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Abstract
The glycosylation of cell surface receptors has been shown to regulate each step of signal transduction, including receptor 
trafficking to the cell surface, ligand binding, dimerization, phosphorylation, and endocytosis. In this review we focus on the 
role of glycosyltransferases that are involved in the modification of N-glycans, such as the effect of branching and elongation 
in signaling by various cell surface receptors. In addition, the role of those enzymes in the EMT/MET programs, as related 
to differentiation and cancer development, progress and therapy resistance is discussed.
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Overview of studies of N‑glycans 
of membrane proteins

Most secreted proteins and membrane proteins in eukaryotic 
cells are glycosylated, indicating that glycosylation is impor-
tant for the regulation of signal transduction [1–8]. Glycans 
control many of the physicochemical properties of proteins, 
including structure, structural stability, charge, and hydro-
philicity. In the case of cell surface receptors, glycosylation 
has been shown to regulate each step in signal transduction 
such as receptor trafficking to the cell surface, ligand bind-
ing, dimerization, phosphorylation, and endocytosis [9, 10]. 
To elucidate the mechanisms by which glycans control the 
function of these receptors, the site and the structure of the 
responsible glycan(s) need to be determined. To determine 
the site of the responsible glycan(s), a mutant receptor which 
lacks specific glycan(s) are used. The N-glycan deleted 

mutant receptor is established and the effects of the altera-
tion of glycosylation site(s) on the function of the receptor 
can then be evaluated. For determining the structure of the 
responsible glycan(s), mass spectrometry analysis enables us 
to evaluate both the occupancy and glycan structure on each 
glycosylation site. By using these approaches, the function 
and the structure of a specific glycan can be determined. 
Determining glycan structure is especially important when 
lectin or lectin-like molecules are involved in the regulation 
of glycoproteins. However, it is nearly impossible to manipu-
late the glycan structure of a specific glycoprotein in a living 
cell, therefore, it is difficult to confirm the indispensability 
of certain glycan structures in a specific molecule. Collect-
ing data related to the glycan function of a large number of 
membrane proteins might provide a clue for elucidating the 
roles of specific glycan structures. This review summarizes 
progress that has been made concerning the glycosylation 
of cell surface receptors.

N‑glycans of ErbB receptors

The ErbB family includes four members; EGFR (ErbB1, 
HER1), ErbB2 (HER2), ErbB3 (HER3), and ErbB4 
(HER4). They are involved in a variety of biological events 
and their aberrant signaling has been implicated in the 
pathogenesis of various types of cancers [11, 12]. The ErbB 
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receptors are classified as type I transmembrane receptor 
tyrosine kinases, and consist of an N-terminal extracel-
lular domain, a transmembrane domain, an intracellular 
tyrosine kinase domain, and a C-terminal tail (Fig. 1). The 
binding of a ligand to the extracellular domain induces a 
conformational change from a “tethered form (the inactive 
form)” to an “extended form (the active form)” in which the 
dimerization arm mediates homo or heterodimers [13]. The 
receptor dimerization induces the phosphorylation of the 
tyrosine residues in the C-terminal tail, which subsequently 
activates the downstream signaling such as the PI3K/Akt 
pathway or the Ras/Erk pathway.

ErbB receptors are highly glycosylated. EGFR, ErbB2, 
ErbB3, and ErbB4 contain 12, 8, 10, and 11 N-glycosylation 
sites, respectively, in their extracellular domains. Figure 1 
indicates the N-glycosylation sites of ErbB receptors, and 
the alignment of glycosylation sites of ErbB receptors, and 
the results indicate that some glycosylation sites are com-
mon among the four ErbB receptors.

N‑glycans of EGFR

EGFR is a ~ 170 kDa protein with 11 typical (N-X-S/T, 
where X is any amino acid except proline) and 4 atypical  
(N-X-C) N-glycosylation consensus sequences [14].  
Figure 2 indicates the occupancy and glycan structure on each  
N-glycosylation site of endogenous EGFR in A431 human 
epidermoid carcinoma cells [15], recombinant EGFR, 
which is expressed in CL-1 human lung cancer cells [16], 
and recombinant soluble EGFR (sEGFR, the extracellular 
domain of EGFR) expressed in CHO-K1 cells [17]. In the 
case of sEGFR in CHO-K1 cells, it was observed that all 11 
typical N-glycosylation consensus sequences (N104, N151, 
N172, N328, N337, N389, N420, N504, N544, N579, N599) 
are either fully or partially glycosylated, and one of the four 
atypical N-glycosylation consensus sequences (N32) is fully 
glycosylated. It should also be noted that the occupancy and 
glycan structures are well conserved in all cell types that 
have been examined to date.
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Fig. 1   N-glycosylation sites of ErbB receptors. The upper panel indi-
cates the schematic diagram showing the structural protein domain 
and N-glycosylation sites of ErbB receptors. The amino acid number-
ing is for the mature form of the receptors and does not include signal 

peptides of the N-terminal 24 amino acids of EGFR, the 22 amino 
acids of ErbB2, the 19 amino acids of ErbB3, or the 25 amino acids 
of ErbB4. The lower panel indicates the alignment of glycosylation 
sites of ErbB receptors
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The N-glycosylation of EGFR is required for ligand 
binding [18, 19], and the processing of oligosaccharides 
from high-mannose type to complex type does not affect 
this ability [20]. A site specific study has demonstrated that 
the N-glycan on N420 of EGFR is involved in dimerization 
[21]; among the four N-glycan deletion mutants of EGFR 
in which the glycosylation sites in domain III are mutated, 
the EGFR N420Q mutant exhibited ligand-independent oli-
gomerization and phosphorylation. Another study reported 
that the deletion of the N-glycan on N579, which is in the 
domain IV auto-inhibitory tether loop, weakens the interac-
tion between domains II and IV, thus increasing the ratio of 
high affinity binding receptors and also increasing the extent 
of ligand-independent dimerization [22]. These investigators 

assumed that N-glycan attached to N579 contributes to the 
stability of the inactive form, and that the deletion of the 
N-glycan might increase the structural flexibility of the 
moleculs. These studies suggest that specific N-glycans 
might be involved in stabilizing structure of EGFR to pre-
vent unnecessary activation. Molecular dynamics simulation 
studies have also demonstrated that N-glycans are determi-
nants of EGFR conformation, including the orientation of 
the extracellular domain relative to the membrane [23].

Glycan structures are also important for regulating EGFR 
when lectins or lectin-like molecules are involved. For exam-
ple, in a previous study, we reported that the pulmonary 
surfactant protein D (SP-D) downregulates EGF signaling 
in lung adenocarcinoma [17, 24]. SP-D is an apoprotein of 

Cell type Endogenous EGFR
in A431a

Recombinant EGFR
expressed In CL1-5b

Recombinant sEGFR
expressed in Flp-In CHOc

Domain Site Occupancy Glycan type Occupancy Glycan type Occupancy Glycan type

I

N32 Par al Complex Complex Complex

N104 N.A. N.A. Par al Complex

N151 Not
determined Complex Complex

II N172 N.A. N.A. Par al Complex

III

N328 Not
determined

High-
mannose High-mannose

N337 High-
mannose

High-
mannose High-mannose

N389 Complex Complex Complex

N420 Complex Complex Complex

IV

N504 Complex Complex Complex

N544 Complex
Complex / 

High-
mannose

Complex

N579 Par al Not
determined Complex Complex

N599 High-
mannose

High-
mannose Par al Complex

Fig. 2   Site specific N-glycosylation status of EGFR. For each cat-
egory (endogenous EGFR in A431, recombinant EGFR expressed 
in CL1-5, and recombinant sEGFR expressed in CHO-K1), the left 
column indicates glycosylation occupancy and the right column indi-
cates the type of N-glycan. In the glycosylation occupancy columns, 
◯ indicates 100% glycosylation and × indicates no glycosylation. 

aData from Zhen et al. [15]. The data of glycosylation status are com-
mon to full length EGFR and 105  kDa sEGFR, but the data of the 
N-glycan structure are of 105 kDa sEGFR. bData from Liu et al. [16]. 
100% glycosylation and partial glycosylation are not discriminated 
here. cData from Hasegawa et al. [17]
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a pulmonary surfactant, belongs to the collectin subgroup 
of the C-type lectin superfamily which recognizes high-
mannose type N-glycans in a calcium dependent manner 
[25, 26]. We have reported that SP-D directly binds to the 
N-glycans of EGFR, and downregulates the binding of EGF 
to EGFR and downstream signaling in human lung adeno-
carcinoma cells [17, 24]. As shown in Fig. 2, EGFR contains 
high-mannose type N-glycans at N328 and N337, and SP-D 
possibly binds to these glycans. It is speculated that the bind-
ing of SP-D to EGFR directly interferes with EGF binding, 
or that SP-D affects the conformation of EGFR, thus altering 
the ligand binding characteristics of the molecule.

It has been reported that EGFR with poly-N-acetyllactosamine  
(poly-LacNAc) containing N-glycans, which is produced by 
the enzymatic activity of N-acetylglucosaminyltransferase 
V (GnT-V), avoids constitutive endocytosis [27]. It has been 
proposed that galectin-3 binds to poly-LacNAc on the gly-
cans of EGFR to form a molecular lattice, leading to the cell 
surface expression of EGFR being sustained. Intriguingly, it 
has been observed that the endocytosis of EGFR is increased 
in N-acetylglucosaminyltransferase III (GnT-III) transfected 
HeLaS3 cells [28]. GnT-III catalyzes the introduction of a 
GlcNAc unit to produce a “bisecting GlcNAc” structure [29], 
which prevents the formation of poly-LacNAc. It is possi-
ble that the binding of N-glycans of EGFR to galectin-3 is 
decreased by the activity of GnT-III, resulting in the upregu-
lation of EGFR endocytosis. A case can be made that spe-
cific structures of N-glycans may regulate EGFR endocytosis 
through interactions with galectin-3.

The α1,6-fucosylation of N-glycans by the activity of 
α1,6 fucosyltransferase (Fut8) has been shown to affect 
EGFR function [30]. Fut8 catalyzes the addition of a 
fucose unit to the innermost GlcNAc residue of N-glycans, 
to produce α1,6-fucosylation, or a "core fucose" [31]. We 
previously reported that the loss of α1,6-fucosylation of 
N-glycans of EGFR reduces the binding of EGF to EGFR, 
and subsequent downstream signaling [30]. It has also been 
suggested that the increased sialylation and α1,3 fucosyla-
tion of the N-glycans of EGFR suppress EGF-induced 
EGFR dimerization [16, 32].

Hakomori et al. demonstrated that glycosphingolipids 
modulate transmembrane signaling and indicated that gly-
cosphingolipid enriched microdomains are signaling plat-
forms [1, 2, 33, 34]. EGFR is also regulated by glycoshpin-
golipids. GM3 (NeuAcα3Galβ4Glcβ1Cer) has been shown 
to interact with EGFR and downregulate its activation 
[35–41]. The binding activity of GM3 is much higher than 
that for other gangliosides, such as GM2, GD3, GM4, GM1, 
GD1a, and GT1b [40]. It has been reported that GM3 inter-
acts with complex-type N-glycans with multivalent GlcNAc 
termini through carbohydrate-to-carbohydrate interactions 
(CCI). GM3 binds to the N-glycans of EGFR and inhibits 
the activation of tyrosine kinase and subsequent downstream 

signaling without affecting ligand binding activity [42, 43]. 
GM3 also inhibits EGFR tyrosine kinase activity by interact-
ing with a membrane proximal lysine residue, K642 [44]. It 
has also been demonstrated that membrane-associated siali-
dase NEU3, whose selective substrates are GM3 and GD1a 
[45], activates EGFR [46]. It has been reported that GM3 is 
involved in the development of cancer [47–49].

N‑glycans of ErbB3

ErbB3 is a receptor for neuregulin1 (heregulin), neuregulin 
2, and neuregulin 6. The unique character of ErbB3 is its 
lack of tyrosine kinase activity [50]. Therefore, ErbB3 forms 
a heterodimer with other ErbB receptors and exerts down-
stream signaling, such as the PI3K/Akt pathway or Ras/Erk 
pathway. The activation of PI3K/Akt signaling has been 
implicated in the ErbB3-dependent progression of various 
types of cancer [51–53]. The induction of ErbB3 expres-
sion or signaling is an important factor in drug resistance in 
several cancer models. Because of the above findings, ErbB3 
is considered to be a promising target for cancer therapy 
[54, 55].

ErbB3 is a ~ 185 kDa protein with 10 N-glycosylation 
consensus sequences in the extracellular domain. Figure 3 
provides a summary of the occupancy and glycan structure 
on each N-glycosylation site of recombinant soluble ErbB3 

Cell type Recombinant sErbB3
expressed in Flp-In CHOa

Domain Site Occupancy Glycan type

I N107 Complex

II N231 Complex / 
High-mannose

III

N334 Complex

N389 High-mannose

N395 High-mannose

N418 Complex

N450 Complex

IV

N503 Complex

N547 Par al Complex

N597 Par al Complex

Fig. 3   Site specific N-glycosylation status of ErbB3. In the glycosyla-
tion occupancy columns, ◯ indicates 100% glycosylation and × indi-
cates no glycosylation. aData from Takahashi et al. (under submis-
sion)

170 Glycoconjugate Journal (2022) 39:167–176



1 3

that is expressed in CHO-K1 cells. The N-glycan on N418 
of ErbB3, which corresponds to N420 of EGFR based on 
sequence alignment (Fig. 1), is involved in dimer formation. 
Among the 10 single N-glycan deletion mutants of ErbB3, 
the ErbB3 N418Q mutant forms a heterodimer with ErbB2 
without ligand stimulation, exerts downstream signaling and 
promotes tumor formation in athymic mice [56]. These find-
ings suggest that the N-glycans play a role in maintaining the 
inactive form of ErbB receptors in the absence of a ligand. It 
is possible that the conformational changes from the inactive 
form to the active form in the N-glycan deletion mutant of 
ErbB3 N418Q requires less energy [57].

The extracellular domain of ErbB3 (= soluble ErbB3, 
sErbB3) exerts suppressive effects on heregulin signaling, 
and these effects are enhanced in N418Q mutant [58, 59]. 
It is possible that the frequency of binding of the sErbB3 
N418Q mutant to ErbB2 or other receptors on the cell sur-
face is higher than that of the wild type [10].

EMT/MET Programs and glycans of cell 
surface receptor

We previously reviewed the role of N-glycosylation of sev-
eral cell surface receptors such as TGF-β receptor, RTKs, 
Integrins, Wnt, Hedgehog, Notch, and the involvement 
of glycans in inflammation and hypoxia-induced EMT 
(endothelial-mesenchymal transition) in various kinds of 
diseases [9, 60]. It is well known that phenotypic changes 
due to EMT play pivotal roles during embryonic develop-
ment [61–64], wound healing [65], cancer and fibrosis [66]. 
Especially in cancer, invasion, metastasis and chemore-
sistance are considered to be highly associated with EMT 
[67]. The significance of EMT was also reported in COPD 
(chronic obstructive pulmonary disease) [68, 69], interstitial 
pneumonitis [70], and lung cancer [69]. Moreover, EMT 
has also been implicated in resistance to therapy in cancer 
[67, 71]. It has also been reported that EMT contributes to 
the development of resistance to the EGFR-tyrosine kinase 
inhibitor in non-small cell lung cancer [72]. The implication 
of COVID-19 infection has been also reported [73].

It was recently reported that an intermediate type of cell, 
referred to as a hybrid cell is produced between EMT and its 
reversive process, MET (mesenchymal-epithelial transition) 
[74–76]. A classical type of EMT programs were reported 
to be rather one-way processes, but recently it has become 
recognized that the EMT programs are more dynamic and 
can sometimes be reversed by epigenetic modification and 
gene regulation. There are distinct biomarkers for EMT and 
MET [77]. Among them, E-cadherin, claudin, occludin, and 
cytokeratin are typical examples because the gene expres-
sion patterns of these molecules are activated in MET and 
downregulated in EMT. On the other hand, N-cadherin, 

collagen, matrix metalloproteinases, fibronectin and vimen-
tin are highly upregulated in EMT and downregulated in 
MET. There are also EMT transcription factors such as the 
Snail family referred to as SNAIL(SNAI1), SLUG (SNAI2) 
and SMUG (SNAI3), the basic helix-loop-helix protein fam-
ily referred to as TWIST1 and TWIST2, and zing finger 
E-box binding transcription factors, referred to as ZEB1 
and ZEB2 [67]. However, the issue of biomarkers for hybrid 
cells remains unclear at this time.

During EMT programs, the most important hallmark 
is TGF-β activation in various cancers. At the early stage 
of cancer, TGF-β acts as a protective factor whereas dur-
ing carcinogenesis TGF-β functions as a progressive factor 
[78]. TGF-β is essential in developmental period as well. For 
example, TGF-β signaling facilitates the embryonic develop-
ment of the lung and the aberrant glycosylation of TGF-β 
decreases signaling and downregulates the phosphorylation 
of Smad, thus causing emphysematous changes [79, 80].

EGFR stimulates EMT during differentiation processes 
and apoptosis of cancer cells [81–83]. Resistance to therapy 
due to EGFR signaling has been reported [81]. Involve-
ment of glycosphingolipids in EMT has also been demon-
strated [84]. From these facts, changes in glycans in cell 
surface receptors may also play important roles in EMT and 
MET processes. Our group reported on the significance of 
branched N-glycans in various diseases, and in the case of 
EMT, our findings indicate that some glycosyltransferase 
genes of N-glycan branching and extension such as GnT-V, 
Fut8 and ST6Gal1 are upregulated in case of MET, whereas 
GnT-III is downregulated [85, 86] as shown in Fig. 4. How-
ever, the expressions of those genes may be sometimes 
upregulated in both EMT and MET, and probably at the 
intermediate stage, i.e. in the hybrid cells, some of these 
enzyme expressions are reversible [60, 87, 88]. Response 
to reduction–oxidation (redox) is one of the most important 
biological phenomena for maintaining homeostasis of the 
body under conditions of various types of oxidative stress 
[89] under pathophysiological conditions. Our group has 
been interested in redox regulation under conditions of oxi-
dative stress as well as glycobiology in relation to disease 
[90–94]. Functional and structural changes in glycans are 
regulated by redox responses resulting from the generation 
of reactive oxygen species (ROS) or reactive nitrogen species 
(RNS) in various diseases including cancer [95], diabetes 
[96], neurodegenerative diseases [97], such as Parkinson’s 
disease, Alzheimer's disease as well as amyotrophic lateral 
sclerosis (ALS) (87), COPD [98] and aging. We proposed 
that the field "glyco-redox" investigations will open avenues 
to developing a more comprehensive understanding of the 
mechanism associated with diseases, as related to changes 
in glycan structures under oxidative stress [90]. The signifi-
cance of this interplay was also reported by other groupes 
[99, 100]. It is well known that signaling molecules such as 
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PI3K/Akt [101], PKC-delta [102], Nrf2 [103], HIF1 [104] 
and Smad [105] are closely associated with redox regulation. 
Some of these signaling molecules also regulate the activi-
ties of glycosyltransferases that are involved in N-glycan 
biosynthesis such as ST6Gal1 [106], GnT-V and Fut8, etc.. 
It has also been reported that some transcription factors that 
regulate GnT-III, V, and Fut8 as well as ST6Gal1 may play 
key roles in the intermediate states. In order to regulate the 
EMT programs for preventing cancer development, progres-
sion, metastasis and therapy resistance, specific antibodies 
or specific inhibitors against various transcription factors 
toward N-glycan glycosyltransferases are likely candidates 
for novel therapeutics in the future as shown in Fig. 4.
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