Skip to main content
Log in

Influence of peak temperature during in-service welding of API X70 pipeline steels on microstructure and fracture energy of the reheated coarse grain heat-affected zones

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this investigation, thermal simulated specimens were used to investigate the effect of second peak temperature during in-service welding on characteristic fracture energy and microstructure feature of the subcritically (SC), intercritically (IC), supercritically (SCR), and unaltered (UA) reheated coarse grain heat-affected zones (CGHAZs). The API X70 high-strength pipeline micro-alloyed steel was subjected to processing during in-service welding by applying double thermal cycle shielded metal arc welding process with heat input of 9.3 kJ/cm and thermal cycles to simulate microstructure of reheated CGHAZs. This consisted of first thermal cycle with a peak temperature of 1350 °C, then reheating to different second peak temperatures of 600, 800, 1000, and 1200 °C with a constant cooling rate of 60 °C/s. Toughness of the simulated reheated CGHAZs were assessed using Charpy impact testing at −20 °C, and the corresponding fractographs, optical micrographs, and electron micrographs have been examined. It is found that accelerating cooling rate during in-service welding has an improving effect on the microstructure of CGHAZs. Owing to small heat-input and accelerating cooling, the grain size in reheated CGHAZs is relatively small and the brittle microphases are eliminated or minimized. The Charpy impact results show that the CGHAZ fracture energy is improved after the second thermal cycle. The SC CGHAZ showed higher absorbed impact energy and the IR CGHAZ had less absorbed energy, but the phenomenon of embrittlement in IR CGHAZ is not serious. Therefore, it can be concluded that the fracture energy of CGHAZ and IR CGHAZ can be improved by accelerating cooling with appropriate cooling rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Shin SY, Hwang B, Lee S, Kim NJ, Ahn SS (2007) Mater Sci Eng A 458(1–2):281. doi:10.1016/j.msea.2006.12.097

    Google Scholar 

  2. Corbett K, Bowen R, Petersen C (2004) Int J Offshore Polar Eng 14(1):105

    Google Scholar 

  3. Koo JY, Luton MJ, Bangaru NV, Petkovic RA, Fairchild DP, Petersen CW, Asahi H, Hara T, Terada Y, Sugiyama M, Tamehiro H, Komizo Y, Okaguchi S, Hamada M, Yamamoto A, Takeuchi I (2004) Int J Offshore Polar Eng 14(1):10

    Google Scholar 

  4. Xiao F-R, Liao B, Shan Y-Y, Qiao G-Y, Zhong Y, Zhang C, Yang K (2006) Mater Sci Eng A 431(1–2):41. doi:10.1016/j.msea.2006.05.029

    Google Scholar 

  5. Lee CH, Bhadeshia HKD H, Lee HC (2003) Mater Sci Eng A 360(1–2):249. doi:10.1016/s0921-5093(03)00477-5

    Google Scholar 

  6. Pan T, Yang ZG, Zhang C, Bai BZ, Fang HS (2006) Mater Sci Eng A 438–440:1128. doi:10.1016/j.msea.2006.02.078

    Google Scholar 

  7. Ju J-B, Lee J-S, Jang J-i (2007) Mater Lett 61(29):5178. doi:10.1016/j.matlet.2007.04.007

    Article  CAS  Google Scholar 

  8. Zhou Z, Liu S (1998) Acta Metall Sin-Engl Lett 11(2):87

    CAS  Google Scholar 

  9. Lee S, Kim B, Kwon D (1992) Metall Mater Trans A 23(10):2803. doi:10.1007/bf02651759

    Article  Google Scholar 

  10. Li Y, Crowther D, Green M, Mitchell P, Baker T (2001) Isij Int 41(1):46

    Article  CAS  Google Scholar 

  11. Bayraktar E, Kaplan D (2004) J Mater Process Tech 153–154:87. doi:10.1016/j.jmatprotec.2004.04.021

    Article  Google Scholar 

  12. Jang J-i, Ju J-B, Lee B-W, Kwon D, Kim W-S (2003) Mater Sci Eng A 340(1–2):68. doi:10.1016/s0921-5093(02)00190-9

    Google Scholar 

  13. Suzuki S, Kamo T, Komizo Y (2009) Weld Int 23(6):397

    Article  Google Scholar 

  14. Yang Z, Sista S, Elmer JW, DebRoy T (2000) Acta Mater 48(20):4813. doi:10.1016/s1359-6454(00)00279-2

    Article  CAS  Google Scholar 

  15. Sun W, Wang G, Zhang J, Xia D, Sun H (2009) J Mater Sci Technol 25(06):857

    CAS  Google Scholar 

  16. Qiu H, Mori H, Enoki M, Kishi T (2000) Metall Mater Trans A 31(11):2785

    Article  Google Scholar 

  17. Andrews KW (1965) J Iron Steel Inst 203:721

    CAS  Google Scholar 

  18. John P (2002) In: Leigh F (ed) X80 pipeline cost workshop, Hobart

Download references

Acknowledgements

The research was partially supported by the National Natural Science Foundation of China (51074174) and the Innovation Fund for Doctors of China University of Petroleum (B2009-13).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, C., Wang, Y. & Chen, Y. Influence of peak temperature during in-service welding of API X70 pipeline steels on microstructure and fracture energy of the reheated coarse grain heat-affected zones. J Mater Sci 46, 6424–6431 (2011). https://doi.org/10.1007/s10853-011-5592-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5592-7

Keywords

Navigation