Skip to main content

Advertisement

Log in

Effect of the design parameters on mass transfer and energy consumption inside a lithium electrolysis cell

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A 2D axisymmetric electrochemical model of a lithium experimental cell is solved using a finite element method. The model is considering the coupled effect of momentum, electric, kinetic and mass transfer phenomena. The dense diaphragm used in the setup, which is not hydraulically permeable, separates the cell into two regions: 1 (a) turbulent region, between the anode and the diaphragm, and 2 (a) laminar region between the diaphragm and the cathode. The k-epsilon model is used to solve the turbulent flow resulting from bubbles generation at the anode. A two-phase flow model is also developed to simulate the volume fractions of bubbles and electrolyte in the cell. The non-uniform bubbles distribution over the anode surface, derived from the non-uniform current distribution, has been added to the two-phase model. The effects of the diaphragm length, position and porosity on the electric and two-phase flow fields are simulated. In fact, the diaphragm position and length both influence the current distribution at the surface of electrodes and the velocity distribution in the cell, all of which influence ohmic and kinetic overpotentials. The results show that up to 40% of energy can be saved when running the lithium electrolysis cell with a shorter porous diaphragm located as far as possible from the anode. The maximum current density, found at the bottom corner of anode, is higher when the diaphragm is longer and when it is closer to the anode.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

A:

Area (m2)

CD :

Drag coefficient

c:

Concentration (mol m−3)

Deff :

Effective diffusion coefficient (m2 s−1)

db :

Bubble diameter (m)

F:

Faraday’s constant (A s mol−1)

Fb :

Volume force (kg m s−2)

FD :

Drag force (kg m s−2)

g:

Gravity acceleration constant (m s−2)

i:

Local current density (A m−2)

i0 :

Exchange current density (A m−2)

k:

Turbulent kinetic energy (m2 s−2)

L:

Length (m)

M:

Molecular weight (kg mol−1)

N:

Ions flux (mol m−2 s−1)

N:

Normal vector

p:

Pressure (kg m−1 s−2)

R:

Gas constant (J K−1 mol−1)

Re:

Reynolds number

T:

Temperature (K)

\({\text{T}}_{{\text{k}}}^{{{\text{turb}}}}\) :

Stress tensor (kg m−1 s−2)

t:

Time (s)

u:

Velocity magnitude (m s−1)

um :

Mobility (m2 s−1 V−1)

ut :

Bubbles terminal velocity (m s−1)

V:

Velocity vector (m s−1)

x:

Mole fraction

z:

Charge number

α0 :

Transfer coefficient

σ:

Electrolyte conductivity (S m−1)

\(\epsilon\) :

Rate of dissipation of kinetic energy (m2 s−3)

ε:

Porosity

\({{{\upeta}}}\) :

Activation overpotential (V)

µ:

Viscosity (kg m−1 s−1)

\({{{\uprho}}}\) :

Density (kg m−3)

τ:

Tortuosity

φ:

Volume fraction

\({\emptyset _{\text{g}}}\) :

Bubble coverage

a:

Anode

c:

Continuous phase

d:

Disperse phase

dia:

Diaphragm

i:

Species i

in:

Inlet

h:

Hyperpolarization

mean:

Mean

mix:

Resistive layer

T:

Turbulent

References

  1. James CD (1924) Electrolytic process and cell. US Patent 1,501,756

  2. Muller J, Bauer R, Sermond B, Dolling E (1988) Process and apparatus for producing high-purity lithium metal by fused-salt electrolysis. US Patent 4,740,279

  3. Verdier JM, Jacubert S, Grosbois J, Dumousseau JY (1986) Continuous electrolysis of lithium chloride into lithium metal. US Patent 4,617,098

  4. Nakamura E, Takata H, Yokoyama Y, Miyamoto H (2010) Process for producing metallic lithium. US Patent 20,100,051,470

  5. Le Roux E, Nataf P, Jacubert S (1988) Continuous production of lithium metal by electrolysis of lithium chloride. US Patent 4,724,055

  6. Bergmann OR, Blank HM, Diemer RB et al (2000) Modified electrolyte and diaphragm for fused salt electrolysis. US Patent 6,063,247

  7. Blank HM, Bergmann OR, Simmons WJ (1999) Fused chloride salt electrolysis cell. US Patent 5,904,821

  8. Li D, Chattopadhyay K, Gao L, Davis B, Schwarze R, Asad A, Kratzsch C (2017) Mathematical modeling of molten salt electrolytic cells for sodium and lithium production. Applications of process engineering principles in materials processing, energy and environmental technologies. Springer, New York, pp 129–138

    Chapter  Google Scholar 

  9. Oliaii E, Désilets M, Lantagne G (2017) Numerical analysis of the effect of structural and operational parameters on electric and concentration fields of a lithium electrolysis cell. J Appl Electrochem 47(6):711–726

    Article  CAS  Google Scholar 

  10. Amouzegar K, Harrison S (1996) Electrolytic production of lithium metal. Report, HydroQuebec, Shawinigan

    Google Scholar 

  11. Thonstad J, Fellner P, Haarberg GM, Híves J, Kvande H, Sterten A (2001) Aluminium electrolysis: fundamentals of the Hall-Héroult process. Aluminium-Verlag, Dusseldorf

    Google Scholar 

  12. Vogt H, Balzer RJ (2005) The bubble coverage of gas-evolving electrodes in stagnant electrolytes. Electrochim Acta 50(3):2073–2079

    Article  CAS  Google Scholar 

  13. Vogt H (2011) On the gas-evolution efficiency of electrodes. II: Numerical analysis. Electrochim Acta 56:2404–2410

    Article  CAS  Google Scholar 

  14. Liu C-L, Sun Z, Lu G-M, Song X-F, Yu J-G (2015) Experimental and numerical investigation of two-phase flow patterns in magnesium electrolysis cell with non-uniform current density distribution. Can J Chem Eng 93(3):565–579

    Article  CAS  Google Scholar 

  15. Aldas K, Pehlivanoglu N, Mat MD (2008) Numerical and experimental investigation of two-phase flow in an electrochemical cell. Int J Hydrog Energy 33(14):3668–3675

    Article  CAS  Google Scholar 

  16. Taylor R, Krishna R (1993) Multicomponent mass transfer. vol 2., Wiley, New York, p 243

    Google Scholar 

  17. Nelissen G, Van Den Bossche B, Deconinck J, Van Theemsche A, Dan C (2003) Laminar and turbulent mass transfer simulations in a parallel plate reactor. J Appl Electrochem 33(10):863–873

    Article  CAS  Google Scholar 

  18. Calmet I, Magnaudet J (1997) Large-eddy simulation of high-schmidt number mass transfer in a turbulent channel flow. Phys Fluids 9(2):438–455

    Article  CAS  Google Scholar 

  19. Lyons SL, Hanratty TJ, McLaughlin JB (1991) Large-scale computer simulation of fully developed turbulent channel flow with heat transfer. Int J Numer Methods Fluids 13(8):999–1028

    Article  CAS  Google Scholar 

  20. Tjaden B, Cooper SJ, Brett DJ, Kramer D, Shearing PR (2016) On the origin and application of the Bruggeman correlation for analysing transport phenomena in electrochemical systems. Curr Opin Chem Eng 12:44–51

    Article  Google Scholar 

  21. Chung DW, Ebner M, Ely DR, Wood V, García RE (2013) Validity of the Bruggeman relation for porous electrodes. Model Simul Mater Sci Eng 21(7):74009

    Article  Google Scholar 

  22. Ebner M, Wood V (2015) Tool for tortuosity estimation in lithium ion battery porous electrodes. J Electrochem Soc 162(2):A3064–A3070

    Article  CAS  Google Scholar 

  23. Díaz ME, Iranzo A, Cuadra D, Barbero R, Montes FJ, Galán MA (2008) Numerical simulation of the gas-liquid flow in a laboratory scale bubble column. Influence of bubble size distribution and non-drag forces. Chem Eng J 139(2):363–379

    Article  Google Scholar 

  24. Alexiadis A, Dudukovic M, Ramachandran P, Cornell A, Wanngård J, Bokkers A (2011) On the electrode boundary conditions in the simulation of two phase flow in electrochemical cells. Int J Hydrogen Energy 36:8557–8559

    Article  CAS  Google Scholar 

  25. Oldham K, Myland J, Bond A (2011) Electrochemical science and technology: fundamentals and applications. Wiley, New York

    Book  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dr. Kamyab Amouzegar for his useful suggestions. We also appreciate Hydro-Québec for their financial support, for providing us with the experimental results and giving us the opportunity to publish this work. The authors are also grateful to the Natural Sciences and Engineering Council of Canada (NSERC) for its financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elaheh Oliaii.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliaii, E., Désilets, M. & Lantagne, G. Effect of the design parameters on mass transfer and energy consumption inside a lithium electrolysis cell. J Appl Electrochem 48, 725–737 (2018). https://doi.org/10.1007/s10800-018-1179-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-018-1179-1

Keywords

Navigation