion of all particles in the system, and is suit-

able for studying time-dependent phenomena. In

electrospinning, molecular dynamics method is

commonly used to study the interaction of composite

materials and the adsorption or surface interaction of

nanofiber products with drugs or proteins. Jirsák

et al. [222] used Monte Carlo method and molecular

dynamics method to simulate the initial stage of the

jet, as shown in Fig. 11. The results obtained by the

two methods are qualitatively consistent with the

experimental results and found the balance of ion

concentration and field strength affects forming

beads in nanofibers. Danwanichakul et al. [223] used

Monte Carlo method to simulate the deposition stage

of nanofibers, obtained the positive correlation

between the concentration and the pore size of the

fibers, and tested the filtration performance of poly-

styrene particles, which was consistent with the

experimental results. Sarmadi et al. [224] simulated

the protein adsorption capacity of electrospun PCL/

PVA nanofibers by molecular dynamics method,
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which was consistent with the experimental results.

In addition, Vao-soongnern [225] analyzed the effect

of molecular weight and chain conformation of

polymers on the structure and properties of electro-

spun nanofibers using Monte Carlo method. Steffens

et al. [226] simulated the interaction between PVA

nanofibers and drug-loaded dacarbazine using

quantum mechanics calculations, molecular model-

ing techniques and molecular dynamics simulation,

thus explaining the principle of controlled drug

release.

Others

As well as the above models and simulation methods,

there are some other interesting methods. For exam-

ple, lattice Boltzmann method, which is an advanced

computational fluid dynamics method, has the char-

acteristics of mesoscopic model between micro-

molecular dynamics model and macro-continuous

model. Karra [227] modified the discrete bead model

and proposed a hybrid numerical scheme that cou-

ples lattice Boltzmann method with the finite differ-

ence method to solve Oldroyd-B viscoelastic

problem. Finite element model is equally a com-

monly used model in physics. Yin et al. [228] used

representative volume element to analyze the rela-

tionship between the nanofiber membrane perfor-

mance and single nanofiber performance, and

verified the correctness of the conclusion through

experiments. Neural network is a hot machine

learning algorithm recently, but its application in

electrospinning is still less. Sarkar et al. [229] used

neural network algorithm, taking concentration,

conductivity, flow rate and electric field strength as

input variables, can well predict the change of fiber

diameter, but only consider the influence of four

variables, which is not suitable for complex electro-

spinning process.

Applications

Biomedicine

Tissue engineering

Tissue engineering is a major branch of biomedical

engineering, whose main purpose is the repair and

regeneration of organs or tissues [230–233]. Tissue

engineering consists of three parts: scaffold materials,

growth factors and cells. The nanofibers prepared by

electrospinning have the characteristics of high

porosity and large specific surface area, which are

similar to the structure of extracellular matrix (ECM).

They can provide sites for cell adhesion and facilitate

the transport of nutrients and wastes [234–236].

Besides, the electrospinning parameters are mostly

controllable, which can prepare nanofibers with ideal

diameters and shapes, as well as nanoparticles or

nanotubes and other structures, and have a wide

Figure 11 Sequence of snapshots showing the transformation of a

droplet on the wall modeling the apex of the Taylor cone to a jet.

a System before the field was applied, b the instant soon after the

field was applied, and c a later instant when the droplet is

transformed to the jet. Colored spheres represent atoms and ions as

follows: red–oxygen, white–hydrogen, blue–sodium cation and

cyan–chloride anion [222]. Reproduced with permission from

reference [222]. Copyright 2014, American chemical society.
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application prospect in tissue engineering

[214, 237, 238]. Figure 12 shows the number of pub-

lications on electrospinning in different directions of

tissue engineering. It can be seen that researchers

mainly focus on bones and skin, and less on blood

vessels and nerves.

Bones Bone is a complex nanocomposite comprising

about 70% hydroxyapatite (HAP) and about 30%

collagen fibers [239, 240]. When human bones are

damaged by disease or accident, tissue engineering

techniques can be utilized to repair or regenerate

them. Electrospinning technology has great potential

in bone repair [241, 242]. Bone repair materials can

fall into three categories: metal, polymer and ceramic.

Figure 13 and Table 1 both show that hydroxyapatite

and titanium-related materials are widely used in

bone repair, which are the two most important bone

Figure 12 Number of publications on electrospinning in different directions of tissue engineering. All the data used are from Web of

Science. The functions we used are analyze results and create citation report.

Figure 13 Number of publications of some bone repair materials in recent years. All the data used are from web of science. The functions

we used are analyze results and create citation report.
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repair materials in metal and ceramics. Metal mate-

rials have excellent biocompatibility and mechanical

properties, but they are generally non-biodegradable

and have less effect on surrounding tissues. Polymers

and ceramics have good biological activity, some

with good mechanical properties are more suit-

able for bone tissue engineering [243]. Hydroxyap-

atite (HA), the main inorganic component of human

bones, has good biocompatibility and is suitable for

use as a bone repair material [244, 245]. Besides, HA

can also promote growth and proliferation of osteo-

blasts and induce bone mineralization [246]. How-

ever, its mechanical properties are poor, brittle and

easy to break, so it needs to be modified or com-

pounded with other materials. In recent years,

preparing hydroxyapatite-related materials by elec-

trospinning has been widely studied. Many studies

have shown that hydroxyapatite can be combined

with gelatin [247], collagen [248], silk [249], PCL

[250], chitosan [251] and so on, making it more suit-

able for bone repair. For example, Chen et al. [252]

prepared gelatin–chitosan core–shell structure nano-

fibers using coaxial electrospinning technology.

Hydroxyapatite was wet deposited on the surface of

the fibers, which was conducive to the adhesion and

proliferation of osteocytes, improved mineralization

efficiency of hydroxyapatite, then cultured MG-63

cells for evaluation. It was noted the cell activity was

significantly improved, indicating that its biocom-

patibility was good. Ko et al. [253] coated glyci-

doxypropyltrimethoxysilane (GPTMS) on the surface

of hydroxyapatite to improve the dispersion in silk

fibroin solution and added PEO to improve the sta-

bility of electrospinning. After electrospinning,

polydopamine (PDA) and hydroxyapatite nanopar-

ticles were coated on the surface, and a new

Table 1 Some progress of electrospinning in bones in recent years

Material Solvent Flow rate

(mL/h)

Distance

(cm)

Voltage

(kV)

Cells Reference

Chitosan/PEO/halloysites Water 1.2 15 19–26 NHOst [255]

PHB/keratin Chloroform/DMF 0.96 25 13 MG-63 [256]

PLGA/b-TCP particles DCE/DMF 1 25 18 MC3T3 [257]

Chitosan/PHB/alumina nanowires TFA 0.6 25 22 MG-63 [258]

PCL/nanomagnesium phosphate/nanohydroxyapatite/

hyperbranched polyglycerol

DMF/CHCl3 0.5 11 9–13 MG-63/

hMSCs

[259]

Deacetylated cellulose acetate Acetone/water 2–4 12–15 20–22 MC3T3 [260]

Zein/trimethylolpropane triglycidyl ether (TMPGE) Ethanol/water 2.5 25 17–20 MC3T3 [261]

silk fibroin/PLCL/parathyroid hormone HFIP 1 12/15 12/15 BMMSCs [262]

PCL/amine-functionalized single-walled carbon

nanotube

DCM/DMF 2 23 17 rMSCs [263]

PHB/PCL/levofloxacin/sol–gel derived silica Chloroform/DMF 4 15 15 MG-63 [264]

PCL/chitosan or carboxymethyl chitosan Acetic acid/formic

acid

0.1–0.7 16–20 18–30 MG-63 [265]

PCL/F18 bioactive glass DCM/DMF 3 18 17 MG-63 [266]

PLLA/synthetic glass-reinforced hydroxyapatite DMC/DMF 0.5 20 25 MG-63 [267]

PLLA/glass-reinforced hydroxyapatite microparticles DMF/

dichloromethane/

DCM

0.5 20 25 MG-63 [268]

PCL/gelatin TFE/acetic acid/

ethanol

3 18 20 MC3T3 [269]

Cellulose/nanohydroxyapatite LiCl/DMAc 0.24 10 20 HDFCs [270]

Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/silicate

containing hydroxyapatite nanoparticles

Chloroform 2 5 7 hMSCs [271]

Polyamide-6,6/chitosan Acetic acid/HFIP 0.5 17 20 MC3T3 [272]

PHB/hydroxyapatite nanoparticles Chloroform 1 20 15 MSCs [273]

Zein/calcium lactate/PCL DMF/DCM 1 18 17 MC3T3 [274]
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Table 2 Some progress of electrospinning in skin in recent years

Material Solvent Flow

rate

(mL/h)

Distance

(cm)

Voltage

(kV)

Cells Reference

Silk fibroin/PCL/PEO Formic acid/

TFE

1/2.3 10–12 28 NHDF [290]

PCL/chitosan/PEO/aloe vera

extract/keratin

Formic acid/

acetic acid

0.1 10–12 15/16 L929 [291]

PCL/gelatin/MgO particles HFIP 2 22 24 hEnSCs [292]

Chitosan/PVA/glyoxal/halloysite

nanotubes

Acetic acid 0.2 6 15 Human normal fibroblast cells [293]

Silk fibroin/PCL/PEO Formic acid 0.3 12 17.5 Human BJ fibroblast cells [294]

PCL/Althea Officinalis Extract/

gelatin

Formic acid/

acetic acid

0.3 10 15–17 L929 [295]

PCL/N-(2-hydroxy)-propyl-3-

trimethylammonium chitosan

chloride

Formic acid/

acetic acid

0.9 15 25 HDFn [296]

PCL/chitosan/hyaluronic acid/

PEO

Formic/acetone 1.2/1/

0.1

15/18/10 16/

18–20/

11

Vero cells [297]

PCL/zein/gum arabic Formic acid/

acetic acid

0.2 15 18 L929 [298]

PEO/casein/silver nanoparticles SDS 0.3 15 20 NIH-3T3 [59]

Cellulose acetate/

gelatin/nanohydroxyapatite

HFP 0.8 13 18 L929 [299]

PCL/Maillard reaction products/

glucose–arginine or

fructosearginine

TFE 2.5 14 25 NHDF [300]

PDLLA/PCL/Cu2S nanoparticles DMF/THF 0.9 15 8–12 HDFs/HUVECs/murine B16F10

melanoma cells/human A375

melanoma

[301]

Chitosan/PEO/henna leaves

extract

Acetic acid 0.1–1.5 10–20 5–25 NHF [302]

Gelatin/PVA/keratin Formic acid 0.1 10 20 L929 [284]

PLA/hyperbranched polyglycerol/

curcumin

Chloroform/

methanol

0.5 12 13–15 3T3 [303]

Gelatin/sulfated

hyaluronan/chondroitin sulfate

TFE 0.75 13 20 HaCaT/Hs27/hMSCs [304]

PCL/chitosan Chloroform/

methanol/

acetic acid

0.18 10 22 Human fibroblast/keratinocyte [305]

PCL/cellulose acetate/chitosan/

PEO

Chloroform/

methanol/

acetic acid

2 15 20/25 L929 [306]

Gelatin/TEA/BDDGE Acetic acid 0.4 12 11 hDNF [307]

PCL/chitosan/PEO/aloe vera TFE 2.5/4 15/12 25/28 NHDF [308]

PLGA DMF/THF 0.8 15 28 HDF/HaCat [309]

Silk fibroin/PEO/NaCl Water 1.2 15 22 HDF/HaCAT [310]

Chitosan/bacterial cellulose/

PEO/nanodiamond

Acetic acid 0.3 10 20–22 L929 [311]

Cellulose acetate Acetone/NaOH 5 20 15 L929 [312]

PEUU/gelatin HFIP 1.5 15 12.5 L929 [313]

PHB/gelatin HFIP 1.5 12 18 NIH 3T3/HaCaT [286]
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nanofibrous scaffold material was obtained. Tests

showed the coating improved the compressive

resistance of the material. Then the human adipose-

derived mesenchymal stem cells (hADMSCs) acti-

vated by TAZ transcription regulator were cultured

on the scaffold material, which further improved the

osteoconductivity of the material, developed osteo-

genic ability of the cells and promoted the formation

of bone. At the same time, it was found the concen-

tration of hydroxyapatite had a great impact on the

osteogenic ability, and its importance is self-evident.

Using hydroxyapatite–TSF composite nanoparticles

as the inner layer and pure tussah fibroin as the outer

layer, Shao et al. [254] prepared nanofibers with dif-

ferent core–shell mass ratio using coaxial electro-

spinning technology, which was conducive to the

proliferation and adhesion of MG-63 cells. Alkaline

phosphatase, osteocalcin and matrix mineralization

at different times were also measured, indicating the

materials made bone development and maturation

faster.

Skin Skin is the largest organ of the human body,

the first defense line of the matrix from dehydration,

injury and infection, and a barrier to prevent from

invading external microorganisms. The main func-

tions are protection, sensation, regulation of body

temperature, absorption, secretion and excretion,

respiration, metabolism and so on [275, 276]. Skin

tissue engineering is one of the most important

components in skin repair. Ideal skin repair materials

should have good biocompatibility, degradability,

mechanical properties and so on and need to ensure

the transport of gases and nutrients and prevent

bacterial infections as well as the loss of body fluids

and proteins [276, 277]. Electrospinning can prepare

nanofibers with similar structure to extracellular

matrix, which have the advantages of controllable

Table 2 continued

Material Solvent Flow

rate

(mL/h)

Distance

(cm)

Voltage

(kV)

Cells Reference

Silk fibroin/PEO/gold

nanoparticle

Water 0.8–2 13–23 12–19 L929 [314]

PLGA/collagen HFIP 1 17 28 HDF/HaCat [315]

Figure 14 Number of publications of some skin repair materials. All the data used are from web of science. The functions we used are

analyze results and create citation report.
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pore size, large specific surface area and good per-

meability. It is conducive to cell attachment, prolif-

eration and differentiation and is suitable for skin

repair [278–281]. Table 2 and Fig. 14 show that gela-

tin, hyaluronic acid and cellulose are of high concern

in skin repair. Gelatin, derived from partial hydrol-

ysis of collagen, is one of the commonly used natural

polymers. Its low molecular weight can make elec-

trospinning more stable and the nanofibers have

smoother and uniform morphology. It also has many

binding sites that are beneficial to cell adhesion,

proliferation and differentiation [282, 283]. However,

its poor mechanical properties limit its application in

skin repair and even tissue engineering. In recent

years, researchers have combined gelatin with keratin

[284], PCL [285], PHB [286], PU [287] and so on to

improve the mechanical properties of the materials,

which has a wider application in skin repair. For

example, Baghersad et al. [288] prepared gelatin/aloe

vera/PCL composite scaffolds using double-nozzle

electrospinning technology, studied the effect of

parameters on the performance and morphology of

nanofibers. They found the materials had high

antibacterial activity against both Gram-positive and

Gram-negative bacteria, while improving the cell

activity of NIH 3T3 fibroblast cells. In addition,

Adeli-Sardou et al. [285] prepared nanofibers using

coaxial electrospinning with PCL as shell polymer

and gelatin–lawsone blend as core polymer, and

found that they could significantly improve the bio-

logical activity of human gingiva fibroblast cells

(HGF) and promote cell adhesion and proliferation.

Then the in vitro gene expression of transforming

growth factor b (TGF-B1), collagen (COL1) and epi-

dermal growth factor (EGF) was monitored using RT-

qPCR technique, and it was believed the material

could effectively promote the regeneration of skin

tissue. Shi et al. [289] prepared nanofiber membranes

by mixing trimethoxysilylpropyl octadecyldimethyl

ammonium chloride (QAS) with PCL/gelatin

Table 3 Some progress of electrospinning in blood vessels in recent years

Material Solvent Flow rate

(mL/h)

Distance

(cm)

Voltage

(kV)

Cells Reference

PVA/alginate or chitosan Acetic acid/

DMSO

4 8 8 HMEC-1 [329]

PCL/Pluronic P123/cilostazol Chloroform/

methanol

2 15 10 HUVECs/PASM [330]

PU/gelatin/single-walled carbon nanotube HFIP 0.3 12 18 myocardial

myoblast/

endothelial cells

[331]

PU/cedarwood oil/cobalt nitrate DMF 0.3 20 11 HDF [332]

PCL/PLCL chloroform/

ethanol/acetic

acid

1.5 20 15 3T3 [333]

PCL/gelatin/cysteine-terminated REDV

peptide

TFE/acetic acid 0.4 15 10 VEC/L929 [334]

Acrylamide-terminated glycine–arginine–

glycine–aspartic peptides modified PEUU

HFIP 0.5–1 14 8.45–10 HUVECs [335]

Zinc oxide nanoparticles/poly(vinylidene

fluoride-trifluoroethylene)

Acetone 1.5 10 18 hMSCs [336]

PCU DMF/THF 1.5 13 16 MEF [337]

PCL/PU THF/DMF/MEK 1.1 20 15 EA.hy926 [338]

PCL/europium hydroxide nanorods chloroform/

methanol

1 15 18 HUVECs/EA.hy926 [339]

PET TFA/DCM 1.5 15 18 3T3 [340]

PU/PEG or PC THF/DMF 0.01 15 22–23 HUVECs [341]

PCL/gelatin TFE/acetic acid 1 20 20 hMSCs [342]

PU/PEG/cerium oxide nanoparticles/VEGF THF/DMF 0.8–1 10–15 8–10 EPCs [343]
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solution, and phase separation occurred. The nano-

fibers were mainly PCL inside and gelatin outside.

The materials had broad-spectrum bactericidal effect

and had no toxic side effects to L929 cells. They were

suitable for use as skin antimicrobial materials.

Blood vessels In recent years, cardiovascular disease

has been the leading cause of death among non-

communicable diseases. Atherosclerosis is one of the

main causes of cardiovascular diseases [316]. The

arteries are mainly composed of three layers: the

tunica intima, the tunica media and the tunica

adventitia. Among them, the tunica intima is the

main part of vascular repair materials [317]. Electro-

spinning has been extensively used in vascular repair

because of its controllable diameter and porosity of

the prepared nanofibers [317–319]. Besides biocom-

patibility and mechanical properties, vascular repair

materials also need to prevent thrombosis and vas-

cular calcification [320, 321]. Some recent progress in

electrospinning of blood vessels are listed in Table 3.

It can be seen from Fig. 15 that the heat of gelatin in

vascular repair has remained high, while PEG has

been on the top in recent years and received extensive

attention. PEG is a synthetic polymer with good

biocompatibility. However, their biodegradability

and mechanical strength are not ideal [322, 323]. But

relative to blood vessels, PEG has excellent hemo-

compatibility, can inhibit hemolysis and has a certain

anticoagulant capacity, can inhibit thrombosis, so it is

suitable for use as a vascular repair material

[324–327]. Yin et al. [328] used PEGylated chitosan

and PLCL mixed solution as the inner layer and

PLCL/PEG as the outer layer, and prepared nanofi-

ber materials by coaxial electrospinning technology.

They found the mechanical properties were good, the

strength was higher than that of human blood ves-

sels, the compliance was close to human blood ves-

sels, and the degradation rate was appropriate. The

patency of the material was studied by femoral artery

replacement model, and the positive endothelial cells

and smooth muscle cells grew well, with high levels

of related protein expression and good calcification,

and are suitable for vascular repair.

Nerves Neural repair is an important component of

tissue engineering, which is closely related to every-

one’s life [344–346]. The directionally aligned nano-

fibers prepared by electrospinning technology are

conducive to the growth of nerve cells [347] and may

have a good effect on cell synapses, which can be well

applied in nerve tissue repair. Besides orientation,

both morphology and surface coating of nanofibers

affect nerve regeneration [348–350]. Some recent

progress in electrospinning of nerves is listed in

Table 4. Figure 16 shows that there are many kinds of

nerve repair materials without obvious concentra-

tion, among which chitosan and cellulose have

become the hot spots in recent years. Interestingly,

these two materials are the two most abundant

Figure 15 Number of publications of some blood vessel repair materials. All the data used are from web of science. The functions we

used are analyze results and create citation report.
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polymers in nature [351, 352]. Cellulose is a natural

polymer produced by photosynthesis and is the most

abundant polymer in nature. It can be converted into

many derivatives, such as cellulose esters and cellu-

lose ethers, which have good biocompatibility

[353–355], and have better mechanical properties of

other natural polymers [356], which are suitable for

nerve conduit materials. Hou et al. [357] prepared

PLGA outer conduit by electrospinning technology to

bridge the sciatic nerve and then prepared oxidized

bacterial cellulose-collagen sponge fillers by freeze-

drying technology to facilitate nerve regeneration

Table 4 Some progress of electrospinning in nerves in recent years

Material Solvent Flow rate

(mL/h)

Distance

(cm)

Voltage

(kV)

Cells Reference

PLGA/Nimodipine THF/DMF 0.5–1 10–15 4.5–9 SW10/RN33B/C8-

D1A

[359]

PLLA Chloroform 2.08 5 15 Dorsal root ganglia [360]

PVA/poly(glycerol sebacate)/Kraft

lignin nanoparticle

Water/DMF 0.5 30 19 PC12 [361]

PDLLA/b-TCP/collagen DCM/ethyl acetate 0.8 15 3 RSC96 [362]

PCL Methanol/chloroform 5 20 12 Schwann cells/dorsal

root ganglions

[363]

PGS/PLLA DMF/DCM 0.5 15 25 A59 [364]

PLLA/NGF/VEGF Dichloromethane/span-

80/methanol/water

0.8 12 16 iPSCs-NCSCs [365]

PLA/cellulose acetate 1, 4-dioxane/acetone 1 10 18 Schwann cells [366]

PCU DMF/THF 1 15 20 DPSCs [367]

PCL/collagen/nano bioglass Acetic acid 1 8 15–18 hEnSCs [368]

PVDF/gold colloidal nanoparticles DMAC/acetone 0.5 18 15 PC-12 [369]

Silk fibroin/PEO Water 1.2 14 12 Schwann cells [370]

PLLA/gum tragacanth HFP 1 14 13 PC12 [371]

PGS-poly(ethylene glycol) methyl

ether methacrylate copolymers

HFP 1 15 10 PC12 [372]

PS THF/DMF 0.2 4–5 5–14 U373 [373]

PELA-PPY Trifluoroethanol 1 15 20 PC-12 [374]

Figure 16 Number of

publications of some nerve

repair materials. All the data

used are from web of science.

The functions we used are

analyze results and create

citation report.
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Table 5 Some progress of electrospinning in drug delivery in recent years

Material Solvent Flow

rate

(mL/h)

Distance

(cm)

Voltage

(kV)

Type Drug Reference

Cellulose acetate/gliadin HFIP/TFA 0.1–0.5 20 15 Coaxial Ferulic acid [396]

Hydroxypropyl-beta-cyclodextrin Water 0.5 15 15 Blend Ibuprofen [397]

PLA/PVP/multiwall carbon nanotubes DMF/THF 0.3–1 22.5 15 Blend Tetracycline

hydrochloride

[398]

PCL/PEO DCM/DMF 0.1–0.6 10–15 12/15 Blend Doxycycline [399]

poly(glycolide-e-caprolactone)/PLGA DCM 2 15 20 Blend papaverine

hydrochloride

[400]

Poly(N-isopropylacrylamide)/Eudragit

L100-55

Ethanol 1 20 16 Blend Ketoprofen [401]

Carboxylated cellulose

nanocrystals/cellulose acetate

acetone/

DMAc

1 15 25 Blend Tetracycline

hydrochloride

[402]

PLA/PCL DCM/DMF 2 15 20/25 Blend Bovine serum

albumin

[403]

PCL Chloroform/

methanol

2 15 10 Blend Cilostazol [404]

Silk fibroin/gelatin Formic acid 0.3 10 20 Blend Thyme essential

oil/doxycycline

monohydrate

[405]

Sodium carboxymethyl cellulose/methyl

acrylate/PEO

DMF/

chloroform/

methanol

3 18 18 Coaxial Tetracycline

hydrochloride

[406]

PVA/chitosan/functionalized graphene oxide Acetic acid 0.6 14 22 Blend Curcumin [407]

Ethyl hydroxy ethyl cellulose or

hydrophobically modified ethyl hydroxy

ethyl cellulose/PVA/citric acid

THF 0.2 15 27 Blend Chlorhexidine

Digluconate

[408]

PLA/PVA DMF/

chloroform

1.5 9 15 Blend Dexamethasone [409]

Sodium carboxymethyl cellulose/PEO/

methyl acrylate

DMF/

chloroform/

methanol

3/0.4 18 15 Coaxial/

Blend

Tetracycline

hydrochloride

[406]

PCL-PEG-PCL DCM/hexane 6 12 18 Blend Magnetic iron

oxide

nanoparticles

[410]

Poly(3-

hydroxybutyrate-co-3-

hydroxyvalerate)/cellulose nanocrystals

DMF/

chloroform/

acetone

1 18 15 Blend Tetracycline

hydrochloride

[411]

PVA/montmorillonite Acetic acid 1–10 10–25 10–25 Blend Bovine serum

albumin

[412]

Zein Ethanol 0.12 12 24 Blend Progesterone [413]

Glutinous rice starch/PVA Water 0.3 15 18–20 Blend Chlorpheniramine

maleate

[414]

PEG/PLGA/Au@Fe2O3 nanoparticles DMF/DCM 1 15 30 Coaxial Silibinin [415]

PLLA HFIP 0.6 12 15 Blend Lovastatin [416]

TPU DMF 1 20 13 Blend Naproxen [417]

PCL/gum tragacanth Acetic acid 1 15 15 Blend Curcumin [418]

Chitosan/phospholipids TFA/DCM 1.2 10 25 Blend Vitamin B12/

curcumin/

diclofenac

[419]
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across the injured nerve gap. When combined into

nerve conduit, it can increase the efficiency of gap

bridge rebuilding and effectively promote the func-

tional restoration of gastrocnemius muscle. Farzam-

far et al. [358] mixed gelatin and cellulose for

electrospinning and added gabapentin, a drug that

can promote nerve remyelination, and found that it

can improve the activity of Schwann cells and pro-

mote their proliferation. The regeneration effect of

sciatic nerve was indirectly evaluated using rat gas-

trocnemius muscles and found the material can

improve the regeneration ability of the injured site.

However, the porosity of this material does not meet

the requirements of ideal scaffolds.

Drug delivery

Drug delivery refers to the use of carriers to transport

drugs or biomolecules to certain areas, controllably

release drugs and improve regional drug concentra-

tion [375–377]. Nanofibers have many advantages,

such as large specific surface area, high drug loading,

high porosity, high mechanical strength, easy surface

modification and functionalization, and have been

widely used to treat various diseases [378–380]. The

diameter, porosity and drug binding mechanism of

nanofibers all affect the drug release rate

[102, 381–383]. There are two main methods, hybrid

electrospinning and coaxial electrospinning, to com-

bine drugs, as shown in Table 5 [384, 385]. As shown

Fig. 17, PEG and chitosan are the main materials for

Table 5 continued

Material Solvent Flow

rate

(mL/h)

Distance

(cm)

Voltage

(kV)

Type Drug Reference

PCL Chloroform/

methanol

0.5/0.6 9 12 Coaxial Ampicillin [420]

PU/hydroxypropyl cellulose DMF 1 15 15 Blend Donepezil [421]

PVA/collagen Acetic acid 0.4 15 18 Blend Salicylic acid [422]

PVA/sodium alginate Water 0.3 10 14 Blend Moxifloxacin

hydrochloride

[423]

Gelatin Acetic acid 0.3 10 12 Blend Piperine [424]

Figure 17 Publications of drug delivery materials. All the data used are from web of science. The functions we used are analyze results

and create citation report.
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drug delivery. Chitosan, a polysaccharide made by

deacetylation of chitin, has been used in drug deliv-

ery in various forms such as films [386], microspheres

[387], hydrogels [388] and nanofibers [389]. However,

electrospinning of chitosan is difficult and needs to

be compounded with other materials, such as PVA

Figure 18 Number of publications and times cited on electrospinning in diagnosis. All the data used are from web of science. The

functions we used are analyze results and create citation report.

Figure 19 Number of publications and times cited on electrospinning in energy. All the data used are from web of science. The functions

we used are analyze results and create citation report.
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[390], pullulan [391] and xanthan gum [392]. Using

electrospinning PVA/chitosan-loaded tetracycline

hydrochloride (TCH), Alavarse et al. [393] found the

drug could be evenly distributed and the material

had good antibacterial property and cell compatibil-

ity. Balagangadharan et al. [394] developed a new

approach by using ionic gelation technique to pre-

pare sinapic acid/chitosan nanoparticles loaded on

electrospun PCL nanofibers, which could promote

the differentiation of osteoblasts, increase the

expression levels of ALP, type Icollagen and osteo-

calcin. They further analyzed the effects of materials

on the osteogenesis process and found that they

actived various signaling pathways, such as TGF-b,

BMP and FGF2. The calvarial bone defects in rats also

showed the effect of materials to promote bone

regeneration. In addition, Fazli et al. [395] mixed

fumed silica nanoparticles with cefazolin and added

them into chitosan–PEO solution for electrospinning

to obtain nanofibrous mats. The results showed that

drug molecules were coated by nanoparticles, and

the nanofiber membranes had higher thermal stabil-

ity, acid–base stability, tensile strength and better

antimicrobial effect, and can promote skin healing.

Diagnosis

Medical diagnosis is of great importance in the early

stage of disease. Medical diagnostic indicators are

characterized by specificity and sensitivity. Biosen-

sors are important in medical diagnosis. They have

the advantages of low cost, fast detection speed,

convenience and small side effects. The high specific

surface area of nanofibers can improve the detection

sensitivity. The biosensors prepared by electrospin-

ning nanofibers mainly include electrochemical

biosensors, organic gas sensors, fluorescent chemical

sensors and immunosensors. As shown in Fig. 18,

there are more researches on the application of elec-

trospinning technology in medical diagnosis this

year. Electrochemical sensors are mainly used for the

molecular biological detection of glucose [425–427],

proteins [428–430] and genes [431], which are gen-

erally composed of the working electrode, counter

electrode and reference electrode [432]. Organic gas

sensors mainly sense some specific volatile organic

compounds, such as aromatic amines [433],

acetaldehyde [434] and ammonia. They can be used

for the diagnosis of lung cancer, kidney disease

[435, 436] and so on. Cancer cells can also be diag-

nosed by detecting the oxygen concentration

[437, 438]. Using tin dioxide and PEO as raw

Figure 20 Number of publications and times cited on electrospinning in catalysis. All the data used are from web of science. The

functions we used are analyze results and create citation report.
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materials, Mehrabi et al. [439] developed a sensor for

methanol and tetrahydrocannabinol (THC) by elec-

trospinning, which can recognize smokers. Fluores-

cent chemical sensors are mainly used to detect

amines in solution [440]. Immunosensors target

antigens and antibodies [440]. In addition, Zhao et al.

[441] developed a pulse measurement device that can

be used to monitor heart rate using the piezoelectric

characteristics of PLLA nanofibers along the fiber

direction (d33). For cancer cells, targeting molecules

include antibodies [442], DNA aptamers [443], E-se-

lectins [444] and peptides, and modification methods

include covalent coupling [445] and biotin–strepta-

vidin-specific binding [446]. However, because tar-

geting molecules mostly employed for only a single

phenotype of cancer cells, the capture efficiency for

multiple types of cancer cells is limited [446].

Pimentel et al. [447] developed a PLLA membrane-

based microfluidic substrate for colorimetric detec-

tion of glucose, which has many advantages over

conventional paper-based substrates. Xu et al. [448]

developed a hyaluronic acid and PLGA nanofibers

microfluidic chip that can selectively capture

CD44 ? carcinoma of various origins, especially for

HeLa cancer cells and its effectiveness, which can be

separated for further analysis.

Energy

Nanomaterials are considered as good advanced

materials in the energy field because of their good

interfacial chemical reaction rate and easy conduction

of charges because of nanosize effect [449–451]. In

recent years, there have been many review articles on

the application of electrospun nanofibers in energy,

which have attracted much attention as shown in

Fig. 19 [62, 452–456]. New devices in the energy field

include solar cells, fuel cells, lithium-based batteries,

sodium-ion batteries and supercapacitors. Lithium-

ion batteries, lithium–sulfur batteries and lithium–

oxygen batteries, collectively known as lithium-based

batteries, are one of the most important energy stor-

age devices. The advantages of nanofibers, such as

electrochemical activity, mechanical strength, specific

surface area and porosity, indicate that they can

improve many shortages of traditional energy storage

devices. Wu et al. [457] constructed a core–shell

structure of silicon/honeycomb-like carbon frame-

work composite fibers using coaxial electrospinning

technology, which showed stable cycle performance

and high specific capacity, and was a good anode

material. Darbar et al. [458] compared the differences

between oxalate decomposition method and electro-

spinning method for preparing magnesium cobalt

oxide negative electrode material, and found the

negative electrode material prepared by electrospin-

ning method had better cycling performance. Fuel

cells include proton exchange membrane fuel cells,

methanol fuel cells, alkaline fuel cells, phosphoric

acid fuel cells, solid oxide fuel cells and molten car-

bonate fuel cells. Park et al. [459] prepared perfluo-

rosulfonic acid (PFSA)/polyphenylsulfone (PPSU)

composite nanofiber membranes with high ion con-

ductivity, which are good electrode materials for fuel

cells. Supercapacitors can be divided into electrical

double-layer supercapacitors and pseudocapacitors

(Faradaic supercapacitors) [460]. Kabir et al. [461]

studied Fe–N-C platinum group metal-free nanofiber

electrodes and found the electric double-layer

capacitance increased, the electrode proton transport

reduced, and the bulk electrode gas transport prop-

erties improved significantly. Pant et al. [462] also

studied the electrode materials of supercapacitors.

They used titanium dioxide nanoparticles embedded

in carbon nanofibers, and their performance was

improved. Li et al. [463] prepared ordered meso-

porous carbons fiber webs using low molecular resin

as carbon precursors, F127 as structure directed agent

and PVP as fiber forming agent. They can be directly

used as electrode materials of supercapacitor without

binders or conductive additives and has high specific

capacitance. In addition, the characteristics of elec-

trospun nanofibers make them widely used in the

field of oil–water separation. The oil–water separa-

tion permeability of electrospinning nanofiber mem-

brane is high, the separation efficiency is high and the

energy consumption is low [464]. Obaid et al. [465]

incorporated NaOH nanoparticles into PSF nanofi-

bers and a layer of polyamide film on the surface of

PSF nanofiber mats by interfacial polymerization of

MPD and TMC. The results show that the contact

angle of the modified membrane is obviously

reduced, and the membrane has good hydrophilicity

and permeability, high water flux and can be reused.

Li et al. [466] prepared two smart membranes

through solution-casting method and electrospinning

technology, respectively, based on temperature-re-

sponsive copolymer PMMA-b-PNIPAAm and found

that the electrospinning membrane has obvious

advantages.
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Catalysis

In recent years, there are more and more applications

of electrospinning in catalysis, as shown in Fig. 20.

Because the morphology, particle size and structure

of the catalyst will affect its activity, the specific

surface area, pore size, porosity and uniformity of

electrospun nanofibers have great advantages. Some

nanofibers can be directly used as catalysts after

chemical treatment. In addition, catalyst immobi-

lization on the surface of nanofibers is also widely

used [467]. Nanofiber catalysts can be mainly divided

into polymers, metals and oxides according to the

materials. Nanofibers can immobilize enzymes [468],

metals [469] and oxides [67, 470, 471]. Ternero-Hi-

dalgo et al. [472] prepared V-Zr-O submicron fibers

by electrospinning, which can be widely used in

partial oxidation of alkanes. Lu et al. [473] prepared

PAN/iron nitrate nanofibers and then converted

them into carbon/iron nanofibers by one-pot car-

bonization process, which can be used as nanoad-

sorbents for Cr(VI). Xu et al. [474] prepared cellulose

nanofibers and then deposited silver nanoparticles on

the surface of the fibers, which was conducive to the

reduction of p-nitrophenol. In addition, Hu et al. [475]

used electrospun PVA/PEI nanofibers loaded with

Au/Ag bimetallic nanoparticles to reduce 4-nitro-

phenol. Ma et al. [470] prepared PVP/[PW12-

? Ti(OC4H9)4] composite nanofibers, which showed

good desulfurization catalytic performance. NiO

nanofibers were prepared by Hosseini et al. [476],

which were effective for ethylene glycol oxidation

after modification of carbon paste electrodes. Hos-

seini et al. [67] also prepared PVA/Cu(OAc)2-

Ni(OAc)2 composite nanofibers to improve the elec-

trocatalytic activity of the modified electrode. Inter-

estingly, Chen et al. [477] prepared a kind of Fe3O4

nanofibers as peroxidase mimics with good catalytic

activity for the oxidation of 3,3’,5,5’-tetramethylben-

zidine (TMB) by hydrogen peroxide.

Conclusion

Over the past years, because of the rapid develop-

ment of nanotechnology, electrospinning as a nano-

material processing technology has been widely used

in various fields, especially in tissue engineering. The

outbreak of COVID-19 brings opportunities for elec-

trospinning nanofibers. Researchers have found that

the nanofibers as active layers in face mask can pro-

tect people from the coronavirus disease (COVID-

19)[478]. Some scholars summarized the advantages

and prospects of the application of electrospun

nanofibers in advanced face masks [479]. Electro-

spinning has the characteristics of wide source of raw

materials, simple process, small fiber diameter, small

pore size and high porosity, and can be used as the

preferred method for researchers to prepare nanofi-

bers. In addition, researchers can also control the

morphology and diameter of nanofibers by adjusting

parameters, including solution parameters, process-

ing parameters and ambient parameters. However,

the influence of some parameters on nanofibers is still

controversial, such as the effect of applied voltage on

fiber diameter. However, in general, electrospinning

has made some progress and applications in biome-

dicine, energy and catalysis in recent years. Among

these, researchers paid more attention to natural

polymers, such as gelatin, chitosan and the composite

of synthetic polymers, which can improve the bio-

logical and mechanical properties of materials at the

same time. In addition, electrospinning has a set of

physical theories to simulate the process of electro-

spinning and the influence of research parameters on

nanofibers, not only in experiments, but also in the-

oretical research. With the development of computer

technology, artificial intelligence and big data, it is

believed the simulation method will be more applied

in electrospinning technology to control and predict

the morphology and performance for complex pro-

cesses and parameters. However, although electro-

spinning has received more and more attention and

research, this technology still has many shortcomings

and development space, such as: (a) In principle, the

influence of some parameters on electrospun nano-

fibers is not clear, such as the applied voltage, the

optimal value of each parameter of each material is a

complex but meaningful study. (b) As for equipment,

the production speed of electrospinning is still a

disadvantage to limit its large-scale production and

application. Some researchers believed the produc-

tivity of nanofibers increases with the number of

needles, but in fact, the space occupied by the nozzles

will also increase, the cost will be higher, and there

will be electric field interference between the nozzles.

(c) The choice of solvent also made researchers dis-

tressed, because most of the organic solvents are

biotoxic, although in the later process can be removed

by various means, but there are still concerns for
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consumers. (d) Although electrospinning is widely

used in many fields, it has not been applied to all

aspects of life, such as magnetic properties of elec-

trospun nanofibers, gradient scaffold materials and

semiconductor-related applications. In this paper, the

parameters, models, simulation and applications of

electrospinning technology are discussed and sum-

marized. It is hoped that these information can help

researchers develop ideas and make progress in sci-

entific research.
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[359] Zech J, Leisz S, Göttel B, Syrowatka F, Greiner A, Strauss

C, Knolle W, Scheller C, Mäder K (2020) Electrospun
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