Skip to main content
Log in

A Comprehensive Study of Albumin Solutions in the Extended Terahertz Frequency Range

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

Sensitivity of the THz frequency range to the solutions of biomolecules originates from the decrease of absorption and dispersion of water in its bound state. Correct measurement and interpretation of the THz spectra of water-containing samples is still a challenging task because the reliable relaxation model for such spectra is not well established. The transmission and the attenuated total internal reflection geometries data were combined for precise analysis of the spectra of the aqueous solutions of bovine serum albumin within the range 0.05–3.2 THz. We compare the concentration dependencies of the dielectric function at “low,” “middle,” and “high” frequency and do not confirm an anomalous increase in absorption for concentrations below 17 mg/mL published by other teams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. L. Comez, M. Paolantoni, P. Sassi, S. Corezzi, A. Morresi, D. Fioretto, Soft Matter 12 (25), 5501 (2016)

    Article  Google Scholar 

  2. D. Laage, T. Elsaesser, J. T. Hynes, Chem. Rev. 117, 10694 (2017)

    Article  Google Scholar 

  3. N. Nandi, K. Bhattacharyya, B. Bagchi, Chem. Rev., 100 (6), 2013 (2000) DOI: https://doi.org/10.1021/cr980127v2000

    Article  Google Scholar 

  4. Wolf M., Gulich R., Lunkenheimer P., Loidl A. Biochim. Biophys. Acta: Proteins Proteomics, 1824 (5), 723 (2012).

  5. V. Raicu, Y. Feldman, Dielectric relaxation in biological systems: Physical principles, methods, and applications, Oxford University Press, New York, 2015.

    Book  Google Scholar 

  6. A. Barth, Biochimica et Biophysica Acta 1767, 1073 (2007)

    Article  Google Scholar 

  7. K. Shiraga, Y. Ogawa, N. Kondo, Biophysical Journal 111, 2629 (2016)

    Article  Google Scholar 

  8. J. Xu, K. W. Plaxco, S. J. Allen, Protein Science 15 (5), 1175 (2006)

    Article  Google Scholar 

  9. J.W. Bye, S. Meliga., D. Ferachou, G. Cinque, J. A. Zeitler, R. J. Falconer, J. Phys. Chem. A, 118 (1), 883 (2014)

    Article  Google Scholar 

  10. O. Sushko, R. Dubrovka, R.S. Donnan, The Journal of Chemical Physics, 142, 055101–1 (2015)

    Article  Google Scholar 

  11. M.M. Nazarov, O.P. Cherkasova, A.P. Shkurinov, Quantum Electronics, 46(6), 488 (2016)

    Article  Google Scholar 

  12. N. Penkov, V. Yashin, E. Fesenko, A. Manokhin, E. Fesenko, Applied Spectroscopy, 72(2), 257 (2018)

    Article  Google Scholar 

  13. O.P. Cherkasova, M.M. Nazarov, A.A. Angeluts, A.P. Shkurinov, Optics and Spectroscopy, 120 (1), 50 (2016)

    Article  Google Scholar 

  14. M.M. Nazarov, A.P. Shkurinov, A.A. Angeluts, D.A. Sapozhnikov, Radiophysics and Quantum Electronics, 52 (18), 536 (2009)

    Article  Google Scholar 

  15. E.V. Fedulova, M.M. Nazarov, A.A. Angeluts, M.S. Kitai, V.I. Sokolov, A.P. Shkurinov, Proc. SPIE 8337, Saratov Fall Meeting 2011: Optical Technologies in Biophysics and Medicine XIII, 83370I (2012)

  16. N. Gorlenko, B. Laptev, G. Sidorenko, Y. Sarkisov, T. Minakova, A. Kylchenko, O. Zubkova, AIP Conference Proceedings,1698 (1), 060002 (2016)

    Article  Google Scholar 

  17. M. Nazarov, A. Shkurinov, V.V. Tuchin, X.C. Zhang, Terahertz tissue spectroscopy and imaging. Handbook of photonics for biomedical science (2010).

  18. A.A. Angeluts, A.V. Balakin, M.G. Evdokimov, M. N. Esaulkov, M.M. Nazarov, I.A. Ozheredov, D.A. Sapozhnikov, P.M. Solyankin, O.P.Cherkasova, A.P. Shkurinov. Quantum Electronics, 44(7), 614 (2014)

    Article  Google Scholar 

  19. M. Nagai, H. Yada, T. Arikawa, K. Tanaka, International Journal of Infrared and Millimeter Waves, 27 (4), 505 (2006)

    Article  Google Scholar 

  20. H. Yada, M. Nagai, and K. Tanaka, Chem. Phys. Lett 464, 166 (2008)

    Article  Google Scholar 

  21. O.P. Cherkasova, M.M. Nazarov, A.P. Shkurinov, V.I. Fedorov, Radiophys. Quantum. El. 52, 518 (2009)

    Article  Google Scholar 

  22. N.Q. Vinh, S.J. Allen, K.W. Plaxco, J. Am. Chem. Soc., 133 (23), 8942 (2011)

    Article  Google Scholar 

  23. K. Shiraga, T. Suzuki, N. Kondo, J. De Baerdemaeker, Y. Ogawa, Carbohydr. Res., 406, 46 (2015)

    Article  Google Scholar 

  24. K. Fuchs, U. Kaatze, The Journal of Physical Chemistry B, 105 (10), 2036 (2001)

    Article  Google Scholar 

  25. I. Popov, P.B. Ishai, A. Khamzin, Y. Feldman, Physical Chemistry Chemical Physics, 18,13941 (2016)

    Article  Google Scholar 

  26. P. U. Jepsen, H. Merbold, J Infrared Milli Terahz Waves, 31, 430 (2010)

    Google Scholar 

  27. S. Sarkar, D. Saha, S. Banerjee, A. Mukherjee, P. Mandal, Chemical Physics Letters, 678, 65 (2017)

    Article  Google Scholar 

  28. K. Shiraga, A. Adachi, M. Nakamura, T. Tajima, K. Ajito, Y. Ogawa, The Journal of Chemical Physics, 146 (10), 105102 (2017)

    Article  Google Scholar 

  29. T. Fukasawa, T. Sato, J. Watanabe, Y. Hama, W. Kunz, R. Buchner, Physical Review Letters 95 (19), 197802 (2005)

    Article  Google Scholar 

  30. U. Kaatze, Journal of Chemical and Engineering Dat, 34 (4) 371 (1989)

    Article  Google Scholar 

  31. M.N. Afsar, J.B. Hasted, J. Opt. Soc. Am., 67, 902 (1977)

    Article  Google Scholar 

  32. O. Cherkasova, M. Nazarov, A. Shkurinov, Journal of Physics: Conference Series,793 (2017) https://doi.org/10.1088/1742-6596/793/1/012005

  33. D. K. George, A. Charkhesht, N. Q. Vinh, Review of Scientific Instruments 86, 123105 (2015) https://doi.org/10.1063/1.4936986

    Article  Google Scholar 

  34. U. Moller, D. G. Cooke, K. Tanaka, P. U. Jepsen, J. Opt. Soc. Am. B, 26 (9), A113(2009) doi:https://doi.org/10.1364/JOSAB.26.00A113

    Article  Google Scholar 

  35. W. J. Ellison, Journal of Physical and Chemical Reference Data, 36, 1 (2007), https://doi.org/10.1063/1.2360986.

    Article  Google Scholar 

  36. O.P. Cherkasova, M.M. Nazarov, A.P. Shkurinov, Proc. IEEE 41th Int. Conf. on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) (Copenhagen, Denmark, 2016). https://doi.org/10.1109/IRMMW-THz.2016.7758454

  37. M. Grognot, G. Gallot, The Journal of Physical Chemistry B, 121(41), 9508 (2017)

    Article  Google Scholar 

  38. K. Fuchs, U.J. Kaatze, Phys. Chem. B. 105(10), 2036–2042 (2001)

    Article  Google Scholar 

  39. O. Cherkasova, M. Nazarov, A. Shkurinov, Optical and Quantum Electronics, 48(3), 217 (2016)

    Article  Google Scholar 

  40. T.H. Basey-Fisher, S.M. Hanham, H. Andresen, S.A. Maier, M.M. Stevens, N.M. Alford, N. Klein, Applied Physics Letters, 99(23), 233703 (2011)

    Article  Google Scholar 

  41. K. Shiraga, T. Suzuki, N. Kondo, T. Tajima, M. Nakamura, H. Togo, A. Hirata, K. Ajito, Y. Ogawa, The Journal of Chemical Physics 142 (23) 234504 (2015)

    Article  Google Scholar 

Download references

Funding

This work has been supported by the Russian Foundation for Basic Research (project no. 17-00-00275 (17-00-00270)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Nazarov.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazarov, M.M., Cherkasova, O.P. & Shkurinov, A.P. A Comprehensive Study of Albumin Solutions in the Extended Terahertz Frequency Range. J Infrared Milli Terahz Waves 39, 840–853 (2018). https://doi.org/10.1007/s10762-018-0513-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-018-0513-3

Keywords

Navigation