Skip to main content
Log in

Geometrical and physical optimization of a photovoltaic cell by means of a genetic algorithm

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

A methodology for the geometrical and physical optimization of a photovoltaic cell is proposed, which makes use of a detailed distributed model for the device simulation and a genetic algorithm. For the numerical simulation of the device, a TCAD simulator is used, appropriately interfaced with the genetic algorithm. Since the parameters to be optimized are geometrical, each simulation requires a different mesh grid, which is automatically set within the genetic algorithm optimization cycle. The evaluation of the fitness function requires the post-processing of the output of the device simulation, which is performed by another external software, also interfaced with the genetic algorithm. The feasibility of this methodology is assessed on a homogeneous emitter solar cell, with some relevant free parameters, related to the number of fingers in a cell and to the doping profile of the emitter. The parameters which maximize the efficiency of the cell are determined by using the proposed procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kerr, M.J., Campbell, P., Cuevas, A.: Lifetime and efficiency limits of crystalline silicon solar cells. In: Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference 2002, pp. 438–441 (2002)

    Chapter  Google Scholar 

  2. Swanson, R.M.: Approaching the 29 % limit efficiency of silicon solar cells. In: Proc. 31st IEEE Photovolt. Spec. Conf., Lake Buena Vista, USA, pp. 889–894 (2005)

    Google Scholar 

  3. del Canizo, C., del Coso, G., Sinke, W.C.: Crystalline silicon solar module technology: towards the 1 euro per watt-peak goal. prog. photovolt. Res. Appl. 17, 199–209 (2009)

    Google Scholar 

  4. Girardini, K., Jacobsen, S.E.: Optimization and numerical models of silicon solar cells. Solid-State Electron. 34, 69–77 (1991)

    Article  Google Scholar 

  5. Chen, M.-J., Wu, C.-Y.: A new method for computer-aided optimization of solar cell structures. Solid-State Electron. 28, 751–761 (1985)

    Article  Google Scholar 

  6. Chen, Y.-M., Lee, C.-H., Wu, H.-C.: Calculation of the optimum installation angle for fixed solar-cell panels based on the genetic algorithm and the simulated-annealing method. IEEE Trans. Energy Convers. 20, 467–473 (2005)

    Article  Google Scholar 

  7. Jervase, J.A., Bourdoucen, H., Al-Lawati, A.: Solar cell parameter extraction using genetic algorithms. Meas. Sci. Technol. 12, 1922–1925 (2001)

    Article  Google Scholar 

  8. Affenzeller, M., Winkler, S., Wagner, S., Beham, A.: Genetic Algorithms and Genetic Programming: Modern Concepts and Practical Applications, 1nd edn. Chapman & Hall/CRC Press, London/Boca Raton (2009)

    Book  Google Scholar 

  9. Faizabadi, E., Khamechi, M.A., Toosi, K.N.: Optimization of gridlines and fingers of solar cells by a new numerical method. In: Joint 32nd International Conference on Infrared and Millimeter Waves, 2007 and the 2007 15th International Conference on Terahertz Electronics. IRMMW-THz. IEEE Press, New York (2007)

    Google Scholar 

  10. Utsler, J.: Genetic algorithm based optimization of advanced solar cell designs modeled in Silvaco ATLASTM. Master’s thesis (2006)

  11. Sentaurus Device User Guide, Version C-2009.06 SYNOPSYS (2009)

  12. MATLAB, Version 8.0.0.783 (R2012b), The MathWorks Inc., Natick, Massachusetts (2012)

  13. Quaschning, V.: Influence of shading on electrical parameters of solar cells. In: Conference Record of the Twenty Fifth IEEE, Photovoltaic Specialists Conference, 13–17 May, pp. 1287–1290 (1996)

    Google Scholar 

  14. Stem, N., Cid, M.: Physical limitations for homogeneous and highly doped n-type emitter monocrystalline silicon solar cells. Solid-State Electron. 48, 197–205 (2004)

    Article  Google Scholar 

  15. Fenning, D., Bertoni, M., Buonassini, T.: Predictive modeling of the optimal phosphorus diffusion profile in silicon solar cell. In: 24th European Photovoltaic Solar Energy Conference, Hamburg, Germany, 21–25 september (2009)

    Google Scholar 

  16. Simon, M.S.: Semiconductor Devices: Physics and Technology, pp. 470–475. Wiley, New York (1985)

    Google Scholar 

  17. De Rose, R., Zanuccoli, M., Magnone, P., Frei, M., Sangiorgi, E., Fiegna, C.: Understanding the impact of the doping profiles on selective emitter solar cell by two-dimensional numerical simulation. IEEE J. Photovolt. 3(1), 159–167 (2013)

    Article  Google Scholar 

  18. Zanuccoli, M., De Rose, R., Magnone, P., Sangiorgi, E., Fiegna, C.: Performance analysis of rear point contact solar cells by three-dimensional numerical simulation. IEEE Trans. Electron Devices 59(5), 1311–1319 (2012)

    Article  Google Scholar 

  19. Schenk, A.: Finite-temperature full random-phase approximation model of band gap narrowing for silicon device simulation. J. Appl. Phys. 84(7), 3684–3695 (1998)

    Article  Google Scholar 

  20. Altermatt, P.: Models for numerical device simulations of crystalline silicon solar cells a review. J. Comput. Electron. 10(3), 314–330 (2011)

    Article  Google Scholar 

  21. Klaassen, D.: A unified mobility model for device simulation: I. Model equations and concentration dependence. Solid-State Electron. 35(7), 953–959 (1992)

    Article  Google Scholar 

  22. Klaassen, D.: A unified mobility model for device simulation: II. Temperature dependence of carrier mobility and lifetime. Solid-State Electron. 35(7), 961–967 (1992)

    Article  Google Scholar 

  23. Glunz, S., Rein, S., Lee, J., Warta, W.: Minority carrier lifetime degradation in boron-doped Czochralski silicon. J. Appl. Phys. 90(5), 2397–2404 (2001)

    Article  Google Scholar 

  24. Kimmerle, A., Wolf, A., Belledin, U., Biro, D.: Modelling carrier recombination in highly phosphorus-doped industrial emitters. In: Proc. of SiliconPV 2011 Conf., Energy Procedia, vol. 8, pp. 275–281 (2011)

    Google Scholar 

  25. Green, M.A.: Solar Cells: Operating Principles, Technology and System Applications, 2nd edn. Prentice Hall, New York (1998)

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank R. De Rose and P. Magnone of ARCES (University of Bologna) for their support and help. The second author acknowledges financial support from MaTeRiA PON a3_00370.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Alì.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alì, G., Butera, F. & Rotundo, N. Geometrical and physical optimization of a photovoltaic cell by means of a genetic algorithm. J Comput Electron 13, 323–328 (2014). https://doi.org/10.1007/s10825-013-0533-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-013-0533-0

Keywords

Navigation