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Abstract
We present an extension of SonOpt, the first ever openly available tool for the sonifi-
cation of bi-objective population-based optimisation algorithms. SonOpt has already 
introduced benefits on the understanding of algorithmic behaviour by proposing the 
use of sound as a medium for the process monitoring of bi-objective optimisation 
algorithms. The first edition of SonOpt utilised two different sonification paths to 
provide information on convergence, population diversity, recurrence of objective 
values across consecutive generations and the shape of the approximation set. The 
present extension provides further insight through the introduction of a third sonifi-
cation path, which involves hypervolume contributions to facilitate the understand-
ing of the relative importance of non-dominated solutions. Using a different sound 
generation approach than the existing ones, this newly proposed sonification path 
utilizes pitch deviations to highlight the distribution of hypervolume contributions 
across the approximation set. To demonstrate the benefits of SonOpt we compare 
the sonic results obtained from two popular population-based multi-objective opti-
misation algorithms, Non-Dominated Sorting Genetic Algorithm (NSGA-II) and 
Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D), 
and use a Multi-objective Random Search (MRS) approach as a baseline. The three 
algorithms are applied to numerous test problems and showcase how sonification 
can reveal various aspects of the optimisation process that may not be obvious from 
visualisation alone. SonOpt is available for download at https://​github.​com/​tasos-a/​
SonOpt-​2.0.
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1  Introduction

The use of sound as a data representation and communication medium, com-
monly referred to as data sonification [6], has been applied in various process 
monitoring fields. From medical applications like heart rate monitors, to everyday 
tools like parking sensors, sonification has proven its benefits both as an exclu-
sive method for data communication and as an addition to visual or other sensory 
inputs [5, 26]. Sonification has also served as a meeting point between the scien-
tific and the artistic community. Numerous artistic projects have focused on the 
exploration of data through sound, resulting in interesting mergers of informa-
tive and aesthetic outcomes [9]. Although the advantages of incorporating soni-
fication in process monitoring tasks have been documented [55], sonification has 
yet to receive the necessary attention in the multi-objective optimisation research 
field [16, 39]; a field that is concerned with optimisation problems that possess 
multiple conflicting objectives and thus potentially complex underlying trade-offs 
between objectives and advanced algorithms to discover and understand these. 
This motivated us to conceive and design SonOpt [4], an application that aims to 
facilitate the understanding of optimisation algorithmic behaviour by converting 
various aspects of the multi-objective optimisation progress to sound.

The multi-objective optimisation community primarily relies on visualisa-
tion techniques for evaluating and understanding the algorithmic performance and 
behaviour [22, 54]. Although insightful, visualisation methods can come short in 
specific scenarios. For example, scatter plots are a popular visualisation choice but 
for problems with four or more objectives they would need to be used in conjunction 
with a dimensionality-reduction method in order to achieve a mapping to a visu-
alisable 2D or 3D space, leading to a loss of Pareto dominance relation informa-
tion between solutions  [54]. An alternative is to use pairwise plots but this would 
increase the number of required plots rapidly as the number of objectives increases. 
More advanced visualisation techniques, such as heatmaps and parallel coordinate 
plots, can provide useful insights into algorithm behaviour but also these techniques 
become less intuitive as the number of objectives increases. Visualisable many-
objective test problems [21, 22, 30, 31] try to circumvent the visualisation issue by 
sticking to a 2D design space but this class of problems are limited to distance-based 
problems. Furthermore, visualisation techniques can pose difficulties to the inclusiv-
ity of the optimisation community as they do not take into account individuals with 
impaired vision  [1, 38]. The evolution of the non-dominated set of solutions and 
their corresponding hypervolume contributions through a number of generations 
can be treated as a time-series. Sawe [48] mentions how visualisation can be less 
effective in such processes. In cases like these, sonification can suggest an effective 
alternative [15], or even an important addition to current visualisation methodology. 
An advantage offered by sonification is the ability of sound to bring forward and 
highlight events that take place over the course of a single run of an optimisation 
algorithm  [23]. This allows for a low level monitoring of the algorithmic perfor-
mance that can be combined with the higher level visual representations which tend 
to focus on performance assessments over multiple algorithmic runs.
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SonOpt was created to address the above mentioned issues. The concept of 
using sound as a way to monitor the optimisation progress is not new, however, the 
documented applications deal exclusively with single objective tasks [23, 35, 53]. 
SonOpt is the first attempt to apply sonification in the multi-objective optimisation 
domain. Although currently the application is limited to bi-objective problems, the 
core motivation behind SonOpt is to introduce a sonification methodology that can 
be generalized to scenarios with more objectives. Ultimately, the goal is to create a 
tool that employs sound to extend and enhance the monitoring capabilities of exist-
ing visualisation approaches. For this reason, SonOpt does not aim to substitute vis-
ualisation methods for sonification equivalents, but to encourage the multi-modal 
monitoring of the optimisation process and suggest an alternative perspective on 
algorithmic behaviour, a perspective in terms of sound. A better understanding of 
the algorithmic behaviour leads to the improvement of current algorithms and to the 
design of new, more effective ones. This way SonOpt can contribute to the benefit-
ing of industries that heavily rely on optimisation algorithms for providing solutions 
to important problems. We believe that SonOpt can also be useful as a teaching asset 
for the introduction of students to multi-objective optimisation and to the way vari-
ous algorithms behave during the run. On an artistic note, SonOpt can also function 
as a creative tool which will encourage composers working with sound to experi-
ment with the sonic potential of optimisation processes.

SonOpt is a real-time application that receives the objective function values of 
non-dominated solutions, also called approximation set, on each generation of the 
algorithmic run. The approximation set is sent over to SonOpt in the form of a 2D 
matrix. By following a workflow that will be covered extensively on following sec-
tion, SonOpt uses these values to generate two distinct sounds, referred to as soni-
fication path 1 and sonification path 2 respectively. The first path aims to provide 
information on the shape of the approximation set at each generation. It does so by 
transferring the shape of the approximation set at each generation to the shape of a 
waveform that is used as a look-up table in a wavetable synthesis engine [28]. The 
second path offers an insight to the recurrence of points in the approximation set 
across consecutive generations, by raising the amplitude of harmonic partials on a 
fundamental frequency depending on the amount and location of the recurrence. In 
this paper we introduce an extension on the existing capabilities of SonOpt. Spe-
cifically, along with the approximation set values, SonOpt’s current edition also 
receives a list with the hypervolume contributions [10, 20] of each of the non-domi-
nated solutions. Subsequently, sonification path 3 is created, this time informing the 
listener on how the hypervolume contributions are distributed across the approxima-
tion set at each generation, by employing consecutive pitch deviations on a fixed 
frequency. With this extension we aim to increase the utility of SonOpt by offering 
the user the opportunity not only to monitor in real-time the position and recurrence 
of the non-dominated solutions but to further understand their relative importance 
and how this evolves through the optimisation process. We chose to focus on hyper-
volume contributions because of its reliance on the hypervolume indicator, which 
is a popular quality indicator to measure the performance of multi-objective opti-
misers as it provides information about diversity and convergence of non-dominated 
solutions. This indicator is also often used to drive indicator-based optimisers and 
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is Pareto compliant [60]. Note, while the hypervolume indicator tells us something 
about the quality of an entire set of non-dominated solutions, the hypervolume con-
tribution of a non-dominated solution tells us about the contribution of that solution 
to the hypervolume of the set (a formal definition is provided in the next section).

It is important to mention that SonOpt does not operate on single metrics that 
apply to the entirety of the approximation set. Instead, it targets information that 
relates to each of the non-dominated solutions separately - its position in the objec-
tive space and its hypervolume contribution. In order to visually condense this infor-
mation for every generation, complicated, or animated graphs would be required. In 
this case, sonification proposes a meaningful alternative since sound can convey this 
amount of information effectively [48].

In the following section (Sect.  2) we provide formal definition for the terms 
that appear extensively throughout the text both in relation to multi-objective opti-
misation and sound. Subsequently, Sect.  3 puts this work in context with existing 
research, and in Sect.  4 we introduce the workflow and sound generation mecha-
nisms of SonOpt. Following on, Sect. 5 provides details of the experimental setup, 
and Sect.  6 showcases the effectiveness of SonOpt for bi-objective optimisation 
problems of varying complexity. Section 7 discusses the potential of SonOpt as a 
creative tool that can be used in musical composition. Finally, Sect. 8 concludes the 
paper and details areas of future research.

2 � Preliminaries

The following conventions will be used throughout the paper.

2.1 � Multi‑objective optimisation

Definition 1  (Multi-Objective Optimisation (MOO) Problem).      A MOO prob-
lem can be defined generally as “minimize” f (x) subject to x ∈ X , where x is an 
n-dimensional candidate solution vector (or solution), X ⊂ ℝ

n is the search domain, 
and f = (f1,… , fm) is a vector objective function f ∶ X → Y  mapping solutions to 
a m-dimensional objective space Y ⊂ ℝ

m . The term “minimize” is written in quotes 
to indicate that in general there is no single solution that minimizes all objectives 
simultaneously, and a further definition is needed to define an ordering on candidate 
solutions (see below).

Definition 2  (Pareto Dominance).     Consider two solutions x1 and x2 . We say that 
x1 dominates x2 , also written as x1 ≺ x2 , if and only if there is at least one i such 
that fi(x1) < fi(x2) and for all j, fj(x1) ≤ fj(x2) . This relation is also sometimes called 
strict Pareto dominance in contrast to the weak Pareto dominance defined below.

Definition 3  (Weak Pareto Dominance).      Consider two solutions x1 and x2 , 
we say that x1 is weakly dominated by x2 , also written as x1 ⪯ x2 , if and only if 
∀j, fj(x1) ≤ fj(x2).
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Definition 4  (Pareto Optimal).   A solution x1 is called Pareto optimal if there does 
not exist a solution x2 that dominates it.

Definition 5  (Pareto Set).   The set of all Pareto optimal solutions is said to form the 
Pareto set.

Definition 6  (Pareto Front).   The image of the Pareto set in the objective space Y is 
known as the Pareto front.

Definition 7  (Approximation Sets and Performance).      Any set of points in the 
objective space with elements that are all non-dominated within the set is called 
an approximation set  [60], denoted here by A. Such sets can be partially ordered 
according to the better relation, analogously to the dominance order on points. We 
refer to the shape created by points in A in the objective space as the approximation 
set shape. Later in the paper (relating to sonification path 2), we will be distinguish-
ing between approximation sets at different generations; where this is the case, we 
will be using the notation At , where t refers to the generation counter.

The aim of multi-objective optimisation can be defined as finding the best possi-
ble approximation set A, where best is determined by this order. As a proxy method 
for assessing approximation sets, the hypervolume indicator  [61] (see below) has 
been recommended. We use the concept of hypervolume contributions [20] to deter-
mine the contribution of a individual point of the approximation set to the hypervol-
ume of the entire set.

Definition 8  (Hypervolume Indicator).   Given a set P ∈ Y  , the hypervolume indica-
tor S of P is defined as the Lebesgue measure of the subspace in Y dominated by P 
and a user-defined reference point r is defined as [58] S(P) = Vol(∪p∈P[p, r]) , where 
Vol is the Lebesgue measure on ℝm , and the reference point r selected such that it is 
dominated by all points in S.

Definition 9  (Hypervolume Contribution).     Given a point p ∈ P , its hypervolume 
contribution with respect to P is ΔS(P, p) = S(P) − S(P�p).

2.2 � Sound

Definition 10  (Sonification).   The use of non-verbal audio to represent data is called 
sonification [6].

Definition 11  (Audification).   The process of converting the array of data samples 
directly into audio samples is known as audification [32].

Definition 12  (Audio Frequency). The frequency of a periodic vibration that falls 
within the audible range by humans is referred to as audio frequency [41].
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Definition 13  (Wavetable Synthesis).   The periodic reproduction of a lookup table 
that includes samples from a dynamically changing single-cycle waveform, is com-
monly known as wavetable synthesis [28]. In this work, we refer to the frequency of 
this periodic reproduction as wavetable oscillator frequency.

Definition 14  (Additive Synthesis).      Harmonic additive synthesis, or generally, 
additive synthesis, in audio refers to the concept of synthesising spectra by adding 
sine waves with frequencies equal to integer multiples of a common fundamental 
frequency. These sine waves are called harmonic partials [50].

Definition 15  (Frequency Modulation Synthesis). The sound synthesis method that 
involves the production of spectra through the modulation of the frequency of a car-
rier wave according to a second, modulating, wave, in such a way that the frequency 
of the modulator determines the rate of change on the frequency of the carrier, is 
called Frequency Modulation (FM) synthesis. In this work, we refer to the parameter 
that controls the carrier wave frequency as base frequency [12].

3 � Background

Research around sonifiying optimisation processes is limited, perhaps due to the 
need to combine expertise from several domains, such as music, operations research, 
software engineering, and audio signal processing. The purpose of this literature 
review is to provide an overview of existing research at the intersection of these 
areas. The interested reader is referred to domain-specific literature to gain a deeper 
understanding about a specific domain.

This paper is an extension of our previous, initial work on SonOpt  [4]. This 
involved the motivation behind sonification of Multi-Objective Evolutionary Algo-
rithms (MOEAs) and the implementation of SonOpt as a first attempt to achieve a 
useful sonification. We carried out an experimental study featuring NSGA-II and 
MOEA/D applied to three popular bi-objective optimisation problems, and the docu-
mentation of the responsiveness of the system in these scenarios. To our knowledge, 
this was the first application of sonification in optimisation tasks with more than one 
objective. Our previous work included only two sonification paths and, as already 
mentioned, does not involve Multi-objective Random Search (MRS) as a baseline.

Grond et  al.  [23] were the first who pointed at the benefits of sonification in 
single-objective optimisation by placing it within the wider context of process 
monitoring applications. By applying various levels of modification to the sounds 
of a mechanical keyboard, they aimed to convey information on the optimisation 
run of Evolutionary Strategies (ES), a popular type of population-based heuristic 
(originally) designed for continuous search spaces [46]. The authors motivated the 
intervention of the user to the optimisation run, based on the information received 
through the auditory display.

In  [53], Tavares and Godoy designed a system that sonifies various charac-
teristics of the population behaviour in an optimisation task. Their focus is on 
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Particle Swarm Optimisation (PSO)  [7, 29]. The authors looked at specific per-
formance metrics including swarm velocity, alignment, diversity and fitness evo-
lution, and designed a system that uses musical parameters, such as notes, tempo, 
dynamics and timbral qualities, to create sonic representations of these metrics. 
The authors mention that their approach can be generalised to other population-
based heuristics. An important aspect of this work is that it attempts to combine 
the informative display with a musically appealing outcome. This is reflected on 
the prioritising of musical qualities in the sonic mapping. The work is applied to 
single-objective tasks exclusively.

Another documented approach in sonification of optimisation processes is 
by Lutton et al. [35]. The work is focused on island-based systems, a method of 
splitting the computational burden of optimisation to more than one system in 
order to enhance the speed and efficiency of the process. Sections of a musical 
score or a popular song in audio format are distributed among the computational 
nodes. Depending on the optimisation progress of each node, the corresponding 
section might be reproduced faithfully or not. This way the listener can moni-
tor the individual contribution of each node to the overall optimisation progress. 
Some musical training might be necessary in order to make the most out of the 
proposed system.

Arguably, the guide of Hermann at al.  [24] remains the most comprehensive 
guide and introduction to auditory display and its various applications. Albeit not 
specifically related to optimisation, the guide provides a detailed account of sonifica-
tion including theory, technology, applications and benefits. Vickers [55] discusses 
explicitly how sonification can assist with process monitoring and specifically high-
lights the application of sound as a facilitator for the understanding of algorithmic 
processes. The author lists applications which used audio to help the developers 
debug run-time processes in simple programs. The auditory display in most of these 
cases included sound notifications, which were triggered by important events dur-
ing the algorithmic operation. The majority of the monitored processes mentioned 
in the text relate to older programming methods and do not include optimisation 
applications. Vickers highlights another important aspect of sonification relating to 
peripheral process monitoring. This refers to how the auditory display allows the 
user to maintain focus on a primary, perhaps visual, task, while aurally monitoring 
a secondary task. As stated in the previous section, SonOpt is designed to encour-
age multi-modal process monitoring by providing an insightful addition to existing 
visualisations. This way the user can combine the comprehensive overview of the 
algorithmic process provided by visual graphs, with the real-time low level detail, 
offered by SonOpt.

Research has shown that in process monitoring tasks, multi-modality achieves 
better results. Hildebrandt et. al [25] showed through experimentation that increased 
performance was achieved when individuals were provided simultaneously with 
continuous audio streams and visual cues of the monitored process. In [13, 44] it 
was shown that experts from various fields tend to choose the coexistence of con-
tinuous aural display and visualisation in process monitoring tasks, over single-
modal monitoring involving hearing or vision only. Axon et. al.  [5] were able to 
show the benefits of combining visual and sonic displays in monitoring tasks for 
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security purposes. Providing further evidence in a different field, [26] points towards 
improved performance when using sonification to monitor physical production 
systems.

Search Trajectory Networks (STNs) by Ochoa et  al.  [40] focus on visualisa-
tions that aim to map the collective trajectories of metaheuristics on various prob-
lems. Albeit the work is not related to sonification, the motivation behind STNs 
and SonOpt is similar. In [34] STNs were expanded to problems with two and three 
objectives, to facilitate the understanding of search dynamics into the multi-objec-
tive domain. Unlike SonOpt, which focuses on a single algorithmic run, STNs aim 
to provide information by looking at multiple runs of the algorithm.

Schuller et  al.  [49] present data sonification as an accessible approach that can 
assist with the explainability of Artificial Intelligence. Lyu et al. [36] apply an inter-
active virtual environment that allows real-time tweaking of a neural network’s 
hyperparameters by providing users with auditory feedback on the impact of their 
choices. In   [1, 38], sonification is proposed as a more inclusive approach to data 
representation for individuals who might face difficulties with visualisations. Such 
examples are individuals with lack of technical expertise or vision related problems.

Experimental studies  [42, 43] have discussed the extent to which human ear is 
sensitive to the harmonic content of a periodic sound. These findings support the 
sonification methodologies implemented in sonification paths 1 and 2 which rely 
on the presence of harmonics on a periodic waveform in order to provide a concise 
representation of the algorithmic behaviour during the optimisation run (for a more 
detailed explanation see Sects. 4.1 and 4.2). However these methodologies do not 
require the user to be able to discern each harmonic partial individually but rather 
recognize the overall change caused in the sonic outcome by the varying presence 
or absence of harmonics. As such, the use of SonOpt does not require specialized 
training.

Concluding this section, we should mention that sonification is a general term that 
refers to auditory display and is therefore the choice of preference throughout this 
text. However, the methods and techniques described here relate heavily to a specific 
branch of auditory display, which is often described as audification. Kramer  [32] 
refers to audification as the most immediate way of sonically representing data by 
“directly playing back the data samples”. There are cases where audification can be 
the most fruitful approach for auditory display. In [19], Dombois and Eckel describe 
these requirements as a sufficiently large dataset consisting of samples that might 
result in a wave-like signal, the complexity of this signal and whether it presents 
subtle changes throughout. SonOpt receives two inputs, the approximation set points 
and their corresponding hypervolume contributions, and both of these incoming 
datasets meet the above criteria.

4 � SonOpt workflow

Figure  1 illustrates SonOpt’s workflow, which we explain in more detail in this 
section. SonOpt has been created within Max/MSP  [45], a popular programming 
language tailored to coding tasks that involve sound. In order to make SonOpt 
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accessible to individuals that might not be familiar with Max, we introduced an 
intuitive presentation panel that offers a simplified overview of the parameter con-
trols. The ability to integrate to SonOpt a simple and comprehensive panel that the 
user can interact with simply by using the mouse, made Max an ideal choice for the 
development of SonOpt. The panel includes some graphic animation, however, the 
aim of the visual component is merely to provide a simple insight into the underly-
ing operation of the different sonification paths. Currently SonOpt applies only to bi-
objective problems (but its extension to more objectives is part of future research).

SonOpt can work alongside any Python scripting platform, which we use here 
to carry out the optimisation task (as opposed to converting it into sound, which 
is done in Max/MSP). For the results presented in this work, we used the pymoo 
framework [8] to run multi-objective optimisers on the various test problems, and 
it is that optimisation process that we are sonifying. Pymoo was chosen because of 
its flexible modular design and its wide application within the multi-objective opti-
misation community; pymoo is also open-source. However, the users do not have 
to use a specific Python library and can implement their own algorithms and prob-
lems. SonOpt communicates with pymoo in real-time via the Open Sound Control 
(OSC) [56] protocol, using the python-osc library. In order to use the full function-
ality of SonOpt (i.e. all sonification paths), the user needs to ensure that two inputs 
are passed on to Max/MSP at each generation of the algorithm1: The first input is 
an approximation set A, which is in our case the objective function values (i.e. a 2D 
matrix) of non-dominated solutions in the population at that generation. The second 
input is a 1D array (vector) with the hypervolume contributions of each of these 
non-dominated solutions. After A has been obtained at a given generation within 
pymoo, the 2D values contained in it need to be sorted. The purpose of this sorting 

Fig. 1   SonOpt’s workflow. The arrows in green designate the messages sent via OSC from the Python 
script to Max/MSP (Color figure online)

1  Note, in a steady state MOEA, a generation may equate to the creation and processing of a single solu-
tion.
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is to create a sequence of points that has the exact order as the sequence of points 
in the objective space graph, reading from left to right (Fig. 2). Once this process 
has been completed, the first input from pymoo to Max/MSP is ready. For the work 
presented in this paper, we extended pymoo by adding a short custom loop that cal-
culates the hypervolume contributions of points in A at each generation. To calculate 
the hypervolume contributions, A needs to be scaled to be within the same range, 
which is here [0, 1]. This scaling is necessary to ensure consistency in the calcula-
tion of the hypervolume in different optimisation scenarios. Scaling A to be in [0, 1] 
allows us to use the same reference point (which will be [1.2, 1.2] here) throughout 
an optimisation run and for every algorithm and problem combination. In turn, this 
renders the sonic results generated by SonOpt comparable. After the scaling, the 
hypervolume contribution of each point in A is calculated. The array of hypervol-
ume contributions follows the order of the points in A as obtained after the sorting. 
Once the hypervolume contributions are calculated, the second input from pymoo to 
Max is also ready to be sent. Once the two inputs reach Max/MSP, SonOpt uses the 
received values to generate three different audio streams. We refer to these streams 
as sonification paths and each of them aims to provide different information about 
the optimisation process under examination. We will now proceed into examining 
each of these paths separately.

4.1 � Sonification path 1

Sonification path 1 aims to provide information on the evolving shape of the 
approximation set A during the optimisation process. For this path, SonOpt uses the 
received 2D matrix. At each generation, SonOpt calculates a straight line that con-
nects the uppermost with the lowermost point of the approximation set A (Fig. 2), 
which corresponds to the minimum of objective 1 and the minimum of objective 2 
respectively. After this, SonOpts calculates the distance of each of the points to this 
line. These distances are scaled in order to fit within the range [0,1], and then they 
are mapped to sample values inside an audio buffer. The resulting waveform has 
the shape of the approximation set at each generation. Using this technique, neg-
ative sample values cannot be obtained. Therefore, in order to generate a bipolar 

Fig. 2   NSGA-II on ZDT1 via sonification path 1 at generation 250
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waveform,2 SonOpt duplicates the first half of the buffer and multiplies it with -1. 
The buffer size needs to be allocated before the algorithmic run, since Max/MSP 
does not allow the seamless dynamic resising of a buffer and should be at least 2N 
samples big, where N is the population size of our MOEA. For sound to be gener-
ated, the audio buffer content is treated as a lookup-table and scanned at a user-
defined frequency, following a traditional technique known as wavetable synthesis 
[28]. It should be mentioned that since the number of non-dominated solutions 
might not be the same at different generations of an algorithmic run, SonOpt only 
scans the part of the buffer that was generated by the non-dominated solutions of 
the current generation. This method results in a sound that progressively morphs as 
a direct result of the gradual change of the approximation set shape and, hence, the 
optimisation progress.

Through sonification path 1, specific characteristics of the approximation set 
shape are highlighted. A discontinuous shape of A (and thus usually the Pareto 
front) leads to more jagged waveforms and therefore sounds that are harsh and rich 
in harmonics. Convex and concave approximation set shapes lead to softer sounds, 
reminiscent of the sound of a sinewave. Bigger curvature of the approximation set 
shape results in higher sample values and therefore louder sound.

4.2 � Sonification path 2

Similar to path 1, sonification path 2 receives A, however, the sound generation fol-
lows a different approach. Path 2 provides information on the recurrence of non-
dominated solutions across consecutive generations, and the location of these solu-
tions across the approximation set. The sound generation technique implemented in 
this path follows the concept of additive synthesis [50]. The number of harmonic 
partials is equal to the population size defined in the MOEA. When SonOpt receives 
At , it compares it with the previous approximation set, At−1 . If there are recurrent 
values between the two, SonOpt finds the positions of these values within the set 
of the current generation and raises the amplitude of the corresponding harmonic 

Fig. 3   NSGA-II on Kursawe via sonification path 2 at generation 250

2  Unipolar waveforms tend to put strain on speaker cones, hence why SonOpt works with bipolar wave-
forms.
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partials by a small increment (Fig. 3). The fundamental frequency can be defined by 
the user and can be changed in real-time as the algorithm runs. It should be noted 
that sonification path 2 calculates recurrence taking place across consecutive gener-
ations; if a solution occurs for a given number of successive generations, then disap-
pears for a generation, and reappears on the very next one, sonification path 2 resets 
its recurrence and starts counting again from the first successive reappearance of the 
solution.

The harmonic richness of the sound produced by Sonification path 2 depends on 
the amount of non-dominated solution recurrence across consecutive generations. 
More recurrence generates bright, harsh, harmonically rich sounds. On the other 
hand, less recurring values lead to spectrally “focused”, “soft”, or even individual 
tones as a result of possibly single sounding harmonic partials. Depending on the 
location of the recurrent points in A, the produced spectrum can be based on the 
low, mid or high frequency range. Sonification path 2 can therefore provide a quick 
sonic snapshot of where value recurrence takes place in A. For populations of large 
size, presenting such information visually would require very dense or animated 
visualisations.

4.3 � Sonification path 3

In this paper we introduce for the first time sonification path 3. Diverting from the 
previous two paths, sonification path 3 receives the hypervolume contributions of 
each point in A on a per-generation basis. Once received, SonOpt scales the values 
so that they fit within a range defined by the user. It then proceeds with scanning 
through the list of (ordered) hypervolume contributions and subsequently, depend-
ing on the amount of each contribution, raises the frequency (pitch) of a sinewave, 
according to the range defined by the user (Fig. 4). The original frequency of this 
sinewave is also set by the user and can change in real-time as the algorithm runs. 
Following the method described, SonOpt creates a short sound at each generation 
of the algorithm. The points in A are treated as time steps: the first points in the set 
correspond to pitch deviations occurring in the beginning of the sound, while the 
latter points correspond to the pitch deviations taking place at the middle or end of 

Fig. 4   MOEA/D on ZDT1 via sonification path 3 at generation 250
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it. This is the reason why the hypervolume contributions need to be already sorted in 
the Python script in order to match the sequence of points in A sent to the other two 
paths. The sonification approach followed in this path conveys information about the 
optimisation process through the temporal evolution of sound, while the two previ-
ous paths rely on information obtained from the spectral characteristics of the gener-
ated sound. It should be mentioned that SonOpt scales the received values accord-
ing to the minimum and maximum values in the list of hypervolume contributions 
received at each generation. Thus the produced sound provides information on the 
relevant levels of the hypervolume contributions of the non-dominated solutions; i.e. 
how does a solution compares against the minimum and maximum contribution at 
a given generation. Another parameter that greatly affects the sound of sonification 
path 3 is the actual duration it takes for an algorithm to run. If each generation is 
completed too quickly, the sonic result might be imperceptible. For this reason we 
suggest that the user slows down the algorithmic run by at least 300 to 500 millisec-
onds per generation.

The sound produced by sonification path 3 is affected by the deviations of the 
per-solution hypervolume contributions within a given generation, as well as how 
these are distributed across the approximation set. At the beginning of an optimisa-
tion run, the algorithms usually explore the objective space resulting in a sound with 
large pitch deviations. As the algorithm starts to converge, the deviations are gradu-
ally reduced and eventually distinctive repetitive rhythmic patterns emerge. Since 
the scaling is applied on the contributions of each generation separately, the pitch 
contour, usually forming local pitch “spikes”, depending on how much bigger the 
biggest contributions are compared to the rest. The location of the spikes across the 
duration of the sound depends on the location of the most contributing points within 
A.

4.4 � General remarks

The first edition of SonOpt included only sonification paths 1 and 2. For this reason, 
the two paths were designed to evolve in opposite directions during the algorithmic 
run. Sonification path 1 is characterized by quick changes and sonic complexity dur-
ing the intial stage of the optimisation. This is expected since the approximation set 
shape changes drastically during this phase of the optimisation. Once the approxi-
mation set has converged sufficiently, the sound changes in this sonification path 
are generally subtle. Sonification path 2 tends to work in the opposite way. At the 
beginning of the optimisation, it produces simple sounds that tend to evolve into 
complex and harsh after sufficient convergence has been achieved, since this is when 
the approximation set points tend to be repeated more through consecutive gener-
ations. This way, the information conveyed by the two paths can be distinguished 
even when both sonification paths are being auditioned at the same time. With the 
newly introduced addition of sonification path 3, we provide the user the opportu-
nity to quickly mute any path as the algorithm runs, as well as control the volume of 
each path separately, depending on the desired focus of the investigation.
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A conscious choice during the design of SonOpt was to keep the sonification 
methodology away from musical qualities like harmony and melody. SonOpt’s 
approach is based on sound synthesis instead, by directly converting data points 
into sound. The rationale behind this design choice was to allow SonOpt to be used 
by individuals that do not have the necessary training to understand the differences 
amongst musical chords or scales. The followed approach allows the user to focus 
on the way data samples change through time by attending to the primitive quali-
ties of sound, such as frequency range, loudness vs quietness, and “softness” ver-
sus “harshness”. Furthermore, using musical intervals arranged in semitones would 
require discretisation of the input dataset. The reason for this is that the minimum 
increment of change in the sonic output would necessarily be that of a semitone. We 
find this a limiting factor when trying to convey aurally subtle changes that may take 
place in the dataset. Characteristics like the harmonic richness of a sound, or the 
shape of its waveform can noticeably convey nuanced changes in the dataset.

5 � Experimental setup

This section provides details of the experimental setup as used in the experimental 
study carried out in the subsequent section.

5.1 � Algorithm settings

In this paper we employ three popular algorithms: Non-dominated Sorting Genetic 
Algorithm (NSGA-II) [18], Multi-Objective Evolutionary Algorithm based on 
Decomposition (MOEA/D) [57] and a multi-objective version of random search 
(MRS). NSGA-II and MOEA/D were chosen because of their popularity in the com-
munity and their reliance on different optimisation paradigms (Pareto-dominance vs 
decomposition). Since SonOpt relies on a population of solutions being processed 
at each generation, we had to introduce the notion of a population into MRS. To 
allow for a straightforward comparison of MRS and the other two algorithms, our 
RS algorithm is in essence a randomized version of NSGA-II: MRS generates every 
offspring solution at random (as we do traditionally when initializing the population 
of MOEAs) instead of using parental selection followed by crossover and mutation; 
environmental selection (non-dominated sorting and crowding distance applied the 
combined pool of the current and offspring population) is done identically in MRS 
and NSGA-II. Both algorithms are by default set to eliminate the duplicate solutions 
of the current or offspring population after the merging, repeating mating until the 
offspring population includes only unique solutions [8]. This does not affect sonifi-
cation path 2, which calculates the recurrence of unique solutions across consecu-
tive generations (and not the number of identical solutions in a population). The rea-
son to use MRS is it does not perform guided search and thus we would expect it to 
behave differently from algorithms, such as NSGA-II and MOEA/D. This provides 
us with the opportunity to test the responsiveness of SonOpt as we expect the sonic 
outcome to be different from the output of the other two algorithms. The pymoo 
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framework was used to execute all three algorithms with MRS being integrated to 
the framework for the purpose of the study.3

SonOpt is not limited to these algorithms and can be applied to any population-
based algorithm. It is important to remind ourselves that the purpose of this work 
is not to compare algorithmic performance or decide which algorithm is most suit-
able for a given problem. For this reason, for all of the algorithms, we have used 
the recommended default parameters of the algorithms (see Table 1 for an overview 
of algorithm parameters and their settings). The only parameters that required cus-
tom setting, were population size for NSGA-II and MRS and number of reference 
vectors for MOEA/D. The population size was set to 100 and 99 reference vectors 
were used (NSGA-II typically works with a population size of an even number), for 
consistency and ease of result demonstration. For every result figure we show in the 
paper, we used a snapshot at generation 250. The reader is referred to a range of vid-
eos available at https://​tinyu​rl.​com/​sonop​t2 for live demonstrations of SonOpt.

The algorithms were run on a collection of bi-objective problems (see videos 
https://​tinyu​rl.​com/​sonop​t2), however, in this paper we present selected results 
obtained for ZDT1, ZDT3, ZDT4 [59], Kursawe [33], Tanaka [52] and CTP2 [17]; 
these problems vary in complexity and Pareto front shapes. Please refer to Appen-
dix  B for a formal definition of these problems and visualisations of their Pareto 
fronts. Note, Tanaka and CTP2 are constrained problems that cannot be tackled by 
MOEA/D by default in pymoo. All problems used, both in the paper and videos, are 
implemented by default in pymoo. Some of the results shown here for sonification 
path 1 and 2 have been presented in a condensed form in our previous work [4]. We 
recap and expand on these in this paper.

Table 1   Algorithm parameter settings as used in the experimental study

Algorithm Parameter Setting

NSGA-II Population size 100
Population initialization Random sampling
Parental selection Binary tournament with replacement
Crossover Simulated binary crossover ( �c = 20 , pc = 0.9)
Mutation Polynomial mutation ( �m = 20 , pm = 1∕n)
Eliminate duplicates Yes

MOEA/D Population initialization Random sampling
Reference vectors 99 (set following [14])
Size of neighborhood T = 20

Crossover Simulated binary crossover ( �c = 20 , pc = 0.9)
Mutation Polynomial mutation ( �m = 20 , pm = 1∕n)

MRS Population size 100
Eliminate duplicates Yes

All Number of generations 250

3  The authors thank Julian Blank, the leading developer of pymoo, for the integration.

https://tinyurl.com/sonopt2
https://tinyurl.com/sonopt2
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5.2 � SonOpt settings

Table 2 presents an overview of audio-related parameters of SonOpt and their set-
tings as used in the experimental study. The table also shows the possible value 
ranges of each algorithm parameter and the impact of a parameter on the sonic out-
come or working of SonOpt. Having tested different configurations, we recommend 
these parameters as default for SonOpt because they offer sufficient sonic clarity. 
Of course, users can define these parameters according to their personal preference. 
Population size is a setting that needs to be transferred from the algorithm settings to 
SonOpt. It is not a sonification parameter as such, but needs to be defined in SonOpt 
since it affects a group of parameters that should otherwise be defined individually. 
Sample value scaling refers to the scaling that is applied to the incoming approxima-
tion set point coordinates, in order to convert them to sample values.4 It only applies 
to sonification path 1 and depends on the range of the received values. The closer 
these values are to 0, the larger the scaling needs to be and vice versa. The high-
est the scaling value is, the louder the produced sound gets. The maximum limit of 
this value depends on the incoming values and can be only defined per case. Wavet-
able oscillator frequency defines the buffer scanning rate in sonification path 1. This 
parameters impacts the overall frequency range of the produced sound for sonifica-
tion path 1. A higher frequency leads to higher frequency ranges and vice versa. We 
suggest that the range between 60 and 200 Hertz is a suitable range that produces 
aurally perceptible results. Amplitude controls the loudness and can be set separately 
for each path. Stereo position needs to be set individually for each path and deter-
mines the stereo placement of the sound produced by the respective path (left, right 
speaker, or anywhere in between). Fundamental frequency is the frequency of the 
fundamental sinewave in sonification path 2. Similar to Wavetable oscillator fre-
quency, this parameters affects the range of the produced frequency spectrum. Sleep 
interval affects only sonification path 3 and is transferred from the python script. It 

Table 2   Audio-related parameters of SonOpt and their settings

Setting Path 1 Path 2 Path 3 Value range Impact

Population size 100 100 100 n/a n/a
Sample value scaling 500 n/a n/a 0-max Loudness
Wavetable oscillator frequency 

(Hertz)
80 n/a n/a 60–200 (suggested) Frequency range

Amplitude 0.3 0.15 0.3 0–1 Volume
Stereo position (speaker) Left Right Middle Left-right Stereo placement
Fundamental frequency (Hertz) n/a 80 n/a 60–200 (suggested) Frequency range
Sleep interval (milliseconds) n/a n/a 500 250–1000 (suggested) Duration
Exponential scaling n/a n/a 1 0–1 Pitch contour
Base frequency (Hertz) n/a n/a 80 60–200 (suggested) Frequency range

4  Only for the Kursawe problem this value was set to 800 to avoid clipping distortion.
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defines the pause interval between generations. As explained in Sect.  4.3, a sleep 
interval needs to be defined between each generation, so that sonification path 3 can 
produce perceptible results. The bigger the sleep interval is, the longer the duration 
of the sound, leading to a more distinguishable sonic outcome. However, because 
efficiency is taken into account, we have found that 500 milliseconds is a good inter-
val for perceptible results. Since path 3 generates short sound clips, one for each 
generation, SonOpt ensures there is a short pause after each clip informing the user 
when a clip ends and the next one begins. The duration of this pause is automati-
cally calculated from SonOpt and is included within the sleep interval defined by the 
user. Exponential scaling applies only to path 3 as well. It is an optional parameter 
that affects the relative scaling of the hypervolume contributions in order to con-
vert them to pitch deviations. The default value is set to 1, which equals to a linear 
scaling. However exponential scaling can be useful in cases where the user prefers 
to sonically accentuate the pitch deviations generated by the hypervolume contribu-
tions. This becomes handy if the contributions are very similar to each other, and 
the pitch deviation patterns are not clearly discernible. The final parameter of soni-
fication path 3 is base frequency. This parameter defines the frequency of the base 
sinewave, which is subjected to the pitch deviations and affects the frequency range 
produced through sonification path 3.

All audio-related parameters of SonOpt can be changed dynamically during an 
algorithmic run. However, population size is expected to stay fixed during the algo-
rithm run.

5.3 � Additional media

SonOpt is a sonification application and as such, generates sound from input data. It 
becomes clear that the best way to experiment with SonOpt and gain the most out 
of its utilities, is to use it yourself. In order to be able to discuss the results of using 
SonOpt in a written context we have provided images of SonOpt’s interface as well 
as mel spectrograms of the sonic output. Mel spectrograms display the distribution 
of energy across the mel scale, a non-linear scale that corresponds to the perception 
of pitch by humans [51]. Mel spectrograms were preferred in this text because they 
can reveal effectively the impact of the distribution of spectral energy to the human 
hearing, thus highlighting changes in sound that are noticeable to listeners. Addi-
tionally, as mentioned previously, we provide a collection of videos with SonOpt 
being applied to more optimisation scenarios.

6 � Experimental study

This section includes a demonstration and analysis of SonOpt applied to sev-
eral MOEAs and test problems. The analysis itself is done for each of the sonifi-
cation paths separately to improve clarity. Specifically for MRS, we demonstrate 
and discuss the produced results only in the first problem category for each soni-
fication path. The reason behind this is that the behaviour of MRS does not vary 
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substantially depending on different problems and therefore does not allow room for 
additional analysis on each problem category. We refer the reader to the Appendix A 
where the results of MRS on more problem categories can be found.

6.1 � Sonification path 1

In this section we demonstrate the responsiveness of sonification path 1 in various 
optimisation scenarios. Sonification path 1 provides information about the shape of 
the approximation set (i.e. the Pareto front eventually). Imagining a particular sound 
or a change in sound is difficult from written text alone. Hence, to follow our analy-
sis and reduce ambiguity, we suggest to read through the analysis and watch the cor-
responding video simultaneously.

6.1.1 � Sonification path 1 on a convex bi‑objective problem

The first case demonstrates the use of sonification path 1 on ZDT1. NSGA-II and 
MOEA/D both managed to converge successfully by the 250th generation. However, 
the approximation set in NSGA-II achieved convexity quicker than in the case of 
MOEA/D. This becomes evident by the presence of harmonic content generated by 

Fig. 5   NSGA-II on ZDT1 via sonification path 1: a Approximation set obtained after 250 generations; b 
buffer contains on the 250th generation; c mel spectrogram of sonification path 1 across 250 generations. 
Subsequent figures of results will be of same structure in terms of information shown

Fig. 6   MOEA/D on ZDT1 via sonification path 1 
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sonification path 1 on each algorithm. For NSGA-II, the harmonic content reduces 
shortly after the 75th generation, meaning that after that, the approximation set 
shape has reached sufficient convexity in order to create a corresponding waveform 
that resembles the shape of a sinewave (Fig.  5); for clarity reasons, all result fig-
ures for sonification path 1 follow the same structure in terms of information shown 
(approximation set, buffer, and mel spectrogram). This translates to a “softer” sound 
with less harmonic content in comparison to the sound produced during the first 
generations. For MOEA/D, the harmonics in the sound persist until the 100th gener-
ation (Fig. 6). Even after this point, the sound maintains a noticeable harmonic con-
tent, due to the single outlying point on the upper part of the approximation set. This 
point changes the overall shape of the set sufficiently enough to affect the produced 
waveform and, therefore, the sonic outcome. It becomes clear that sonification path 
1 is very sensitive to the approximation set shape and can thus convey information 
on the algorithmic behaviour with sufficient accuracy. MRS did not converge suc-
cessfully after 250 generations, as can be witnessed from the obtained approxima-
tion set shape (Fig. 7). The number of non-dominated solutions produced is smaller 
in comparison to the other two MOEA’s. This translates to a waveform with fewer 
samples, hence, a “buzzy”, harmonically rich sound. The harmonics do not cease 
through the optimisation, making clear that the algorithm did not manage to con-
verge. Furthermore, sonification path 1 provides information on how smoothly the 
approximation set shape was obtained. In the case of MRS, the produced sound 
conveyed changes in a step-like manner; ergo it stays unchanged across a few gen-
erations, instead of changing between subsequent generations, as is the case with 
guided search (at least until convergence occurs). In this case, the output of sonifica-
tion path 1, confirms the expected behaviour of MRS, since the random sampling of 
solutions in each generation results in a slow optimisation progress.

6.1.2 � Sonification path 1 on a convex multi‑modal bi‑objective problem

When applied to a multi-modal problem like ZDT4, sonification path 1 can pro-
vide useful insights to the optimisation process highlighting the alternation between 
exploitation and exploration. The sound generated for NSGA-II and MOEA/D pre-
sents significant instability through the first 100 generations (Figs.  8 and 9). The 

Fig. 7   MRS on ZDT1 via sonification path 1 
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sound in both cases includes moments of silence followed by harsh sound “bursts”, 
while overall characterized by strong harmonic presence. This behaviour is due to 
the local optima present in the objective space of ZDT4. The approximation set 
shape is changing drastically during the first half of the algorithm run, as a result of 
the algorithm getting stuck temporarily at various local optima, and this is directly 
affecting the outcome of sonification path 1. Eventually both algorithms converge, 
which results to a simpler, sinewave-like tone for NSGA-II and a stable sound for 
MOEA/D, again affected by the outlier on the upper part of the approximation set.

Fig. 8   NSGA-II on ZDT4 via sonification path 1 

Fig. 9   MOEA/D on ZDT4 via sonification path 1 

Fig. 10   NSGA-II on Kursawe via sonification path 1 
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6.1.3 � Sonification path 1 on a discontinuous bi‑objective problem

In the case of Kursawe, sonification path 1 reveals useful information on the dif-
ferent optimisation methodologies between NSGA-II and MOEA/D. For NSGA-
II the sound evolves smoothly through the optimisation process, since small 
changes on the approximation set shape take place on each generation (Fig. 10). 
For MOEA/D on the other hand, the sound evolves in a “blocky” way, chang-
ing noticeably only every few generations (Fig.  11). This highlights the differ-
ent search paradigms, non-dominated sorting versus decomposition, on which the 
two algorithms are based. Since the Kursawe function presents a discontinuous 
Pareto front, the sound obtained through sonification path 1 presents harmonic 
content even after convergence. Generally, discontinuity on the approximation set 
shape is translated to edgy waveforms which are rich in harmonics.

Fig. 11   MOEA/D on Kursawe via sonification path 1 

Fig. 12   NSGA-II on ZDT1 via sonification path 2. a Approximation set obtained after 250 generations; 
b amplitude of the harmonic partials on the 250th generation; c mel spectrogram of sonification path 2 
across 250 generations. Subsequent figures of results will be of same structure in terms of information 
shown
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6.2 � Sonification path 2

This sonification path informs the user about the level of solution recurrence, and 
the location of recurrence along the approximation set. Naturally, recurrence is a 
property that depends on both the way an algorithm works (in particular its diver-
sity-maintenance mechanism) and the properties of the problem being solved.

6.2.1 � Sonification path 2 on a convex bi‑objective problem

The results of applying sonification path 2 on ZDT1 for NSGA-II and MOEA/D are 
presented in Figs. 12 and 13 respectively. It can be observed from the results that 
in both cases the algorithms generated an excessive number of recurring points in 
the approximation set across generations. NSGA-II generated a steadily increasing 
number of recurring solutions during the first 60 generations, as can be heard from 
the gradually increasing harmonic content of the sound produced through sonifica-
tion path 2. This reflects the fact that it took NSGA-II approximately 60 genera-
tions to reach the maximum number of non-dominated solutions (100 in this case). 
For MOEA/D however, the distribution of the harmonics is more dispersed through 
the spectrum, meaning that the maximum number of non-dominated solutions was 
reached earlier than MOEA/D and consequently recurrence was present across the 
whole approximation set. For the first 50 generations, the recurrence seems to be 
more “local”, resulting in clearly distinguished individuals harmonic partials, while 

Fig. 13   MOEA/D on ZDT1 via sonification path 2 

Fig. 14   MRS on ZDT1 via sonification path 2 
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for the rest of the optimisation process recurrence is evenly distributed across the 
entire approximation set, resulting in a “harsh”, harmonically rich sound. MRS did 
not approximate the Pareto front sufficiently after 250 generations (Fig.  14). As 
expected, due to unguided search of MRS, the approximation set does not change 
drastically as the optimisation progresses resulting in a constant recurrence of solu-
tions. This behaviour is evident from the sonic output of sonification path 2, which 
stays unchanged through the entire process. Another observation we can make from 
SonOpt’s output is that MRS does not manage to obtain an entire population of non-
dominated solutions resulting in a sonic outcome that is spectrally limited to the low 
and mid-high frequency range, in comparison to NSGA-II and MOEA/D.

6.2.2 � Sonification path 2 on a convex multi‑modal bi‑objective problem

Sonification path 2 sheds light on the objective space of ZDT4. Running NSGA-
II on ZDT4 produces a sound that oscillates between the low and mid-high end 
of the spectrum (Fig. 15). This reflects ways in which the local optima affect the 
optimisation progress. The longer NSGA-II is being stuck at a local optimum, 
the greater the solution recurrence during the corresponding generations. As a 
result, the sound gets “brighter” as recurrence increases. When the algorithm 
moves away from a local optimum, the recurrence ceases abruptly which in turn 
results to the sound returning to the low-frequency range. Eventually, after the 

Fig. 15   NSGA-II on ZDT4 via sonification path 2 

Fig. 16   MOEA/D on ZDT4 via sonification path 2 
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100th generation NSGA-II converges, leading to a sound with increased har-
monic presence. The transition between local optima can be heard in the applica-
tion of MOEA/D on ZDT4 through the moments of silence during the first half 
of the run, designating the complete ceasing of consecutive solution recurrence at 
specific generations (Fig. 16c).

6.2.3 � Sonification path 2 on a discontinuous bi‑objective problem

The sound generated from sonification path 2 in the case of MOEA/D, conveys 
information on the convergence of the algorithm. During the first 60 generations, 
the harmonic partials produced are scattered around the spectrum and short in 
duration (Fig. 17). This reflects the quick and drastic changes taking place across 
the approximation set during this part of the optimisation process. As the approx-
imation set approaches the Pareto front, the harmonic partials obtain longer dura-
tion, resulting in a continuous sonic stream, as an outcome of the non-dominated 
solutions repeating over more consecutive generations. NSGA-II produces har-
monic partials short on duration throughout the whole run (Fig.  18c), meaning 
that recurrent solutions do not last for many consecutive generations. This may 
imply that it exploits the objective space more actively (i.e. maintains more diver-
sity) than MOEA/D.

Fig. 17   MOEA/D on Kursawe via sonification path 2 

Fig. 18   NSGA-II on Kursawe via sonification path 2 
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6.3 � Sonification path 3

In this section we present and discuss the use of sonification path 3, which pro-
vides sonic information to the user about the level of hypervolume contribution of 
non-dominated solutions in a population, and where these contributions are located 
along the approximation front.

6.3.1 � Sonification path 3 on a convex bi‑objective problem

Fig. 19 demonstrates the results of sonification path 3 when applying MOEA/D, 
NSGA-II and MRS on ZDT1. As expected, before convergence has been 
achieved, the hypervolume contribution of each non-dominated solution in the 
population changes significantly per generation. Once convergence has been 
achieved, the hypervolume contributions present very small differentiation from 
generation to generation. This transition is clearly audible through sonification 

Fig. 19   MOEA/D on ZDT1 via sonification path 3. a Approximation set obtained after 250 generations; 
b hypervolume contributions on the 250th generation; c mel spectrogram of sonification path 3 during 
generations 40–49; d mel spectrogram of sonification path 3 during generations 241–250

Fig. 20   NSGA-II on ZDT1 via sonification path 3. (a and b) as above. c Mel spectrogram of sonification 
path 3 during generations 1–10. d Mel spectrogram of sonification path 3 during generations 241–250
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path 3. The sound produced changes dramatically across consecutive generations 
as MOEA/D and NSGA-II explore the objective space (subfigure c in Figs. 19 
and 20 respectively). By the end of the optimisation process, and once the algo-
rithm has converged, the sound generated through sonification path 3 becomes 
a repeating pattern, revealing that the hypervolume contributions change by a 
very small amount, or even not at all, from one generation to the next (subfig-
ure d in Figs.  19 and 20). Since the methodology implemented in sonification 
path 3 relies on the temporal transformation of sound, it becomes quickly evi-
dent when the algorithm has converged and how the hypervolume contributions 
are distributed across the approximation set. In the case of MOEA/D on ZDT1, 
the distribution of the contributions (Fig.  19b), can be clearly heard through 
the generated sound pattern. This becomes evident even visually by comparing 
the shape in Fig. 19b with the mel spectrogram of the corresponding sound dis-
played in Fig. 19d. The smooth convexity presented in Fig. 19b can be heard in 
the pitch transformation of the base frequency. The resulting sound is consists of 
a smooth pitch “dive” followed by a similarly smooth pitch rise.

On the other hand, the distribution of the hypervolume contributions as 
obtained by NSGA-II (Fig.  20b) by the 250th generation does not present the 
convexity of MOEA/D, resulting in a “granular” sound. In this case, sonification 
path 3 reveals that, although both NSGA-II and MOEA/D converged success-
fully, more diversity is maintained by NSGA-II. It also reveals that MOEA/D, 
because of decomposition, tends to distribute the solutions equidistantly across 
the approximation set, directly impacting how each solution contributes to the 
hypervolume. Since MRS converges very slowly, the hypervolume contributions 
of the produced solutions are not expected to present abrupt changes during the 
first generations optimisation run, as was the case with MOEA/D and NSGA-II. 
Indeed, the sonic outcome of this path for MRS changes only gradually during 
the run, and pattern repetition can be heard from early on, for example during 
generations 7 to 10 (Fig. 21c).

Fig. 21   MRS on ZDT1 via sonification path 3. (a and b) as above. c Mel spectrogram of sonification 
path 3 during generations 1–10. d Mel spectrogram of sonification path 3 during generations 241–250
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Fig. 22   MOEA/D on ZDT3 via sonification path 3. a Approximation set obtained after 250 generations; 
b Hypervolume contributions on the 250th generation; c Mel spectrogram of sonification path 3 during 
generations 21–30; d Mel spectrogram of sonification path 3 during generations 241–250

Fig. 23   NSGA-II on CTP2 via sonification path 3. a and b as above. c Mel spectrogram of sonification 
path 3 during generations 1–10. d Mel spectrogram of sonification path 3 during generations 241–250

Fig. 24   NSGA-II on Tanaka via sonification path 3. a and b as above. c Mel spectrogram of sonification 
path 3 during generations 1–10. d Mel spectrogram of sonification path 3 during generations 241–250
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6.3.2 � Sonification path 3 on various discontinuous bi‑objective problems

When the Pareto front consists of discontinuities, sonification path 3 can be par-
ticularly helpful. The approximation set points located at the breakpoints (ie. the 
approximation set points after which discontinuity occurs on the objective space) of 
the objective space tend to contribute the most towards the hypervolume as can be 
seen in subfigures b of Figs. 22, 23 and 24. Through sonification path 3 these higher 
contributions are translated into pitch “spikes”. These spikes are aurally discernible, 
and therefore not only provide information on the convergence progress, but also on 
the shape of the approximation set. In this aspect, sonification path 3 works compli-
mentary to sonification path 1, which primarily aims to inform the user about the 
shape of the approximation set. As with ZDT1, in these examples the sonic outcome 
transitions from irregularity, as can be seen in subfigures c of Figs. 22, 23 and 24), 
to pattern repetition, as can be seen in subfigures d of of Figs. 22, 23 and 24).

6.4 � Concluding remarks

The experimental study investigated the ability of each of the three sonification 
paths to translate the search behaviour of the algorithms NSGA-II, MOEA/D and 
MRS into sound. The three algorithms were applied on a collection of bi-objective 
problems exhibiting different challenges for an optimizer (e.g. local fronts, discon-
nected fronts, and fronts of different shapes). Sonification paths 1 and 2 provide 
information on different levels. Sonification path 1 offers an insight into the explora-
tory phase of the optimisation process, during which the approximation set shape is 
expected to change drastically over the course of a few generations. Sonification path 
2 becomes particularly useful during the exploitative phase of the optimisation. Dur-
ing this phase, the approximation set presents small changes from one generation to 
the next, and therefore the solution recurrence can tell us more about the behaviour 
of the algorithm. Sonification path 3 sits in between the other two paths, facilitating 
the understanding of the algorithm both on a macro (approximation set) and micro 
(individual solution) level. This becomes possible by informing the user not only 
on which solutions contribute the most towards the hypervolume, but also on the 
way the hypervolume contributions distribute across the approximation set. The lat-
ter notifies the user about the optimisation progress, since the contributions tend to 
change dramatically during the exploratory phase and eventually reach stability (or 
fluctuate minimally) during the exploitative phase. We were also able to show how 
sonification path 3 works in tandem with sonification path 1, since it provides infor-
mation on the shape of the approximation set. With the addition of sonification path 
3, SonOpt facilitates the understanding of the algorithm behaviour, providing useful 
overviews (approximation set shape, convergence etc.) as well as specific insights 
(individual solution recurrence, hypervolume contributions), through the informa-
tion conveyed jointly by the three sonification paths.

Apart from providing different levels of information on the algorithmic behav-
iour, the co-existence of the three sonification paths is important for one more 
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reason. As shown in cases like MOEA/D on ZDT4, and NSGA-II or MOEA/D on 
Kursawe, sometimes the audition of a single sonification path cannot provide suf-
ficient information on the convergence of the algorithm. In the case of MOEA/D on 
ZDT4, the presence of an outlier solution in the objective space causes the shape 
of the resulting waveform to produce plenty of harmonics (Fig. 9), even though the 
algorithm is considered to have converged successfully. In a similar fashion, the dis-
continuity of the Pareto front in the case of Kursawe results in waveforms that pre-
sent increased levels of harmonics after convergence has been achieved (Figs.  10 
and 11 respectively). This shortcoming of sonification path 1 is compensated by the 
functionality of the two other paths and especially sonification path 3. As pointed 
out in Sect. 6.3.2, the solutions located on the breakpoints across the objective space 
tend to contribute more to the hypervolume. Therefore these breakpoints become 
audible, through the pitch “spikes” they cause on the sound of sonification path 
3. This can help the user identify that convergence has been achieved. Similarly, 
Fig.  19 shows that the achieved convergence of MOEA/D is aurally represented 
through the produced sound of path 3, without the outlier noticeably affecting the 
outcome. We thus encourage the users of SonOpt to consult all three paths in order 
to obtain an accurate estimation of the algorithmic behaviour. The spectral char-
acteristics of the sounds produced by sonification path 3 vary significantly to the 
ones produced by the other two paths, hence allowing discernible results during the 
simultaneous audition of path 3 with these paths. The option of placing the sonic 
output of each path on a different place in the stereo panorama is also provided, in 
order to further enhance sonic clarity.

7 � SonOpt as a creative tool

In the previous sections we discussed and demonstrated SonOpt’s ability to facili-
tate the understanding of algorithmic behavior for bi-objective optimisation pro-
cesses. SonOpt is a sound generating application and, as such, can also function 
as a creative tool for composers that look into experimental techniques for cre-
ating new sounds. The common principle behind the three sonification paths is 
the creation of sound with data extracted from the algorithmic run (approxima-
tion set points and hypervolume contributions). Experimental sound synthesis 
techniques have been used many times and there are numerous applications that 
provide the user with a set of options to generate new waveforms  [11, 47]. The 
legendary tool UPIC (Unité Polyagogique Informatique CEMAMu) designed by 
Iannis Xenakis, considered a remarkable innovation at its time [37], allowed the 
user to draw a waveform on 2D display. This waveform could be used later on as 
the building block for a musical composition. In SonOpt, the waveform design is 
handled by the optimisation algorithm. A straightforward application of this can 
be seen in sonification path 1. Although not by directly acting on the shape of the 
waveform, in sonification path 2 the algorithm manipulates the produced sound 
by adding or subtracting harmonic partials on a fundamental frequency. This path 
can generate a vast range of sounds with various degrees of complexity. Sonifica-
tion path 3 involves a simplified version of Frequency Modulation [12] synthesis. 
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Depending on the scaling range set by the user, pulsing rhythmic patterns, sounds 
with a vibrato effect or extreme frequency-modulated sounds are a few of the pos-
sible outcomes. The selected duration of each generation can create very short, 
percussive sounds, up to long sonic structures. The objective space thus becomes 
a source for the generation of sonic timbres (sonification paths 1 and 2) and rhyth-
mic patterns (sonification path 3).

SonOpt features a comprehensive collection of parameters that can shape the 
sonic outcome of each sonification path. Default values have been provided where 
possible in order to minimize the necessary time to setup the system. However, for 
the user who wishes to delve into the sound generation capabilities of SonOpt, the 
further adjustment of these parameters provides plenty of room for experimentation. 
The familiarity of the artistic community with Max/MSP invites musicians and crea-
tive individuals to explore the sonic potential of the tool. Through SonOpt, multi-
objective optimisation is examined as a dynamic process that can provide rich sonic 
experimentation.

8 � Conclusions and future work

We presented the motivation and methodology behind SonOpt, an open-source tool 
designed to facilitate the understanding of the population-based algorithmic behav-
iour in bi-objective optimisation tasks. This paper has extended on the authors’ 
previous work, through the addition of a third audio output that involves the soni-
fication of the hypervolume contributions as they evolve during the optimisation. 
This extra output offers insight on the relative importance of the objective function 
values. Alongside the collection of optimisation scenarios involving NSGA-II and 
MOEA/D, we further included a multi-objective random search (MRS) algorithm 
into the experimental study to demonstrate the responsiveness to SonOpt to algo-
rithms relying on different search paradigms. Moreover, we used a variety of bi-
objective optimisation problems to demonstrate the functionality and effectiveness 
of SonOpt through its three sonification paths. These paths offer insights into vari-
ous characteristics of the optimisation process as well as properties of the problem 
being solved: on a higher level we obtain information on the shape of the approxima-
tion set and thus the Pareto front eventually, convergence or stagnation, location of 
discontinuities, and population diversity, and on a per-solution basis SonOpt offers 
insights including recurrence and location of recurrent values within the set, hyper-
volume contributions and distribution of these across the set. We also discussed the 
creative aspect of SonOpt as an experimental sound synthesis tool that encourages 
composers and sonic artists to examine the optimisation algorithms as a generative 
source of musical material.

Sonification of multi-objective optimisation is still at its infancy and SonOpt 
is the first attempt towards this direction. As such, the application presents 
plenty of opportunity for further improvement. Our immediate goal is on 
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expanding SonOpt to sonify problems with more than two objectives to sup-
port understanding of algorithm behaviour for many-objective optimisation 
problems. Research suggests that the difficulty of many-objective problems 
depends on features of both algorithms and problems [27], and that increasing 
the number of objectives can have an impact on various optimisation-related 
routines  [2, 3]. Consequently, adapting SonOpt to such problems may require 
updating existing sonification paths (e.g. sonification path 1) and/or the devel-
opment of additional sonification paths. Thinking even further ahead, the con-
cept of sonification can be used to capture various other aspects related to an 
algorithm’s search behaviour, such as level of feasibility and robustness of solu-
tions as a way to understand better the impact of constraint and uncertainty-
handling strategies, respectively. The addition of sonification paths in turn 
increases the set of sound-related parameters for the user to interact with (either 
a priori or in real-time during an optimisation run). Enhanced interactivity can 
also expand the creative application of the tool, since it will encourage further 
experimentation with the sonic results. Furthermore, to improve the usability 
of SonOpt, we aim to move SonOpt entirely to Python (at the moment, only 
the optimisation algorithms are run in Python but the actual sound generation 
is done in Max/MSP). This will allow for a seamless workflow, improvement 
of the sonic flexibility to increase the transparency and perceptibility of audio, 
and the inclusion of sonification of behavioural differences between algorithms 
in order to facilitate performance comparison. Lastly, we plan to conduct and 
publish a survey in which individuals will be testing SonOpt in various algo-
rithm and problem combinations and report the insights it can provide as a 
method for monitoring optimisation.

Appendix A: Additional results of MRS on ZDT4 and Kursawe

See Figs. 25, 26, 27, 28.

Fig. 25   MRS on ZDT4 via sonification path 1. a approximation set obtained after 250 generations; b 
buffer contains on the 250th generation; c mel spectrogram of sonification path 1 across 250 generations
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Appendix B: Optimisation problem definitions

The ZDT and Tanaka  [52] definitions are taken from pymoo  [8]. The Kursawe 
and CTP2 are taken from the original papers, [33] and [17] respectively.

Fig. 26   MRS on Kursawe via sonification path 1. a, b, c as above

Fig. 27   MRS on ZDT4 via sonification path 2. a approximation set obtained after 250 generations; b 
amplitude of the harmonic partials on the 250th generation; c mel spectrogram of sonification path 2 
across 250 generations

Fig. 28   MRS on Kursawe via sonification path 2. a, b, c as above
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B.1 ZDT

The ZDT problem suite [59] is based on the construction process:

where two objective have to be minimized. The function g(x) can be considered as 
the function for convergenece and usually g(x) = 1 holds for pareto-optimal solutions 
(except for ZDT5).

B.1.1 ZDT1

This is a 30-variable problem ( n =30) with a convex Pareto-optimal set (Fig. 29):
Definition

Optimum

min f1(x)

min f2(x) = g(x)h(f1(x), g(x)),

f1(x) = x1

g(x) = 1 +
9

n − 1

n�

i=2

xi

h(f1, g) = 1 −
√
f1∕g

0 ≤ xi ≤ 1, i = 1,… , n

0 ≤ x1
∗
≤ 1 and xi

∗ = 0 for i = 2, ..., n

Fig. 29   ZDT1 Pareto front
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B.1.2 ZDT3

This is also a 30-variable problem ( n =30) with a number of disconnected opti-
mal Pareto fronts (Fig. 30):

Definition

Optimum

f1(x) = x1

g(x) = 1 +
9

n − 1

n�

i=2

xi

h(f1, g) = 1 −
√
f1∕g − (f1∕g) sin (10�f1)

0 ≤ x1 ≤ 1, i = 1,… , n

0 ≤ x1
∗
≤ 0.0830

0.1822 ≤ x1
∗
≤ 0.2577

0.4093 ≤ x1
∗
≤ 0.4538

0.6183 ≤ x1
∗
≤ 0.6525

0.8233 ≤ x1
∗
≤ 0.8518

xi
∗ = 0 for i = 2, ..., n

Fig. 30   ZDT3 Pareto front
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B.1.3 ZDT4

This is a 10-variable (n=10) problem having a convex Pareto-optimal set. There 
exist many local Pareto-optimal solutions in this problem (Fig. 31). Therefore, algo-
rithms can easily get stuck in a local optimum.

Definition

Optimum

B.2 Kursawe

Definition:

f1(x) = x1

g(x) = 1 + 10(n − 1) +

n�

i=2

(xi
2 − 10 cos (4�xi))

h(f1, g) = 1 −
√
f1∕g

0 ≤ x1 ≤ 1

− 10 ≤ xi ≤ 10, i = 2, ..., n

0 ≤ x1
∗
≤ 1 and xi

∗ = 0 for i = 2, ..., n

Fig. 31   ZDT4 Pareto front
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Pareto front can be seen on Fig. 32.

B.3 Tanaka

Definition:

Optimum
Since f1 = x1 and f2 = x2 , the feasible objective space is also the same as the 

feasible decision variable space. The unconstrained decision variable space con-
sists of all solutions in the square 0 ≤ (x1, x2) ≤ � . Thus, the only unconstrained 

min f1(x) =

n−1�

i=1

(−10e
(−0.2

√
xi
2+x2

i+1
)
),

min f2(x) =

n�

i=1

(�xi�0.8 + 5 sin (xi)
3),

with − 5 ≤ xi ≤ 5, for i = 1, 2, ..., n

min f1(x) = x1,

min f2(x) = x2,

subject to C1(x) ≡ x1
2 + x2

2 − 1 − 0.1 cos (16 arctan
x1

x2
) ≥ 0,

C2(x) ≡ (x1 − 0.5)2 + (x2 − 0.5)2 ≤ 0.5,

0 ≤ x1 ≤ �,

0 ≤ x2 ≤ �.

Fig. 32   Kursawe Pareto front
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Pareto-optimal solution is x1∗ = x2
∗ = 0 . However, the inclusion of the first con-

straint makes this solution infeasible. The constrained Pareto-optimal solutions 
lie on the boundary of the first constraint. Since the constraint function is peri-
odic and the second constraint function must also be satisfied, not all solutions 
on the boundary of the first constraint are Pareto-optimal. The Pareto-optimal set 
is disconnected. Since the Pareto-optimal solutions lie on a nonlinear constraint 
surface (Fig. 33), an optimisation algorithm may have difficulty in finding a good 
spread of solutions across all of the discontinuous Pareto-optimal sets.

B.4 CTP2

Definition

The decision variable x1 is restricted in [0, 1] and the bounds of other variables 
depend on the chosen g(x) function. The constraint has six parameters (�, �, b, c, d,
ande). Pareto front can be seen on Fig. 34.

min f1(x) = x1,

min f2(x) = g(x)

(
1 −

f1(x)

g(x)

)
,

Subject to c(x) ≡ cos (�)(f2(x) − e) − sin (�)f1(x) ≥

�|sin (b�(sin (�)(f2(x) − e) + cos (�)f1(x))
c)|d.

Fig. 33   Tanaka Pareto front
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