Skip to main content
Log in

Nitrogen and phosphorus removal through laboratory batch cultures of microalga Chlorella vulgaris and cyanobacterium Planktothrix isothrix grown as monoalgal and as co-cultures

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Batch cultures of the green microalga Chlorella vulgaris and cyanobacterium Planktothrix isothrix and their corresponding co-cultures were grown in municipal wastewater in order to study their growth as well as the nitrogen (NH4–N) and phosphorus (PO 3−4 –P) removal. The cultures were grown under two irradiances of 20 and 60 μmol photons m−2 s−1 in shaken and unshaken conditions. The co-culture of unshaken Chlorella and Planktothrix showed the greatest growth under both irradiances. The monoalgal Planktotrix cultures showed better growth when unshaken than when shaken, whereas Chlorella cultures grew better when mixed, but only at the higher irradiance. The highest percentage of nitrogen removal (up to 80%) was attained by the unshaken co-cultures of Chlorella and Planktothrix. The amount of nitrogen recycled in the biomass reached up to 85% of that removed. Shaken monoalgal cultures of Chlorella showed phosphorus removal under both irradiances. They completely removed the initial phosphorus concentration (7.47 ± 0.17 mg L−1) within 96 and 48 h under 20 and 60 μmol photons m−2 s−1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abeliovich A, Azof Y (1976) Toxicity of ammonia to algae in sewage oxidation ponds. Appl Environ Microbiol 31:801–806

    Google Scholar 

  • Aitchison EA, Butt VS (1973) The relationship between the synthesis of inorganic polyphosphate and phosphate uptake by Chlorella vulgaris. J Exp Bot 34:497–510

    Article  Google Scholar 

  • APHA, AWWA, WPCF (1992) Standard methods for the examination of water and wastewater (1995), 18th edn. American Public Health Association, Washington

    Google Scholar 

  • Aslan S, Kapdan IK (2006) Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecol Eng 28:64–70

    Article  Google Scholar 

  • Benemann JR, Weissman JC, Koopman BL, Oswald WJ (1977) Energy production by microbial photosynthesis. Nature 268:19–23

    Article  CAS  Google Scholar 

  • Chevalier P, Proulx D, Lessard P, Vincent WF, de la Noüe J (2000) Nitrogen and phosphorus removal by high latitude mat-forming cyanobacteria for potential use in tertiary wastewater treatment. J Appl Phycol 12:105–112

    Article  CAS  Google Scholar 

  • de-Bashan LE, Bashan Y (2004) Recent advances in removing phosphorus from wastewater and its future use as fertiliser (1997–2003). Water Res 38:4222–4246

    Article  PubMed  Google Scholar 

  • de-Bashan LE, Trejo A, Huss VAR, Hernandez JP, Bashan Y (2007) Chlorella sorokiniana UTEX 2805, a heat and intense, sunlight-tolerant microalga with potential for removing ammonium from wastewater. Bioresour Biotechnol 99:4980–4989

    Article  Google Scholar 

  • de la Noüe J, de Pauw N (1988) The potential of microalgal biotechnology: a review of production and uses of microalgae. Biotech Adv 6:725–770

    Article  Google Scholar 

  • de la Noüe J, Laliberté G, Proulx D (1992) Algae and wastewater. J Appl Phycol 4:247–254

    Article  Google Scholar 

  • de la Noüe J, Lessard P, Proulx D (1993) Tertiary treatment of secondarily treated urban wastewater by intensive culture of Phormidium bohneri. Environ Technol 15:449–458

    Google Scholar 

  • de Philippis R, Paperi R, Sili C (2007) Heavy metal sorption by released polysaccharides and whole cultures of two exoploysaccharide-producing cyanobacteria. J Appl Phycol 18:181–187

    CAS  Google Scholar 

  • Driscoll CT, Lawrence GB, Bulger AJ, Butler TJ, Cronan CS, Eagar C, Lambert KF, Likens GE, Stoddard JL, Weathers KC (2001) Acidic deposition in the northeastern United States: source and input, ecosystem effects, and management strategies. BioScience 51:180–198

    Article  Google Scholar 

  • Goldman JO (1979) Outdoor algal mass cultures. II. Photosynthetic yield limitations. Water Res 13:119–136

    Article  CAS  Google Scholar 

  • Laliberté G, Proulx G, Pauw N, de la Noüe J (1994) Algal technology in wastewater treatment. Ergeb Limnol 42:283–302

    Google Scholar 

  • Larsdotter K (2006a) Wastewater treatment with microalgae: a literature review. Vatten 62:31–38

    CAS  Google Scholar 

  • Larsdotter K (2006b) Microalgae for phosphorus removal from wastewater in a Nordic climate. Doctoral thesis, Royal Institute of Technology, Stockholm, Sweden

  • Martinez ME, Sanchez S, Jiménez JM, El Yousfi F, Muñoz L (2000) Nitrogen and phosphorus removal from urban wastewater by microalga Scenedesmus obliquus. Biores Biotechol 73:263–272

    Article  CAS  Google Scholar 

  • Mostert ES, Grobbelaar JU (1987) The influence of nitrogen and phosphorus on algal growth and quality in outdoor mass algal cultures. Biomass 13:219–233

    Article  CAS  Google Scholar 

  • Muñoz R, Guiysse B (2006) Alga–bacterial processes for the treatment of hazardous contaminants: a review. Water Res 40:2799–2815

    Article  PubMed  Google Scholar 

  • Nuñez V, Voltolina D, Nieves M, Piña MA, Guerrero M (2001) Nitrogen budget in Scenedesmus obliquus cultures with artificial wastewater. Biores Technol 78:161–164

    Article  Google Scholar 

  • Ogbonna JC, Yoshizawa H, Tanaka H (2000) Treatment of high strength organic wastewater by a mixed culture of photosynthetic microorganisms. J Appl Phycol 12:277–284

    Article  CAS  Google Scholar 

  • Olguín EJ (2003) Phycoremediation: key issues for cost-effective nutrient removal processes. Biotechnol Adv 22:81–91

    Article  PubMed  Google Scholar 

  • Olguín EJ, Galicia S, Mercado G, Pérez T (2003) Annual productivity of Spirulina (Arthrospira) and nutrient removal in a pig wastewater recycling process under tropical conditions. J Appl Phycol 15:249–257

    Article  Google Scholar 

  • Oswald WJ (1989) The role of microalgae in liquid waste treatment and reclamation. In: Lembi CA, Waaland JR (eds) Algae and human affairs. Cambridge University Press, Cambridge, pp 255–281

    Google Scholar 

  • Oswald WJ (2003) My sixty years in applied algology. J Appl Phycol 15:99–106

    Article  CAS  Google Scholar 

  • Oswald WJ, Golueke CG (1960) Biological transformation of solar energy. Adv Appl Microbiol 2:223–262

    Article  PubMed  CAS  Google Scholar 

  • Paerl HW, Ustach IF (1982) Blue-green algal scums: an explanation for their occurrence during freshwater blooms. Limnol Oceanogr 27:212–217

    Article  CAS  Google Scholar 

  • Park JBK, Craggs RJ (2010) Wastewater treatment and algal production in high rate algal ponds with carbon dioxide addition. Water Sci Technol 61:633–639

    Article  PubMed  CAS  Google Scholar 

  • Park J, Jin HF, Lim BR, Park KY, Lee K (2010) Ammonia removal from anaerobic digestion effluent of livestock waste using green alga Scenedesmus sp. Bioresour Technol 101:8649–8657

    Article  PubMed  CAS  Google Scholar 

  • Park JBK, Craggs RJ, Shilton AN (2011) Wastewater treatment high rate algal ponds for biofuel production. Biores Technol 102:35–42

    Article  CAS  Google Scholar 

  • Pinder RW, Gilliland AB, Dennis RL (2008) Environmental impact of atmospheric NH3 emissions under present and future conditions in the eastern United States. Geophys Res Lett 35:L12808

    Article  Google Scholar 

  • Pouliot Y, Buelna G, Racine C, de la Noüe (1989) Culture of cyanobacteria for tertiary wastewater treatment and biomass production. Biolog Waste 29:81–89

    Article  CAS  Google Scholar 

  • Powell N, Shilton AN, Pratt S, Chisti Y (2008) Factors influencing luxury uptake of phosphorus by microalgae in waste stabilization ponds. Environ Sci Technol 42:5958–5962

    Article  PubMed  CAS  Google Scholar 

  • Rawat I, Kumar RR, Mutanda T, Bux F (2011) Dual role of microalgae: phycoremediation of domestic wastewater and biomass production for sustainable biofuel production. Appl Energy. doi:10.1016/j.apenergy.2010.11.025

  • Reynolds CS, Wiseman SW, Clarke MJO (1984) Growth- and loss-rate responses of phytoplankton to intermittent artificial mixing and their potential application to the control of planktonic algal biomass. J Appl Ecol 21:11–39

    Article  Google Scholar 

  • Richmond A (2003) Biological principles of mass cultivation. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell, Oxford, pp 125–177

    Google Scholar 

  • Rippka R, Deruelles J, Waterbury J, Herdman M, Stanier R (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61

    Google Scholar 

  • Steinberg CEW, Gruhl E (1992) Physical measures to inhibit planktonic cyanobacteria. In: Sutcliffe DW, Jones JG (eds) Eutrophication: research and application to water supply. Freshwater Biological Association, Cumbria, pp 163–184

    Google Scholar 

  • Steinberg CEW, Hartmann HM (1988) Planktonic bloom-forming cyanobacteria and eutrophication of lakes and rivers. Freshw Biol 20:279–287

    Article  Google Scholar 

  • Tam NFY, Wong YS (1996) Effect of ammonia concentrations on growth of Chlorella vulgaris and nitrogen removal from media. Biores Technol 57:45–50

    Article  CAS  Google Scholar 

  • Torzillo G, Pushparaj B, Masojidek J, Vonshak A (2003) Biological constraints in algal biotechnology. Biotechnol Bioprocess Eng 8:338–348

    Article  CAS  Google Scholar 

  • Valderrana LT, Del Campo CM, Rodroguez CM, de-Bashan LE, Bashan Y (2002) Treatment of recalcitrant wastewater from ethanol and citric acid production using the microalga Chlorella vulgaris and the macrophyte Lemna minuscola. Water Res 36:4185–4192

    Article  Google Scholar 

  • Visser PM, Iberlings BW, Van Der Veer B, Koedood J, Mur LR (1996) Artificial mixing prevents nuisance bloom of the cyanobacterium Microcystis in Lake Nieuwe, the Netherlands. Freshw Biol 36:435–450

    Article  Google Scholar 

  • Volensky B (2001) Detoxification of metal-bearing effluents: biosorption for the next century. Hydrometallurgy 59:203–216

    Article  Google Scholar 

  • Voltolina D, Cordero B, Nieves M, Soto LP (1998) Growth of Scenedesmus sp. in artificial wastewater. Biores Biotechnol 68:265–268

    Article  Google Scholar 

  • Voltolina D, Gomez-Villa H, Correa G (2005) Nitrogen removal and recycling by Scenedesmus obliquus in semicontinuous cultures using artificial wastewater and a simulated light and temperature cycle. Biores Technol 96:359–362

    Article  CAS  Google Scholar 

  • Walsby AE (1994) Gas-vesicles. Microbiol Rev 58:94–144

    PubMed  CAS  Google Scholar 

  • Wang L, Min M, Li Y, Chen P, Cheng Y, Liu Y, Wang Y, Ruan R (2010) Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater plant. Appl Biochem Biotechnol 162:1174–1186

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The work has been carried out within the framework of the agreement between UCR and ISE-CNR. M. Silva is indebted to the University of Costa Rica for enabling her to spend a year visiting the ISE-CNR of Florence (Italy) for research purposes. The authors would like to extend their thanks to Dr. Annarita Leva, from CNR-IVALSA, for her statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Torzillo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silva-Benavides, A.M., Torzillo, G. Nitrogen and phosphorus removal through laboratory batch cultures of microalga Chlorella vulgaris and cyanobacterium Planktothrix isothrix grown as monoalgal and as co-cultures. J Appl Phycol 24, 267–276 (2012). https://doi.org/10.1007/s10811-011-9675-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-011-9675-2

Keywords

Navigation