Skip to main content

Advertisement

Log in

Epigenetic alterations of CYP19A1 gene in Cumulus cells and its relevance to infertility in endometriosis

  • Epigenetics
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

The purpose of the present study was to investigate the epigenetic mechanisms responsible for the aberrant aromatase expression (CYP19A1) in Cumulus Cells (CCs) of infertile endometriosis patients.

Method

Cumulus cells were obtained from 24 infertile patients with and without endometriosis who underwent ovarian stimulation for intracytoplasmic sperm injection. Expression of CYP19A1 gene was quantified using Reverse Transcription Q-PCR. DNA methylation, histone modifications, and binding of Estrogen Receptor, ERβ to regulatory DNA sequences of CYP19A1 gene were evaluated by Chromatin ImmunoPrecipitation (ChIP) assay.

Results

CYP19A1 gene expression in CCs of endometriosis patients was significantly lower than the control group (P = 0.04). Higher incorporation of MeCP2 (as a marker of DNA methylation) on PII and PI.4 promoters, and hypoacetylation at H3K9 in PII and hypermethylation at H3K9 in PI.4 were observed in CYP19A1 gene in endometriosis patients (P < 0.05). Moreover, a decreased level of ERβ binding to PII and an increased level of its binding to PI.3 and PI.4 promoters of CYP19A1 were observed in endometriosis patients when compared to control.

Conclusion

Significant reduction of CYP19A1 gene expression in CCs of endometriosis patients may be the result of epigenetic alterations in its regulatory regions, either by DNA methylation or histone modifications. These epigenetic changes along with differential binding of ERβ (as a transcription factor) in CYP19A1 promoters may impair follicular steroidogenesis, leading to poor Oocyte and embryo condition in endometriosis patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kennedy S, Bergqvist A, Chapron C, D’Hooghe T, Dunselman G, Greb R, et al. ESHRE guideline for the diagnosis and treatment of endometriosis. Hum Reprod. 2005;20(10):2698–704.

    Article  PubMed  Google Scholar 

  2. Dunselman G, Vermeulen N, Becker C, Calhaz-Jorge C, D’Hooghe T, De Bie B, et al. ESHRE guideline: management of women with endometriosis. Hum Reprod. 2014;29(3):400–12.

    Article  CAS  PubMed  Google Scholar 

  3. Gupta S, Goldberg JM, Aziz N, Goldberg E, Krajcir N, Agarwal A. Pathogenic mechanisms in endometriosis-associated infertility. Fertil Steril. 2008;90(2):247–57.

    Article  CAS  PubMed  Google Scholar 

  4. Garrido Ns, Navarro J, Remohí J, SimÃ3n C, Pellicer A. Follicular hormonal environment and embryo quality in women with endometriosis. Human reproduction update 2000;6(1):67-74.

  5. Hsu AL, Townsend PM, Oehninger S, Castora FJ. Endometriosis may be associated with mitochondrial dysfunction in cumulus cells from subjects undergoing in vitro fertilization-intracytoplasmic sperm injection, as reflected by decreased adenosine triphosphate production. Fertil Stril. 2015;103(2):347–52. e1.

    Article  CAS  Google Scholar 

  6. Wang J, Shen X, Huang X, Zhao Z. Follicular fluid levels of prostaglandin E2 and the effect of prostaglandin E2 on steroidogenesis in granulosa-lutein cells in women with moderate and severe endometriosis undergoing in vitro fertilization and embryo transfer. Chin Med J. 2012;125(22):3985–90.

    CAS  PubMed  Google Scholar 

  7. Lessey BA, Young SL. Pathophysiology of infertility in endometriosis. Endometriosis: Science and Practice 2012:240-54. doi:10.1002/9781444398519.Ch23.

  8. Pellicer A, Oliveira N, Ruiz A, Remohí J, Simón C. Exploring the mechanism(s) of endometriosis-related infertility: an analysis of embryo development and implantation in assisted reproduction. Hum Reprod. 1995;10 suppl 2:91–7.

    Article  PubMed  Google Scholar 

  9. Albertini DF, Combelles C, Benecchi E, Carabatsos MJ. Cellular basis for paracrine regulation of ovarian follicle development. Reproduction. 2001;121(5):647–53.

    Article  CAS  PubMed  Google Scholar 

  10. Huang Z, Wells D. The human oocyte and cumulus cells relationship: new insights from the cumulus cell transcriptome. Mol Hum Reprod. 2010;16(10):715–25.

    Article  CAS  PubMed  Google Scholar 

  11. Egea RR, Puchalt NG, Escrivá MM, Varghese AC. OMICS: current and future perspectives in reproductive medicine and technology. J Hum Reprod Sci. 2014;7(2):73.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Gasca S, Pellestor F, Assou S, Loup V, Anahory T, Dechaud H, et al. Identifying new human oocyte marker genes: a microarray approach. Reprod Biomed Online. 2007;14(2):175–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hamel M, Dufort I, Robert C, Gravel C, Leveille M-C, Leader A, et al. Identification of differentially expressed markers in human follicular cells associated with competent oocytes. Hum Reprod. 2008;23(5):1118–27.

    Article  CAS  PubMed  Google Scholar 

  14. Feuerstein P, Cadoret V, Dalbies-Tran R, Guerif F, Bidault R, Royere D. Gene expression in human cumulus cells: one approach to oocyte competence. Hum Reprod. 2007;22(12):3069–77.

    Article  CAS  PubMed  Google Scholar 

  15. Lucidi P, BernabÃ2 N, Turriani M, Barboni B, Mattioli M. Cumulus cells steroidogenesis is influenced by the degree of oocyte maturation. Reprod Biol Endocrinol 2003;1:45.

  16. Fisher CR, Graves KH, Parlow AF, Simpson ER. Characterization of mice deficient in aromatase (ArKO) because of targeted disruption of the cyp19 gene. Proc Natl Acad Sci. 1998;95(12):6965–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pelletier G, El-Alfy M. Immunocytochemical localization of estrogen receptors α and β in the human reproductive organs. J Clin Endocrinol Metab. 2000;85(12):4835–40.

    CAS  PubMed  Google Scholar 

  18. Marino M, Galluzzo P, Ascenzi P. Estrogen signaling multiple pathways to impact gene transcription. Curr Genomics. 2006;7(8):497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhuang L-Z, Adashi EY, Hsueh AJ. Direct enhancement of gonadotropin-stimulated ovarian estrogen biosynthesis by estrogen and clomiphene citrate. Endocrinology. 1982;110(6):2219–21.

    Article  CAS  PubMed  Google Scholar 

  20. Katz-Jaffe MG, Surrey ES, Minjarez DA, Gustofson RL, Stevens JM, Schoolcraft WB. Association of abnormal ovarian reserve parameters with a higher incidence of aneuploid blastocysts. Obstet Gynecol. 2013;121(1):71–7.

    Article  PubMed  Google Scholar 

  21. Conley A, Mapes S, Corbin C, Greger D, Walters K, Trant J, et al. A comparative approach to structure-function studies of mammalian aromatases. J Steroid Biochem Mol Biol. 2001;79(1):289–97.

    Article  CAS  PubMed  Google Scholar 

  22. Sebastian S, Bulun SE. A highly complex organization of the regulatory region of the human CYP19 (aromatase) gene revealed by the human genome project. J Clin Endocrinol Metab. 2001;86(10):4600–2.

    Article  CAS  PubMed  Google Scholar 

  23. Bulun SE, Lin Z, Imir G, Amin S, Demura M, Yilmaz B, et al. Regulation of aromatase expression in estrogen-responsive breast and uterine disease: from bench to treatment. Pharmacol Rev. 2005;57(3):359–83.

    Article  CAS  PubMed  Google Scholar 

  24. Simpson ER, Mahendroo MS, Means GD, Kilgore MW, Hinshelwood MM, Graham-Lorence S, et al. Aromatase cytochrome P450, the enzyme responsible for estrogen biosynthesis. Endocr Rev. 1994;15(3):342–55.

    CAS  PubMed  Google Scholar 

  25. Giudice LC, Kao LC. Endometriosis. Lancet. 2015;364(9447):1789–99.

    Article  Google Scholar 

  26. Barcelos IDE, Donabella FC, Ribas CP, Meola J, Ferriani RA, de Paz CCP, et al. Down-regulation of the CYP19A1 gene in cumulus cells of infertile women with endometriosis. RBM Online. 2015;30(5):532–41.

    CAS  PubMed  Google Scholar 

  27. Magli MC, Jones GM, Lundin K, Van den Abbeel E. Atlas of human embryology: from oocytes to preimplantation embryos. Hum Reprod. 2012;27:1.

    Article  Google Scholar 

  28. Mönkkönen KS, Aflatoonian R, Lee K-F, Yeung WS, Tsao S-W, Laitinen JT, et al. Localization and variable expression of Gαi2 in human endometrium and fallopian tubes. Hum Reprod. 2007;22(5):1224–30.

    Article  PubMed  Google Scholar 

  29. Mönkkönen KS, Aflatoonian R, Lee K-F, Yeung WS, Tsao S-W, Laitinen JT, et al. Hormonal regulation of Gαi2 and mPRα in immortalized human oviductal cell line OE-E6/E7. MHR. 2007;13(12):845–51.

    Article  PubMed  Google Scholar 

  30. Stocco C. Aromatase expression in the ovary: hormonal and molecular regulation. Steroids. 2008;73(5):473–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lu X, Wu Y, Gao X-H, Wang Y-W, Wang L, Sun X-X. Effect of letrozole on estradiol production and P450 aromatase messenger RNA expression of cultured luteinized granulosa cells from women with and without endometriosis. Fertil Steril. 2012;98(1):131–5.

    Article  CAS  PubMed  Google Scholar 

  32. Harlow C, Cahill D, Maile L, Talbot W, Mears J, Wardle P, et al. Reduced preovulatory granulosa cell steroidogenesis in women with endometriosis. J Clin Endocrinol Metab. 1996;81(1):426–9.

    CAS  PubMed  Google Scholar 

  33. De Abreu LG, Romã£O GS, Reis RMD, Ferriani RA, de Sã¡ MFS, Moura MD. Reduced aromatase activity in granulosa cells of women with endometriosis undergoing assisted reproduction techniques. Gynecol Endocrinol. 2006;22(8):432–6.

    Article  PubMed  Google Scholar 

  34. De Abreu LG, Silveira VS, Scrideli CA, Ramos ES, Dos Reis RM, Ferriani RA, et al. Endometriosis does not alter aromatase gene expression (CYP19A1) in mural lutein-granulosa cells of women undergoing assisted reproduction techniques—a pilot study. J Endometriosis. 2011;3(4):177–82.

    Google Scholar 

  35. Sharma S, Kelly TK, Jones PA. Epigenetics in cancer. Carcinogenesis. 2010;31(1):27–36.

    Article  CAS  PubMed  Google Scholar 

  36. Nan X, Ng H-H, Johnson CA, Laherty CD, Turner BM, Eisenman RN, et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature. 1998;393(6683):386–9.

    Article  CAS  PubMed  Google Scholar 

  37. Lewis JD, Meehan RR, Henzel WJ, Maurer-Fogy I, Jeppesen P, Klein F, et al. Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA. Cell. 1992;69(6):905–14.

    Article  CAS  PubMed  Google Scholar 

  38. Fo F, Hurd PJ, Wolf D, Nan X, Bird AP, Kouzarides T. The methyl-CpG-binding protein MeCP2 links DNA methylation to histone methylation. J Biol Chem. 2003;278(6):4035–40.

    Article  Google Scholar 

  39. Li B, Carey M, Workman JL. The role of chromatin during transcription. Cell. 2007;128(4):707–19.

    Article  CAS  PubMed  Google Scholar 

  40. Fischer JJ, Toedling J, Krueger T, Schueler M, Huber W, Sperling S. Combinatorial effects of four histone modifications in transcription and differentiation. Genomics. 2008;91(1):41–51.

    Article  CAS  PubMed  Google Scholar 

  41. Adashi E, Hsueh A. Estrogens augment the stimulation of ovarian aromatase activity by follicle-stimulating hormone in cultured rat granulosa cells. J Biol Chem. 1982;257(11):6077–83.

    CAS  PubMed  Google Scholar 

  42. Klinge CM. Estrogen receptor interaction with estrogen response elements. Nucleic Acids Res. 2001;29(14):2905–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bréard E, Roussel H, Lindet Y, Mittre H, Leymarie P. Presence of exon I. 4 mRNA from CYP19 gene in human granulosa cells. Mol Cell Endocrinol. 1999;154(1):187–90.

    Article  PubMed  Google Scholar 

  44. Hervouet E, Cartron P-F, Jouvenot M, Delage-Mourroux R. Epigenetic regulation of estrogen signaling in breast cancer. Epigenetics. 2013;8(3):237–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dago DN, Scafoglio C, Rinaldi A, Memoli D, Giurato G, Nassa G, et al. Estrogen receptor beta impacts hormone-induced alternative mRNA splicing in breast cancer cells. BMC Genomics. 2015;16(1):367.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Bulun SE, Monsivais D, Kakinuma T, Furukawa Y, Bernardi L, Pavone ME, et al. Molecular biology of endometriosis: from aromatase to genomic abnormalities. Semin Reprod Med. 2015;2015:220–4.

    Google Scholar 

  47. Mahdian S, Aflatoonian R, Yazdi RS, Yaghmaei P, Ramazanali F, Afsharian P, et al. Macrophage migration inhibitory factor as a potential biomarker of endometriosis. Fertil Steril. 2015;103(1):153–9. e3.

    Article  CAS  PubMed  Google Scholar 

  48. Simon C, Gutierrez A, Vidal A, De los Santos M, Tarin J, Remohi J, et al. Outcome of patients with endometriosis in assisted reproduction: results from in-vitro fertilization and oocyte donation. Hum Reprod. 1994;9(4):725–9.

    CAS  PubMed  Google Scholar 

  49. Pellicer A, Navarro J, Bosch E, Garrido N, Garcia‐Velasco JA, Remohí J, et al. Endometrial quality in infertile women with endometriosis. Ann N Y Acad Sci. 2001;943(1):122–30.

    Article  CAS  PubMed  Google Scholar 

  50. Hammes SR. Steroids and oocyte maturation—a new look at an old story. Mol Endocrinol. 2004;18(4):769–75.

    Article  CAS  PubMed  Google Scholar 

  51. Tesarik J, Mendoza C. Nongenomic effects of 17 beta-estradiol on maturing human oocytes: relationship to oocyte developmental potential. J Clin Endocrinol Metab. 1995;80(4):1438–43.

    CAS  PubMed  Google Scholar 

  52. Dumesic DA, Meldrum DR, Katz-Jaffe MG, Krisher RL, Schoolcraft WB. Oocyte environment: follicular fluid and cumulus cells are critical for oocyte health. Fertil Stril. 2015;103(2):303–16.

    Article  Google Scholar 

  53. Neal MS, Younglai EV, Holloway AC, Foster WG. Aromatase activity in granulosa cells as a predictor of pregnancy potential. International Congress Series; 2004: Elsevier B.V.; 2004. p. 139–42. doi:10.1016/j.ics 2004.05.022.

  54. Peña JE, Chang PL, Chan L-K, Zeitoun K, Thornton MH, Sauer MV. Supraphysiological estradiol levels do not affect oocyte and embryo quality in oocyte donation cycles. Hum Reprod. 2002;17(1):83–7.

    Article  PubMed  Google Scholar 

  55. Brizek CL, Schlaff S, Pellegrini VA, Frank JB, Worrilow KC. Increased incidence of aberrant morphological phenotypes in human embryogenesis—an association with endometriosis. J Assist Reprod Genet. 1995;12(2):106–12.

    Article  CAS  PubMed  Google Scholar 

  56. Sanchez AM, Somigliana E, Vercellini P, Pagliardini L, Candiani M, Vigano P. Endometriosis as a detrimental condition for granulosa cell steroidogenesis and development: from molecular alterations to clinical impact. J Steroid Biochem Mol Biol. 2016;155:35–46.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank all the patients that consented to participate in this study and the embryologists at Royan institute, Tehran, Iran., especially Dr. Bahar Movaghar and Dr. Poopak Eftekhari Yazdi, for their help with patient recruitment and associated embryology. Further, the authors would like to acknowledge Mrs. Raha Favaedi, Miss Samaneh Aghajanpour, and Mrs. Neda Soltani for their skilful technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fereshteh Mehraein or Reza Aflatoonian.

Ethics declarations

This cross-sectional study was approved by the Ethics Committees of Iran University of Medical Sciences (IUMS, no: 23108-April 2014) and the Royan Institute. Also, written informed consent was obtained from all case and control subjects prior to the oocyte retrieval.

Conflict of interest

There is no conflict of interest in this study.

Funding

This research was supported by the Vice Chancellor of Research at Iran University of Medical Sciences and Royan institute, Tehran, Iran.

Additional information

Capsule

These epigenetic changes along with differential binding of ERβ (as a transcription factor) in CYP19A1 promoters may impair follicular steroidogenesis, leading to poor Oocyte and embryo condition in endometriosis patients.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseini, E., Mehraein, F., Shahhoseini, M. et al. Epigenetic alterations of CYP19A1 gene in Cumulus cells and its relevance to infertility in endometriosis. J Assist Reprod Genet 33, 1105–1113 (2016). https://doi.org/10.1007/s10815-016-0727-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-016-0727-z

Keywords

Navigation