Skip to main content
Log in

An advanced nano-composite cation-exchanger polypyrrole zirconium titanium phosphate as a Th(IV)-selective potentiometric sensor: preparation, characterization and its analytical application

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Polypyrrole has emerged as one of the highly pursued conducting polymers owing to its high electrical conductivity and good environmental stability. In spite of its excellent electrical properties, the chemical and thermal stability and processability are not very satisfactory. The incorporation of a polymer material into an inorganic ion-exchanger provides a high class of hybrid ion-exchangers with enhanced ion-exchange properties, high reproducibility, high stability, and good selectivity for heavy metals. A novel organic–inorganic composite-polypyrrole zirconium titanium phosphate has been synthesized using zirconium titanium phosphate, which is an advanced inorganic ion-exchange material with the qualities listed above. The physicochemical properties of this composite material are characterized by X-ray, TGA–DTA, AAS, FTIR, SEM, and TEM. The ion-exchange capacity, pH titrations, elution, and chemical stability were determined to study ion-exchange properties of the material. Distribution studies for various metal ions revealed that the nano-composite is highly selective for Th(IV). An ion-selective membrane electrode was fabricated using this material for the determination of Th(IV) ions in solutions. The analytical utility of this electrode was established by employing it as an indicator electrode in electrometric titrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Judeinstein P, Sánchez C (1996) J Mater Chem 6:511

    Article  CAS  Google Scholar 

  2. Ruiz-Hitzky E, Casal B, Aranda P, Galván JC (2001) Rev Inorg Chem 21:125

    CAS  Google Scholar 

  3. Laine RM, Sánchez C, Brinker CJ, Giannelis E (eds) (1998) Organic/inorganic hybrid materials, Materials Research Society symposium proceedings, vol 519. Materials Research Society, Warrendale

  4. Klein LC, Francis LF, De Guire MR, Mark JE (eds) (1999) Organic/inorganic hybrid materials II, Materials Research Society symposium proceedings, vol 576. Materials Research Society, Warrendale

  5. Demirel A, Dogan A, Canel E, Memon S, Yilmaz M, Kilic E (2004) Talanta 62:123

    Article  CAS  PubMed  Google Scholar 

  6. Jain AK, Gupta VK, Raisoni JR (2004) Sensors 4:115

    Article  CAS  Google Scholar 

  7. Peper S, Gonczy C, Runde W (2005) Talanta 67:713

    Article  CAS  PubMed  Google Scholar 

  8. Coetzee CJ, Benson AJ (1971) Anal Chim Acta 57:478

    Article  CAS  Google Scholar 

  9. Chen Z, Alexander PW (1997) Electroanalysis 9:141

    Article  CAS  Google Scholar 

  10. Ross JW (1969) In: Durst RA (ed) Ion selective electrodes. Government Printing Office, NBS Special Publication No. 314, Washington

  11. Panwar A, Baniwal S, Sharma CL, Singh AK (2000) Fresenius J Anal Chem 368:768

    Article  CAS  PubMed  Google Scholar 

  12. Tiwari KK, Chattopadhyaya MC (2001) Indian J Chem 40A:619

    CAS  Google Scholar 

  13. Gupta AP, Renuka (1997) Indian J Chem 36 A:1073

    Google Scholar 

  14. Mishra AP, Khare M, Gautam SK (2001) J Electrochem Soc 50:119

    Google Scholar 

  15. El-Ansary AI, Issa YM, Tag-Eldin AS (1999) Anal Lett 32:2177

    Article  CAS  Google Scholar 

  16. Cammann K (2989) Working with ion-selective electrodes. Springer, New York

    Google Scholar 

  17. Miasik JJ, Hooper A, Tofield BC (1986) J Chem Soc Faraday Trans 82:1117

    Article  CAS  Google Scholar 

  18. Lacy Costello BPJ, Evans P, Ewen RJ (1996) J Mater Chem 6:289

    Article  Google Scholar 

  19. Oriakhi CO, Lemer MM (1995) Mater Res Bull 30:723

    Article  CAS  Google Scholar 

  20. Lemmon JP, Lemer MM (1994) Chem Mater 6:207

    Article  CAS  Google Scholar 

  21. Vaia R, Ishii H, Giannelis E (1993) Chem Mater 5:1694

    Article  CAS  Google Scholar 

  22. Khan AA, Inamuddin, Alam MM (2005) React Funct Polym 63:119

    Article  CAS  Google Scholar 

  23. Khan AA, Alam MM (2003) React Funct Polym 55:277

    Article  CAS  Google Scholar 

  24. Khan AA, Alam MM (2004) Anal Chim Acta 504:253

    Article  CAS  Google Scholar 

  25. Khan AA, Inamuddin (2006) Sens Actuators B 120:10

    Article  Google Scholar 

  26. Khan AA, Khan A, Inamuddin (2007) Talanta 72:699

    Article  CAS  PubMed  Google Scholar 

  27. Khan AA, Akhtar T (2008) Electrochim Acta 53:5540

    Article  CAS  Google Scholar 

  28. Mittal SK, Singh PP (1995) Indian J Chem 34A:1009

    CAS  Google Scholar 

  29. Chen X-A, Cheng Y-E, Rong Z (2005) J Radiol Prot 25:451

    Article  CAS  PubMed  Google Scholar 

  30. Najem GR, Voyce LK (1990) Am J Public Health 80:478

    Article  CAS  PubMed  Google Scholar 

  31. Nair MK, Nambi KSV, Sreedevi Amma N, Gangadharan P, Jayalekshmi P, Jayadevan S, Varghese C, Reghuram KN (1999) Radiat Res 152:S145

    Article  CAS  PubMed  Google Scholar 

  32. Polednak AP, Stehney AF, Lucas HF (1983) Health Phys Soc 44(S1):239

    Google Scholar 

  33. Clearfield A (ed) (1982) Inorganic ion exchange materials. CRC Press, Boca Raton, FL

    Google Scholar 

  34. Singh PV, Rawat JP, Rahman N (2003) Talanta 59:443

    Article  CAS  PubMed  Google Scholar 

  35. Jignasa A, Rakesh T, Uma C (2006) J Chem Sci 118:185

    Article  Google Scholar 

  36. Hassan SSM, Marei SA, Badr IH, Arida Hassan A (2001) Anal Chim Acta 427:21

    Article  CAS  Google Scholar 

  37. Koezuka H, Etoh S (1983) J Appl Phys 54:2511

    Article  CAS  ADS  Google Scholar 

  38. Khulbe KC, Marn RS (1982) J Polym Sci Polym Chem Ed 20:1089

    Article  CAS  ADS  Google Scholar 

  39. Alberti G, Constantino U (1970) J Chromatogr 50:482

    Article  CAS  Google Scholar 

  40. De AK, Chowdhury K (1974) J Chromatogr 101:63

    Article  CAS  Google Scholar 

  41. Topp NE, Pepper KW (1949) J Chem Soc 3299

  42. Vogel AI (1978) Textbook of quantitative inorganic analysis, 4th edn. Longman, New York, p 756

  43. Reiliy CN, Schmidt RW, Sadek FS (1959) J Chem Educ 36:555

    Article  Google Scholar 

  44. Craggs A, Moody GJ, Thomas JDR (1974) J Chem Educ 51:541

    Article  CAS  Google Scholar 

  45. Srivastava SK, Jain AK, Agarwal S, Singh RP (1978) Talanta 25:157

    Article  CAS  PubMed  Google Scholar 

  46. Jain AK, Singh RP (1981) Indian J Chem Tech 19:192

    CAS  Google Scholar 

  47. Amarchand S, Menon SK, Agarwal YK (1998) Indian J Chem Tech 5:99

    CAS  Google Scholar 

  48. Guilbault GG (1969) Recommendation for publishing manuscripts on ion-selective electrodes. Commission on Analytical Nomenclature, Analytical chemistry Division IUPAC, Ion-Sel El Rev 1:139 (prepared for publication)

  49. Moody GJ, Thomas JRD (1971) Selective ion sensitive electrode. Marrow, Watford

    Google Scholar 

  50. Tomita I, Iwase K, Saito K, Sugiyama Y (1981) Bull Chem Soc Jpn 54:749

    Article  CAS  Google Scholar 

  51. Yazawa Y, Eguchi T, Takaguchi K, Tomita I (1979) Bull Chem Soc Jpn 52:2923

    Article  CAS  Google Scholar 

  52. Funt BL, Diaz AF (1991) Organic electrochemistry: an introduction and a guide. Marcel Dekker, New York, p 1337

    Google Scholar 

  53. Duval C (1963) Inorganic thermogravimetric analysis. Elsevier, Amsterdam, p 315

    Google Scholar 

  54. Rao CNR (1963) Chemical applications of infrared spectroscopy. Academic Press, New York, p 338

    Google Scholar 

  55. Rao CNR (1963) Chemical applications of infrared spectroscopy. Academic Press, New York, p 250

    Google Scholar 

  56. Amini MK, Mazloum M, Ensaf AA (1999) Fresenius J Anal Chem 364:690

    Article  CAS  Google Scholar 

  57. Buck RP, Lindner E (1994) Pure Appl Chem 66:2527

    Article  CAS  Google Scholar 

  58. Jain AK, Singh RP, Bala C (1982) Anal Lett 15:1557

    CAS  Google Scholar 

  59. Chandra S, Agarwal H, Singh CK, Sindhu SK, Kumar P (2005) Indian J Chem 44:2060

    Google Scholar 

  60. Ganjali MR, Norouzi P, Faridbod F, Riahi S, Yaftian MR, Zamani A, Matt D (2007) J Appl Electrochem 37:827

    Article  CAS  Google Scholar 

  61. Hassanzadeh P, Yaftian MR, Bahari Z, Matt D (2006) J Chin Chem Soc 53:113

    Google Scholar 

  62. Chandra S, Agarwal H, Singh CK (2007) Anal Sci 23:469

    Article  CAS  PubMed  Google Scholar 

  63. Arida Hassan A, Ahmed MA, El-Saied AM (2003) Sensors 3:424

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Department of Applied Chemistry, Z.H. College of Engineering and Technology, A.M.U. (Aligarh) for providing research facilities. They are also thankful to the Ministry of Environment & Forest, Government of India for financial support. Assistance provided by the AIIMS, I.I.T. Delhi, and I.I.T. Roorkee in carrying out instrumental analysis is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asif Ali Khan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, A.A., Paquiza, L. & Khan, A. An advanced nano-composite cation-exchanger polypyrrole zirconium titanium phosphate as a Th(IV)-selective potentiometric sensor: preparation, characterization and its analytical application. J Mater Sci 45, 3610–3625 (2010). https://doi.org/10.1007/s10853-010-4407-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4407-6

Keywords

Navigation