Skip to main content

Advertisement

Log in

Electrospun antimicrobial microfibrous scaffold for annulus fibrosus tissue engineering

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this study, polycaprolactone (PCL) microfibrous scaffolds with berberine were fabricated to mimic the natural extracellular matrix (ECM) architecture and provide antimicrobial activity for annulus fibrosus tissue engineering. Morphological characterization showed that there was a significant decrease of the average fiber diameter in the berberine-loaded microfibrous scaffolds (B-MFS, 0.40 ± 0.02 μm) compared with that of the non-drug-loaded microfibrous scaffolds (MFS, 1.89 ± 0.15 μm). The antimicrobial activity, drug release profile, and biocompatibility of the scaffolds were evaluated. The B-MFS displayed excellent antimicrobial activities against Gram-positive bacteria (S. aureus 6538), Gram-negative bacteria (E. coli 15597), fungus (C. albicans 10231) and drug-resistant bacteria (methicillin-resistant S. aureus BAA-811, or MRSA BAA-811). After seeding with porcine AF cells, the in vitro biocompatibility of the scaffolds was determined by measuring cell attachment, cell proliferation, and ECM production. Total cell number, sGAG and collagen content gradually increased from day 1 to day 7 in both groups. When compared to MFS, the B-MFS group displayed higher levels of cell proliferation throughout the experimental period. These results indicate that PCL microfibrous loaded with berberine are novel biocompatible scaffolds with a broad-spectrum antimicrobial activity for AF tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Elliott DM, Setton LA (2000) J Biomech Eng 122(2):173

    Article  CAS  Google Scholar 

  2. Koepsell L, Zhang L, Neufeld D, Fong H, Deng Y (2011) Macromol Biosci 11(3):391

    Article  CAS  Google Scholar 

  3. Acosta FL Jr, Lotz J, Ames CP (2005) Neurosurg Focus 19(3):E4

    Article  Google Scholar 

  4. Mauth C, Bono E, Haas S, Paesold G, Wiese H, Maier G et al (2009) Eur Cell Mater 18:27

    CAS  Google Scholar 

  5. Bowles RD, Williams RM, Zipfel WR, Bonassar LJ (2010) Tissue Eng Part A 16(4):1339

    Article  CAS  Google Scholar 

  6. Koepsell L, Remund T, Bao J, Neufeld D, Fong H, Deng Y (2011) J Biomed Mater Res Part A 99A(4):564

    Article  CAS  Google Scholar 

  7. Barnes CP, Sell SA, Boland ED, Simpson DG, Bowlin GL (2007) Adv Drug Deliv Rev 59(14):1413

    Article  CAS  Google Scholar 

  8. Wang Y, Yan Y, Cui J, Hosta-Rigau L, Heath JK, Nice EC et al (2010) Adv Mater 22(38):4293

    Article  CAS  Google Scholar 

  9. Liu H, Leonas KK, Zhao Y (2010) J Eng Fiber Fabr 11:1024

    Article  CAS  Google Scholar 

  10. Grafahrend D, Calvet JL, Klinkhammer K, Salber J, Dalton PD, Moller M et al (2008) Biotechnol Bioeng 101(3):609

    Article  CAS  Google Scholar 

  11. Sahoo S, Ang LT, Goh JC, Toh SL (2009) J Biomed Mater Res A 93(4):1539

    Google Scholar 

  12. Zhu B, Ahrens F (1983) Eur J Pharmacol 96(1–2):11

    Article  CAS  Google Scholar 

  13. He CL, Huang ZM, Han XJ (2009) J Biomed Mater Res A 89(1):80

    Google Scholar 

  14. Jang JH, Castano O, Kim HW (2009) Adv Drug Deliv Rev 61(12):1065

    Article  CAS  Google Scholar 

  15. Calderone RR, Garland DE, Capen DA, Oster H (1996) Orthop Clin North Am 27(1):171

    CAS  Google Scholar 

  16. Glassman SD, Dimar JR, Puno RM, Johnson JR (1996) Spine (Phila Pa 1976) 21(18):2163

    Article  CAS  Google Scholar 

  17. Griffiths HJ (1995) Radiol Clin North Am 33(2):401

    CAS  Google Scholar 

  18. Levi AD, Dickman CA, Sonntag VK (1997) J Neurosurg 86(6):975

    Article  CAS  Google Scholar 

  19. Massie JB, Heller JG, Abitbol JJ, McPherson D, Garfin SR (1992) Clin Orthop Relat Res 284:99

    Google Scholar 

  20. Muschik M, Luck W, Schlenzka D (2004) Eur Spine J 13(7):645

    Article  Google Scholar 

  21. Poelstra KA, Barekzi NA, Slunt JB, Schuler TC, Grainger DW (2000) Tissue Eng 6(4):401

    Article  CAS  Google Scholar 

  22. Theiss SM, Lonstein JE, Winter RB (1996) Orthop Clin North Am 27(1):105

    CAS  Google Scholar 

  23. Wang Y, Zhang XS, Xiao SH (2006) Zhonghua Yi Xue Za Zhi. 86(25):1737

    Google Scholar 

  24. Amato V, Giannachi L, Irace C, Corona C (2010) J Neurosurg Spine 12(3):306

    Article  Google Scholar 

  25. Korovessis P, Repantis T, Zacharatos S, Zafiropoulos A (2009) Eur Spine J 18(6):830

    Article  Google Scholar 

  26. Lenke LG, O’Leary PT, Bridwell KH, Sides BA, Koester LA, Blanke KM (2009) Spine (Phila Pa 1976) 34(20):2213

    Article  Google Scholar 

  27. Mok JM, Cloyd JM, Bradford DS, Hu SS, Deviren V, Smith JA et al (2009) Spine (Phila Pa 1976) 34(8):832

    Article  Google Scholar 

  28. Suratwala SJ, Pinto MR, Gilbert TJ, Winter RB, Wroblewski JM (2009) Spine (Phila Pa 1976) 34(10):E351

    Article  Google Scholar 

  29. Kim JI, Suh KT, Kim SJ, Lee JS (2010) J Spinal Disord Tech 23(4):258

    Article  Google Scholar 

  30. Cahill PJ, Warnick DE, Lee MJ, Gaughan J, Vogel LE, Hammerberg KW et al (2010) Spine (Phila Pa 1976) 35(12):1211

    Google Scholar 

  31. Tambornino JM, Armbrust EN, Moe JH (1964) J Bone Joint Surg Am 46:313

    CAS  Google Scholar 

  32. Lonstein J, Winter R, Moe J, Gaines D (1973) Clin Orthop Relat Res 96:222

    Article  Google Scholar 

  33. Naderi S, Acar F, Mertol T (2003) Neurosurg Focus 15(3):E15

    Article  Google Scholar 

  34. Andreshak TG, An HS, Hall J, Stein B (1997) J Spinal Disord 10(5):376

    Article  CAS  Google Scholar 

  35. Cui WG, Zhou Y, Chang J (2010) Sci Technol Adv Mater 11(1):014108

    Article  Google Scholar 

  36. Kuo CL, Chi CW, Liu TY (2004) Cancer Lett 203(2):127

    Article  CAS  Google Scholar 

  37. Kuo HP, Chuang TC, Yeh MH, Hsu SC, Way TD, Chen PY et al (2011) J Agric Food Chem 59(15):8216

    Article  CAS  Google Scholar 

  38. Yu HH, Kim KJ, Cha JD, Kim HK, Lee YE, Choi NY et al (2005) J Med Food 8(4):454

    Article  CAS  Google Scholar 

  39. Sell S, Barnes C, Simpson D, Bowlin G (2008) J Biomed Mater Res A 85(1):115

    Google Scholar 

  40. Luo J, Deng Y, Sun YY (2010) J Biol Chem 25(2):185

    CAS  Google Scholar 

  41. Wang X, Qiu S, Yao X, Tang T, Dai K, Zhu Z (2009) J Orthop Res 27(11):1487

    Article  CAS  Google Scholar 

  42. Nies AT, Herrmann E, Brom M, Keppler D (2008) Naunyn Schmiedebergs Arch Pharmacol 376(6):449

    Article  CAS  Google Scholar 

  43. Wikler MA, Low DE, Cockerill FR, Sheehan DJ, Craig WA, Tenover FC (2006) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard 7th ed Document M7-A7, vol 29, M07-A08. CLSI, Wayne, PA

  44. Wang X, Yao X, Zhu Z, Tang T, Dai K, Sadovskaya I et al (2009) Int J Antimicrob Agents 34(1):60

    Article  Google Scholar 

  45. Wilda H, Gough JE (2006) Biomaterials 27:5220

    Article  CAS  Google Scholar 

  46. Wilda H, Merry CLR, Blaker JJ, Gough JE (2007) Biomaterials 28:2010

    Article  Google Scholar 

  47. Kim YJ, Sah RL, Doong JY, Grodzinsky AJ (1988) Anal Biochem 174(1):168

    Article  CAS  Google Scholar 

  48. Zussman E (2010) Polym Adv Technol 22:366

    Article  Google Scholar 

  49. Rosso F, Marino G, Giordano A, Barbarisi M, Parmeggiani D, Barbarisi A (2005) J Cell Physiol 203(3):465

    Article  CAS  Google Scholar 

  50. De Vrieze S, Van Camp T, Nelvig A, Hagström B, Westbroek P, De Clerck K (2009) J Mater Sci Mater Med 44:1357

    Google Scholar 

  51. Kim K, Luu YK, Chang C, Fang D, Hsiao BS, Chu B et al (2004) J Control Release 98(1):47

    Article  CAS  Google Scholar 

  52. Zong XH, Kim K, Fang D, Ran SF, Hsiao BS, Chu B (2002) Polymer 43(16):4403

    Article  CAS  Google Scholar 

  53. Beachley V, Wen XJ (2009) Mater Sci Eng C 29(3):663

    Article  CAS  Google Scholar 

  54. Pham QP, Sharma U, Mikos AG (2006) Tissue Eng 12(5):1197

    Article  CAS  Google Scholar 

  55. Bretcanu O, Misra SK, Yunos DM, Boccaccini AR, Roy I, Kowalczyk T et al (2009) Mater Chem Phys 118:420

    Article  CAS  Google Scholar 

  56. Sill TJ, von Recum HA (2008) Biomaterials 29(13):1989

    Article  CAS  Google Scholar 

  57. Yu DG, Zhu LM, White K, B-W C (2009) Electrospun nanofiber-based drug delivery systems Health 1:67

    Google Scholar 

  58. Coates PM, Blackman MR, Cragg GM, Levine M, Moss J, White JD (2005) Encyclopedia of dietary supplements. Marcel Dekker, New York, p 121

    Google Scholar 

  59. Singh T, Vaid M, Katiyar N, Sharma S, Katiyar SK (2011) Carcinogenesis 32(1):86

    Article  CAS  Google Scholar 

  60. Zhang D, Li A, Xie J, Ji C (2009) Aquac Res 41:1095

    Google Scholar 

  61. Willershausen B, Lemmen C, Hamm G (1991) Dtsch Zahnarztl Z 46(10):668

    CAS  Google Scholar 

Download references

Acknowledgements

This research was partially supported by the Biomedical Engineering (BME) Program at the University of South Dakota. The authors would also acknowledge the South Dakota Board of Regents Competitive Research Grant Award (No. SDBOR/USD 2011-10-07) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuyu Sun or Ying Deng.

Additional information

Jing Bao and Wei Lv contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bao, J., Lv, W., Sun, Y. et al. Electrospun antimicrobial microfibrous scaffold for annulus fibrosus tissue engineering. J Mater Sci 48, 4223–4232 (2013). https://doi.org/10.1007/s10853-013-7235-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7235-7

Keywords

Navigation