
Vol.:(0123456789)

Environment, Development and Sustainability
https://doi.org/10.1007/s10668-023-03846-1

1 3

Grappling with the success and trade‑offs of global nutrient 
redistribution

P. J. A. Kleinman1  · R. D. Harmel1 

Received: 3 January 2023 / Accepted: 30 August 2023 
This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may 
apply 2023

Abstract
Inputs of fertilizer nutrients in agriculture are estimated to have contributed to > 40% 
increase in crop production over the past century, resulting in widespread benefits to food 
security and prosperity. However, fertilizer nutrient redistribution has fundamentally 
altered global and local nutrient cycles alike, yielding trade-offs in socioeconomic and 
environmental outcomes. David Pimentel’s body of work on the management of energy, 
water, and soil resources in agriculture, along with his perspectives on agronomy and sus-
tainable resource management, resonates with a critical understanding of the consequences 
of nutrient redistribution in agriculture. With Pimentel’s legacy in mind, we consider 
trade-offs of global nutrient redistribution, improved recycling of nutrients in agricultural 
systems, as well as the challenges of, and opportunities for, transformations that seek to 
adjust nutrient cycles in modern agriculture. Pimentel’s legacy and contributions provide 
valuable insight into agriculture’s wicked nutrient challenge, as he framed the costs and 
opportunities of production systems across different scales of food production, developed 
foundational understanding of global resource challenges, promoted often marginalized or 
underemployed management strategies to enhance agriculture’s ecosystem services, con-
fronted conventional wisdom and popular trends, and appropriately, attacked the use of 
“silver bullets” as singular solutions to ecological challenges and instead promoted sys-
tems-level analyses.

Keywords Nutrients · Nitrogen · Phosphorus · Eutrophication · David Pimentel · 
Agriculture

1 Introduction

The restructuring of resource flows to support earth’s expanding human population has 
brought unprecedented prosperity to many corners of the globe but has also wrought 
profound, unintended outcomes to our “planetary boundaries” (Rockström et al., 2009; 
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Steffen et al., 2015). In terms of nutrient resources, application of the Haber–Bosch pro-
cess to produce nitrogen (N) fertilizer, combined with the efficient mining and concen-
tration of rock phosphorus (P) into high analysis fertilizer, became pillars of the Green 
Revolution (Guignard et  al., 2017; Sánchez, 2010). More recently, modern fertilizer 
supply chains have successfully confronted natural inequities in the global distribution 
of nutrients and have underpinned expansion of food, fiber, and biofuel production in 
regions where endemic resources were insufficient to support the intensification of agri-
culture to meet growing demand (Cassman et  al., 2003; Erisman et  al., 2008; Zhang 
et al., 2015).

Across the earth, nutrient redistribution to intensify food, fuel, fiber, and feed pro-
duction on arable lands, along with by-product redistribution from industrial devel-
opment (e.g., N and sulfur emission by-products from coal-burning power plants), 
has fundamentally altered global nutrient cycles (Galloway et  al., 2003; Jarvie et  al., 
2015). This alteration has manifest in imbalances in resource availability (Gitau, 2022; 
Vitousek et al., 2009), reliance on energy-intensive processes (Smith et al., 2020), and 
widespread accelerated eutrophication of freshwater and estuarine systems (Howarth 
et al., 2021). The dichotomy related to global N and P redistribution is evident in the 
tremendous human achievement and associated wicked problems. Now, humankind 
must achieve seemingly incongruent goals: (1) increasing agricultural production to 
feed, clothe, and fuel the growing population and (2) mitigating adverse ecological and 
economic impacts of N and P redistribution.

Although David Pimentel’s research focused less on fertilizer nutrients than on the 
management of energy, water, and soil resources, his perspectives on agronomy and sus-
tainable resource management, including analyses of nutritional outcomes associated 
with different productions systems, resonate with a critical understanding of the conse-
quences of global nutrient redistribution, offering a vision for system-level change. Over 
the span of six decades, Pimentel focused on promoting sustainable forms of agriculture, 
scanning case studies and large datasets alike to understand the outcomes of various 
systems. His framing of the costs and opportunities of production systems across differ-
ent scales of food production are foundational to understanding the history and future 
of global nutrient challenges (e.g., Pimentel et al., 1993, 1995, 1997). Pimentel’s broad 
application of science to unveil the aggregate (and often unintended) consequences 
of modern agricultural systems can serve as a benchmark for scientists and decision-
makers in the agricultural research community. Regardless of the degree to which one 
accepts Pimentel’s proposals, his work challenged all to consider the consequences of 
the status quo and to weigh the possibilities for alternative forms of agriculture.

As such, we aim herein to discuss pertinent topics in tribute to Pimentel’s impact and 
inspiration, organized as following:

1. Trade-offs of global nutrient redistribution
2. Improved recycling of nutrients in agricultural systems

2.1 Nutrient cycling of ancient systems
2.2 Addressing the specialization and intensification of crop and livestock systems

3. Challenges of and opportunities for transformation.

3.1 Transformation across the farm gate
3.2 Fertilizer innovations
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3.3 On-farm management

2  Trade‑offs of global nutrient redistribution

David Pimentel strove to elucidate the collateral consequences, often unintended, of mod-
ern farming systems. In 2021, global commercial fertilizer demand was estimated at greater 
than 110 million tons of fertilizer N and roughly 48 million tons of fertilizer P (reported as 
 P2O5; International Fertilizer Association, 2022), supplied via pan-global manufacturing 
and distribution networks that link raw materials and manufacturing capacity to warehous-
ing, retail, and utilization. The expanded use of fertilizer nutrients in agriculture is esti-
mated to have contributed to > 40% increase in crop production during the past century 
(Stewart & Roberts, 2012)—an accomplishment with unquestioned benefits to humankind.

However, modern reliance upon fertilizers comes at a cost, and trade-offs in socioeco-
nomic outcomes are clear. Fertilizer resource distribution of global magnitude relies on 
economies of scale; however, only modern mechanized production systems—but not tra-
ditional or marginal small-holder systems—are able to seize upon the production and effi-
ciency benefits (Harmel et al., 2020). The distribution infrastructure and business systems 
necessary for efficient transport, storage, and delivery of fertilizers are simply not available 
in many parts of the developing world, leaving widespread yield gaps and food insecurity 
as a persistent phenomenon roughly three quarters of century after the Green Revolution’s 
onset (Bjornlund et al., 2020).

Further, dependence upon global supply chains represents a major stressor to modern 
farming economies, especially under the instability of current markets (Bjorn, 2022), and 
has fueled long-standing geopolitical conflicts over raw material (e.g., Kasprac, 2016). In 
addition, the energy-intensive nature of fertilizer production drives swings in fertilizer cost 
and availability that constrain modern agricultural systems and economies. The linkage 
between energy use and fertilizer production is now understood to be a major contributor 
to agriculture’s greenhouse gas footprint (10.6% according to Menegat et al., 2022), a real-
ity not unnoticed by Pimentel who was prescient in quantifying the contributions of farm 
inputs to agriculture’s energy and environmental footprints (e.g., Pimentel et al., 2005).

Regional intensification and specialization of agriculture since World War II is now 
observable at a global scale, manifest as fertilizer nutrient hotspots and emblemized by 
excess P whose signature is clearly preserved in soils (Fig. 1a). In some cases (e.g., China), 
these hot spots are a function of national strategies toward food security, while in other 
cases they represent the manifestation of economic optimization and the concentration of 
specialized forms of agricultural production in different regions, as explained subsequently. 
Most relevant to Pimentel’s legacy, the transfer of fertilizer resources within global agro-
ecosystems coincides with a long-term environmental footprint: the expansion and acceler-
ation of eutrophication in both freshwater and major estuarine systems (Fig. 1b) (Malone & 
Newton, 2020; Smith, 2003). Of note is the steady increase in harmful algal blooms across 
the globe, from eutrophic to oligotrophic systems, whose expansion is hypothesized as 
foundational change in aquatic stoichiometries related to changes in major nutrient forms 
(Gilbert, 2012). It is important to note that agriculture, alone, is not responsible for these 
impacts. Because accelerated eutrophication stems from a complex web of biogeochemical 
processes and socioeconomic drivers (Elser et al., 2007), comprehensive mitigation strate-
gies are required (Carpenter et al., 1998). Thus, broad-scale, systemic transformations must 
be considered (Jarvie et al., 2015).



 P. J. A. Kleinman, R. D. Harmel 

1 3

Across the globe, the geographic build-up of nutrients are manifest across profoundly 
different spatial and temporal scales: from field to region and from short to long term. 
Even in the low-intensity, pasture-based systems of New Zealand, conscientious man-
agement of hot spots within fields is required to ensure that nutrients do not eutrophy 
local water bodies (McDowell, 2008). Inefficiencies in nutrient use efficiency are often 
taken for granted in agricultural nutrient management, either as a result of the dynamic 
nature of the element (e.g., N with its multitude of pathways of environmental fate) 
or as a result of profound buffering (e.g., P binding by soils that renders the element 

Fig. 1  The geographic concentration of phosphorus in the world’s soils, largely a function of global ferti-
lizer supply chains: a adapted from MacDonald et al., 2011), and the globalization of cultural eutrophica-
tion, as manifest by major eutrophic and hypoxic coastal water bodies, and b adapted from World Resources 
Institute (www. wri. org/ data/ inter active- map- eutro phica tion- hypox ia)

http://www.wri.org/data/interactive-map-eutrophication-hypoxia
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unavailable to commercial crops). These nutrient use inefficiencies have often been con-
fronted via systematic over-application of amendments, including commercial fertiliz-
ers, such as in the reclamation of Brazil’s Cerrado areas (Withers et  al., 2018). As a 
result, strategies to mitigate the unintended outcomes of agricultural nutrient manage-
ment are seldom simple, and require simultaneous application of best practices by farm-
ers, as well as system-level adjustments that may conflict with the status quo, themes 
that transcend Pimentel’s library of work.

3  Improved recycling of nutrients in agricultural systems

Pimentel promoted management strategies that enhance ecosystem services provided by 
agriculture. His prioritization of environmental protection and resource conservation some-
times elevated management practices that are marginalized or underemployed today. These 
ranged from alternative cropping systems (Pimentel et al., 2005) to unconventional man-
agement practices (Pimentel et al., 1993). Often, Pimentel’s views confronted conventional 
wisdom, or current trends, highlighting trade-offs and unintended consequences. This gad-
fly perspective, however, resonates well with modern agriculture’s search for solutions to 
the paradoxical challenge of nutrient management (e.g., Lougheed, 2011). That is how to 
increase the availability of terrestrial nutrients needed for crop production without exces-
sive losses of nutrients through leaching, runoff, and emissions.

Although Pimentel regularly called for transformational change in agriculture, he could 
be critical of  using simplified solutions to address  complex resource challenges (sensu 
Smith et al., 2019), exemplified by his long-standing critique of bio-ethanol as an energy 
source and associated biofuel programs (Pimentel, 2003, 2010). Silver-bullet solutions, and 
their unintended outcomes, are a familiar aspect of public programs that attempt to tackle 
complex issues (Merton, 1936). Margaret Catley–Carlson eloquently articulates that devel-
opment of technical solutions without understanding underlying socioeconomic factors and 
without vetting the advantages and disadvantages of alternatives rarely produces effective 
solutions (Harmel et al., 2020). In nutrient management, comprehensive sets of solutions 
are needed that not only offer options and flexibility to agricultural producers, but engage 
production across supply chains, transcend regional and national boundaries, and recon-
sider historical precedent that contribute to many of the systemic traits observed today (Jar-
vie et al, 2015; Reis et al., 2016).

3.1  Nutrient cycling of ancient systems

Pimentel and colleagues wrote directly on nutrient recycling in their consideration of the 
sustainability of traditional forms of slash-and-burn farming in the tropics (Kleinman 
et  al., 1995 and 1996). Complementing a well-intended global campaign against slash-
and-burn as a major driver of deforestation (FAO’s Alternative to Slash and Burn Pro-
gram, Palm et al., 2005), Kleinman et al. (1995) endeavored to remind the global develop-
ment community of the historical sustainability of this ancient system, that is if and only 
if as practiced by indigenous communities with low population densities and ample land 
resources to allow for long periods of fallow between periods of cultivation. They argued 
that traditional slash-and-burn systems with long periods of fallow indeed recycle nutrient 
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resources, unlike input-intensive systems (Fig. 2). This work highlights the central role of 
nutrient recycling in sustainable agriculture, a precursor to the premium placed upon circu-
lar economies (e.g., Velasco-Munoz et al., 2021).

3.2  Addressing the specialization and intensification of crop and livestock systems

Low-input farming systems that rely upon local nutrient cycles alone cannot meet the 
commodity demands of today’s global population of 8 billion (United Nations, 2022) 
who are in turn fed by fewer than 625 million farms (Erenstein et al., 2021). Nowhere 
are the inequities of local nutrient supplies more strongly exhibited than in the spatially 
disconnected nutrient flows of modern crop and livestock production. Many of the nutri-
ent hotpots depicted in Fig. 1b derive from concentrated livestock production, a func-
tion of regionally separated crop and livestock production in which unmetabolized feed 
nutrients in animal manure are not returned to croplands to provide needed N, P, and 
micronutrients. The specialization and intensification of animal production has brought 
great economic and production efficiencies in delivering protein to consumers but also 
adverse environmental outcomes that were regularly the subject of Pimentel’s pen (e.g., 
Pimentel & Pimentel, 2003). Indeed, eutrophication is a widespread concern in water-
sheds where animal production is concentrated (Carpenter et al., 1998; Sharpley et al., 
2003a). As such, nutrient management represents an environmental challenge that is 
nearly ubiquitous in animal production (e.g., Ma et al., 2014; Holly et al., 2018; Thorsøe 
et  al., 2022). Pimentel and colleagues pointed to the demographic shift in wealthier 
global populations as the ultimate driver (Giampietro & Pimentel, 1993), highlighting 
the benefits of livestock grazing systems that more directly cycle nutrients (Pimentel, 
1997; Pimentel et al., 1980).

Today, there are consistent calls by those concerned with resource conservation and 
environmental outcomes to recouple crop and livestock production (e.g., Sanderson et al., 
2013), reintroducing nutrient cycling between crop and livestock production systems at 
scales that are compatible with modern economies (Fig. 3; Spiegal et al., 2020). Opportu-
nities exist to better cycle nutrients between crop and livestock operations, but these require 

Fig. 2  The cyclical model of soil fertility in traditional (long fallow) slash-and-burn farming systems in 
which nutrients enabling crop production are derived entirely from soil and biomass (adapted from Klein-
man et al., 1995)
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action within farming systems as well as beyond the farmgate (Kleinman et  al., 2022b; 
Kronberg et  al., 2021; Peterson et  al., 2020). These visions comport with strategies that 
promote conservation and changes in commodity consumption, a regular call of Pimentel’s 
(e.g., Pimentel & Pimentel, 2003, 2007). They also require system re-integration (Peterson 

Fig. 3  The distribution of crop and animal agriculture in the United States, as depicted using U.S. county-
level data for major crops produced (a), and phosphorus in animal manure (b). Whereas concentration of 
crops and of manure phosphorus represent a signature of the specialization and intensification of agricul-
tural systems (adapted from Spiegal et al., 2020)
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et al., 2020), new technologies, supply chain coordination (Spiegal et al., 2022), and par-
ticipation of communities beyond the agricultural industry (Hidalgo et al., 2021).

Notably, given long-standing efforts to redistribute fertilizer nutrients, generalizations 
regarding nutrient imbalances as a function of mechanization, degree of labor use, and 
stage of agricultural development are difficult to uphold. National programs to improve 
the sufficiency of crop production can result in fertilizer nutrient imbalances comparable to 
those arising in industrialized farming systems. Such has been the case in China where pro-
grams to build soil fertility resulted in wide availability of fertilizers to the country’s 300+ 
million small-holder farmers while extension programs lagged, resulting in systematic 
over-application of commercial fertilizers that threatens environmental quality (Sims et al., 
2013). Similarly, modern organic cropping systems that are reliant upon manure routinely 
result in nutrient imbalances, particularly for P, that are not observed in cropping systems 
that are reliant on mineral, or commercial, fertilizers (Cooper et al., 2018).

4  Challenges of and opportunities for transformation

While the aggregate impacts of globalized nutrient flows are now well recognized 
(Vitousek et  al., 2009; Elser & Bennet, 2011), as are concerns over numerous global 
environmental phenomena (especially climate change), challenges abound in how to mit-
igate the effect of systems that are now foundational to the modern economy. Translat-
ing awareness of greenhouse gas emissions, eutrophication, groundwater contamination, 
and resource depletion into viable action will require humankind to confront a myriad of 
contributing factors, not the least of which are local “realities” that must be addressed for 
change to occur (Sharpley et al., 2016).

An important contributor that has hindered collaborative progress on agriculture’s 
contribution to excess N and P in water is the avoidance of uncomfortable truths on rel-
evant topics such as edge-of-field regulation (Harmel et al., 2018) and multiple actor fault 
in water quality problems (Smith et  al., 2018). Avoiding these uncomfortable topics in 
research, debate, and decision-making tends to prevent compromise and willingness to find 
common ground and to breed mistrust between parties and often belief in misinformation 
(Kleinman et al., 2015).

How then, can we promote efficient nutrient cycling in systems whose mass balances 
no longer resemble natural cycles? Solutions must: (1) be able to apply across a range of 
highly specialized and varied production systems; (2) address nutrient cycling beyond the 
farm gate; and (3) account for socioeconomic, environmental, and management factors that 
influence both implementation and outcomes.

4.1  Transformation across the farm gate

Historical nutrient management approaches addressing environmental concerns have rea-
sonably prioritized the adoption of on-farm management strategies (Öborn et  al., 2003; 
Sharpley et al., 2003b). While many opportunities remain to change on-farm nutrient man-
agement (Johnston and Bruulsma, 2014; Hedley, 2015), the aspiration of reintroducing 
circularity into agricultural nutrient flows requires a recoupling of disconnected produc-
tion systems that extend across regions and even nations (Nesme & Withers, 2016; Spiegal 
et al., 2022).
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Such an agroecological ambition is represented in the vision of “manureshed” manage-
ment, i.e., the strategic use of manure nutrients that prioritizes recycling between livestock 
systems and cropping systems (Spiegal et  al., 2020). As proposed, manureshed manage-
ment expands collaboration of a plethora of actors to coordinate the transformation and 
transfer of manure resources across multiple scales, appropriating practices and technolo-
gies to ensure that manure nutrients are available in the quantity, form, and timing required 
of crop production systems (Bryant et  al., 2021; Dell et  al., 2022; Meinen et  al., 2022). 
Essential to the reintroduction of circularity is the inclusion of actors who can operate 
across the complex set of industries, regulations, relationships, and transactions demanded 
of modern agriculture (Fig. 4; Meredith et al., 2022).

4.2  Fertilizer innovations

Innovations in the production and recovery of fertilizer nutrients are central to any vision 
for transforming modern nutrient cycles. Many systemic challenges of fertilizer man-
agement in conventional and alternative production systems, including those reliant on 
organic, manure-derived nutrients, have been long-identified but never fully addressed 
(Kirchmann & Bergstrom, 2001; Poudel et  al., 2002). There is undoubtedly a need for 

Fig. 4  Actor networks required to recover nutrients in animal manure for use in crop production at farm, 
local, regional, and national scales (adapted from Meredith et al., 2022)
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change, either through adoption of cropping systems that can themselves take advantage of 
biological nutrient cycling or through the development of new technologies and strategies 
that lessen environmental footprints and improve nutrient use efficiency.

Biological N fixation serves as the source of most of the earth’s reactive N, and integrat-
ing legumes into cropping systems has long been a staple of sustainable cropping systems. 
More recently, molecular techniques have been used to improve biological N fixation effi-
ciency, as well as introducing biological N fixation into non-leguminous crops (Eskin et al., 
2014; Goyal et  al., 2021). Pimentel was a strong proponent of expanding legume-based 
crop rotations in modern production systems (Pimentel et al., 2005), but he also cautioned 
of trade-offs associated with genetic engineering (Paoletti & Pimentel, 1996; Pimentel, 
2001; Pimentel & Ali, 1998). Today, a wide array of biofertilizers and biostimulants are 
available, principally to promote the fixation of atmospheric N but also to increase plant 
availability of insoluble P forms (Soumare et al., 2020). While the legitimacy of biological 
amendments warrants healthy skepticism (O’Callaghan et  al., 2022; Owen et  al., 2015), 
there is reason for optimism in their potential to harness natural microbiological processes 
to improve agricultural nutrient cycling (Busby et al., 2017).

The Haber–Bosch process serves as the foundation of modern commercial N fertilizer 
production, converting inert elemental N from the atmosphere into ammonia. Pimentel 
was an early and ardent critic of agriculture’s dependence upon this energy-intensive pro-
cess (Pimentel et al., 1973, 2005). Despite major gains in energy use efficiency, commer-
cial ammonia production is estimated to account for 1% of human energy consumption, 
accounting for most of the energy use across all fertilizer production and significant green-
house gas emissions (Menegat et al., 2022; Seyedehhoma et al., 2021). Major investment 
in the development of ammonia production alternatives promise to reduce net energy con-
sumption (blue ammonia) or eliminate it (green ammonia), as well as promoting on-farm 
(aka, “point of use”) fertilizer production, mitigating emissions associated with retail trans-
portation networks (Driver et al., 2019; Ornes, 2021).

Despite his embrace of older systems and approaches to agricultural management 
(Kleinman et  al., 1995; Pimentel et  al., 1973), as well as his caution of overselling the 
potential for technology to solve agriculture’s grand challenges (Pimentel et  al., 1993), 
Pimentel was a proponent of change in many forms, including in agricultural technol-
ogy and practice (Pimentel et al., 1982). The production of P fertilizers, derived primarily 
from the acidulation of mined rock phosphate, has come under intense scrutiny over the 
past decade following the recurrence of concerns over its long-term scarcity (Cordell & 
White, 2011; Jarvie et al., 2015). A myriad of processes have emerged in recent years to 
recover P from waste streams and conversion into forms better suited for agricultural pro-
duction (e.g., mine tailings, industrial by-products, post-harvest wastes; Cieślik & Koniec-
zka, 2017; Mayer et al., 2016; Tarayre et al., 2016). However, many of these post-recovery 
products fail to offer the quality (nutrient density, stoichiometry, purity) standard in com-
mercial fertilizers and required of modern crop production, pointing to the continued need 
for technologic development. Even so, the primary limitation to adoption of these tech-
nologies continues to be comparatively high cost (Law & Pagilla, 2019; Molinos-Senante 
et al., 2011; Nättorp et al., 2017) despite major investment by governments that have facili-
tated progress, as well as important case studies on how to introduce P recovery processes 
to create circular agricultural economies (De Boer et al., 2018; Phos4You, 2022).
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4.3  On‑farm management

In addition to the need for systemic transformations beyond the farm gate, the establish-
ment of efficient nutrient cycles begins and ends with on-farm management. The nutri-
ent imbalances manifest at regional scales reflect enterprise management decisions (e.g., 
Reimer et al, 2020) and imbalances at farm and field scales resulting from systemic factors 
(e.g., Leytem et al., 2021). Across his career, Pimentel routinely employed case studies to 
elucidate the potential for significant change in management practices used on farms (e.g., 
Pimentel et al., 1993). As earlier mentioned, Pimentel advocated for diversified cropping 
systems that include legumes and help to lower fertilizer N inputs, thereby improving farm-
gate nutrient balances (e.g., Pimentel et al., 2005). Notably, Pimentel et al. (1987) identi-
fied no till as a key to soil conservation, a practice that is widely advocated to improve 
soil organic matter, rainfall infiltration, and other important properties influencing nutri-
ent cycling but not without site-specific constraints and trade-offs (Haddaway et al., 2017; 
Kleinman et al., 2022a; Ogle et al., 2019).

A myriad of management practices either directly, or indirectly, improve nutrient use 
efficiency on farms (Rotz et al., 2005). Implementation of agronomic and animal produc-
tion practices aimed at improving on-farm nutrient management is complicated; adjust-
ments to on-farm management have ripple effects that are acutely felt by agricultural 
producers, affecting both adoption and outcomes of adoption (Liu et  al., 2018; Prokopy 
et al., 2008; Smith et al., 2018). In animal agriculture, the array of management decisions 
begins with decisions influenced by veterinarians, nutritionists, and others focused on ani-
mal health and productivity (Harrison et al., 2012), involves clear trade-offs (Beukes et al., 
2019), includes investments in expensive infrastructure, such as barns and manure han-
dling/storage systems (Kleinman et al., 2019), and can occur under highly regulated condi-
tions that limit options (Kaye-Blake et al., 2019). In crop production, concepts such as the 
“4 Rs” of nutrient stewardship (Johnston & Bruulsema, 2014) seek to educate producers 
on options, often provided as prescriptive menus (https:// nutri entst eward ship. org/ 4rs). Not 
surprisingly, many conventional management practices remain firmly rooted in farming 
systems long after preferred alternatives for soil conservation and nutrient use efficiency 
have been developed.

Many on-farm nutrient management improvements can be tied to new technologies and 
data-based decision support tools that collectively fall under the umbrella of agricultural 
precision management (Monteiro et  al., 2021). The proliferation of precision manage-
ment technologies, favoring producers in wealthier economies, is as difficult to track as is 
the advance of the information technologies and computing systems that often underpin 
them. Again, Pimentel offered healthy skepticism toward viewing technology as a pana-
cea, and he was aware of trade-offs (Pimentel et  al., 1982). However, the application of 
precision management to on-farm fertilizer decisions offers clear opportunities to include 
multiple factors, including nutrient use efficiency and environmental outcomes (Sapkota 
et al., 2013; Hedley, 2015). Indeed, precision management has naturally entered the realm 
of agricultural conservation, now termed “precision conservation” (Delgado et al., 2017).

https://nutrientstewardship.org/4rs


 P. J. A. Kleinman, R. D. Harmel 

1 3

5  Conclusions

History has repeated time and time again the knowledge that conservation of soil and water 
resources is the foundation of the sustainability of human civilizations. Pimentel’s focus 
on systematic evaluation of modern agricultural systems and related concerns of energy, 
water, and soil conservation is the type of scientific and societal thinking needed to address 
the seemingly incongruent issues—increased agricultural production to feed, clothe, and 
fuel and growing population and mitigation of adverse ecological and economic impacts of 
off-farm N and P loss. Pimentel’s willingness not to settle for status quo, to offer controver-
sial alternatives, and to confront uncomfortable topics should be celebrated and critically 
evaluated. As humankind struggles to make necessary progress in balancing increased 
agricultural production and mitigating and correcting adverse ecological and economic 
impacts (Table 1), David Pimentel’s legacy and contributions provide valuable insight to 
agriculture’s wicked nutrient challenge.
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Technology—Nutrient capture from waste streams (animal and human)
Technology—Efficient fertilizers that are balanced to meet crop demand
System—Integration of crop and livestock farming (manureshed management)
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