Skip to main content
Log in

Surface patterning nanoparticle-based arrays

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, focused ion beam lithography is used to pattern different size and shape island arrays on silicon wafers. Cavity arrays of inverse shapes are then made on silicone mold surfaces by polymerization. After that, Al2O3 nanoparticle-based island arrays are created by a surface feature transfer and freeze casting process using an Al2O3 colloidal suspension. The effects of silicone mold surface wettability and freezing rate on the Al2O3 nanoparticle pattern quality are investigated. The results show that coating the silicone mold surface with a 10 nm thick Au–Pt layer makes the Al2O3 nanoparticle suspension more wetting on the mold surface and also likely reduces the dry Al2O3 nanoparticle adhesion to the mold surface. Freezing rate should be lower than 1 °C/min to avoid cracks or loose Al2O3 nanoparticle packing in the freeze cast features. When these factors are properly controlled, the reported patterning process allows reproduction of micron-size feature arrays from Al2O3 nanoparticle suspensions. The studied approach should be applicable to most nanoparticle-based materials and open numerous opportunities for direct-device fabrication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Shapley JDL, Barrow DA (2001) Thin Solid Films 388:134

    Article  CAS  Google Scholar 

  2. Huang J, Moriyoshi T, Manabe H (2006) J Mater Sci 41:1605. doi:https://doi.org/10.1007/s10853-006-4655-7

    Article  CAS  Google Scholar 

  3. Huwiler C, Halter M, Rezwan K, Falconnet D, Textor M, Vörös J (2005) Nanotechnology 16:3045

    Article  CAS  Google Scholar 

  4. Asoh H, Sakamoto S, Ono S (2007) J Colloid Interface Sci 316:547

    Article  CAS  Google Scholar 

  5. Park I, Ko SH, Pan H, Grigoropoulos CP, Pisano AP, Fréchet JMJ, Lee ES, Jeong JJ (2008) Adv Mater 20:489

    Article  CAS  Google Scholar 

  6. Liu K, Ho CL, Aouba S, Zhao YQ, Lu ZH, Petrov S, Coombs N, Dube P, Ruda HE, Wong WY, Manners I (2008) Angew Chem Int Ed 47:1255

    Article  CAS  Google Scholar 

  7. Xia D, Li D, Luo Y, Brueck SRJ (2006) Adv Mater 18:930

    Article  CAS  Google Scholar 

  8. Jung B, Frey W (2008) Nanotechnology 19:145303

    Article  Google Scholar 

  9. Ofir Y, Samanta B, Xiao QJ, Jordan BJ, Xu H, Arumugam P, Arvizo R, Tuominen MT, Rotello VM (2008) Adv Mater 20:2561

    Article  CAS  Google Scholar 

  10. Park JI, Lee WR, Bae SS, Kim YJ, Yoo KH, Cheon JW, Kim S (2005) J Phys Chem B 109:13119

    Article  CAS  Google Scholar 

  11. Brom CRVD, Arfaoui I, Cren T, Hessen B, Palstra TTM, Hosson JTMD, Rudolf P (2007) Adv Funct Mater 17:2045

    Article  Google Scholar 

  12. Kang M, Kim H, Han BW, Suh JS, Park JH, Choi MS (2004) Microelectronic Eng 71:229

    Article  CAS  Google Scholar 

  13. Maury P, Escalante M, Reinhoudt DN, Huskens J (2005) Adv Mater 17:2718

    Article  CAS  Google Scholar 

  14. Ma B, Ma J, Goh GKL (2008) J Mater Sci 43:4297. doi:https://doi.org/10.1007/s10853-008-2627-9

    Article  CAS  Google Scholar 

  15. Yoldi M, Gonzalez-Vinas W, Arcos MC, Sirera R (2006) J Mater Sci 41:2965. doi:https://doi.org/10.1007/s10853-006-6717-2

    Article  CAS  Google Scholar 

  16. Crocker M, Graham UM, Gonzalez R, Jacobs G, Morris E, Rubel AM, Andrews R (2007) J Mater Sci 42:3454. doi:https://doi.org/10.1007/s10853-006-0829-6

    Article  CAS  Google Scholar 

  17. Sreethawong T, Chavadej S, Ngamsinlapasathian S, Yoshikawa S (2008) Microporous Mesoporous Mater 109:84

    Article  CAS  Google Scholar 

  18. Han L, Shi XJ, Wu W, Kirk FL, Luo J, Wang LY, Mott D, Cousineau L, Lim SI, Lu S, Zhong CJ (2005) Sens Actuators B 106:431

    Article  CAS  Google Scholar 

  19. Puetz J, Aegerter MA (2008) Thin Solid Films 516:4495

    Article  CAS  Google Scholar 

  20. Lin HY, Tsai LC, Chen CD (2007) Adv Funct Mater 17:3182

    Article  CAS  Google Scholar 

  21. Cui TH, Hua F, Lvov Y (2004) Sens Actuators A 114:501

    Article  CAS  Google Scholar 

  22. Lu K, Hammond C, Int J Appl Ceram Technol (submitted)

  23. Lu K, Zhu X (2008) Int J Appl Ceram Technol 5(3):219

    Article  CAS  Google Scholar 

  24. Lu K (2008) J Mater Sci 43(2):652. doi:https://doi.org/10.1007/s10853-007-2155-z

    Article  CAS  Google Scholar 

  25. Lu K (2007) J Am Ceram Soc 90(12):3753

    CAS  Google Scholar 

  26. Lu K, Kessler CS, Davis RM (2006) J Am Ceram Soc 89:2459

    Article  CAS  Google Scholar 

  27. Lu K, Kessler CS (2006) In: Mullins WN, Wereszczak A, Lara-Curzio E (eds) Ceram engineering and science proceedings, vol 27(8), pp 1–10

  28. Cesarano J, Aksay IA (1988) J Am Ceram Soc 71:1062

    Article  CAS  Google Scholar 

  29. Lu K (2009) J Nanosci Nanotechnol 9:2598

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors acknowledge the financial support from National Science Foundation under Grant No. CMMI-0824741.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathy Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, K., Hammond, C. & Qian, J. Surface patterning nanoparticle-based arrays. J Mater Sci 45, 582–588 (2010). https://doi.org/10.1007/s10853-009-3930-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3930-9

Keywords

Navigation