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Abstract
The increased incidence of invasive species introductions is a hallmark of global change, 
but their associated environmental and economic impacts are vastly underestimated. 
Assessing and managing the impact of invasive species requires understanding their 
weather driven dynamics as a basis for predicting their potential geographic distribu-
tion and relative abundance. Current de-facto standards for invasive species assessment 
are correlative approaches lacking mechanistic underpinnings, and hence fail to capture 
the weather driven biology limiting their explanatory and predictive capacity to forewarn 
policy makers of species invasiveness (i.e., its potential geographic distribution and rela-
tive abundance under extant and/or climate change weather). The idiosyncratic time-place 
nature of biological invasions and the inability of correlative approaches to incorporate 
biological information call for development of a unifying prospective approach across 
species. Physiologically based demographic models (PBDMs) provide a holistic basis for 
assessment of invasive species addressing many limitations of correlative approaches while 
accommodating higher level of biological complexity using a similar number of param-
eters. We use the South American tomato pinworm Tuta absoluta (Meyrick) (Lepidoptera: 
Gelechiidae) as a case study in the Palearctic and compare the predictions of our PBDM 
model to those of three analyses based on the correlative CLIMEX model. The PBDM out-
performed CLIMEX with comparable CLIMEX predictions only after the pest had reached 
its potential geographic distribution (i.e., post hoc), using 6–10 vs. 13 parameters, respec-
tively. We suggest creating dedicated laboratories to gather appropriate biological data and 
developing generalized software to build mechanistic models for assessing invasive species 
of any taxa.
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1  Introduction

Biological invasions are hallmark indicators of global change and are analogous to nat-
ural disasters (Ricciardi et  al., 2011), but their occurrence is unpredictable and their 
potential geographic distribution and relative abundance are poorly understood, even 
in well-funded programs (Gutierrez & Ponti, 2013b; Gutierrez et  al., 2021). The high 
environmental and economic impacts of invasive species were clearly outlined prospec-
tively by Professor David Pimentel’s clarion paper (Pimentel et al., 2000). Estimates of 
losses likely underestimate worldwide the material losses in agricultural yield and natu-
ral resources, and their economic costs (Bradshaw et al., 2016; Diagne et al., 2021). The 
costs in the European Union are potentially order of magnitudes higher than currently 
estimated, with only ~ 1% known invasive species having reported costs (Haubrock 
et al., 2021; Henry et al., 2023). This indicates an urgent need for both improved impact 
assessments and redirection of efforts from predominantly biosecurity and prevention 
actions to the management of established invasive species (Haubrock et al., 2021, 2023).

The various approaches used to assess these invasions were reviewed by Johnston 
et  al. (2019) pointing out their strengths and limitation and illustrating the need for a 
unified general framework to assess such problems under extant and climate change. De 
Vries and Caswell (2019) proposed a theoretical matrix mechanistic framework for eval-
uating such problems including aspects of evolution related to climate change, though 
the application to field problems remains unclear. The most commonly used assessment 
methods are ecological niche models, also known as species distribution models, and 
hereafter collectively referred to as correlative species distribution models (CSDMs) 
(Elith, 2017; Elith & Leathwick, 2009). CSDMs have become the de facto standard in 
invasive species assessment used by regional, national, and international institutions 
because they are relatively easy to implement and allow rapid initial assessments even 
in the absence of sound biological data. CSDMs approaches correlate averaged (weekly 
or monthly) weather and other data to species occurrence records and use the model 
parameters to map the potential geographic range of the species (see Johnston et  al., 
2019 for limitations). As an alternative, we propose the use of physiologically based 
demographic models (PBDMs) that capture the (daily) weather (and resource) driven 
biology of species independent of incidence records, provide considerably greater 
explanatory insights, and can be used to develop management tactics.

PBDMs simulate biological processes explicitly (i.e., are mechanistic) on a daily 
time step, and have the potential to dramatically improve our understanding of the 
mechanisms underpinning the geographic distribution and abundance of species. Fur-
thermore, PBDMs enable explicit modeling of management options providing key man-
agement-relevant information often unavailable to decision and policy makers (Briscoe 
et  al., 2019; Johnston et  al., 2019; Rangwala et  al., 2021). Availability of appropriate 
weather dependent biological data on pest vital rates and accessibility of methods to 
integrate the data are barriers posited as restricting the use of mechanistic approaches 
for assessing invasive species under extant weather and climate change, and more gen-
erally for predicting population responses to novel environments (Briscoe et al., 2019; 
Johnston et al., 2019). We show that the PBDM approach streamlines identification and 
collection of the required biological data (Gutierrez & Ponti, 2013b; Ponti et al., 2015) 
as evidenced by a plethora of published tri-trophic examples (Gutierrez & Ponti, 2022). 
What is lacking is wider accessibility of the methods to researchers through a general-
ized modeling platform (Ponti et al., 2019).
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To illustrate how assessment of invasive species can be improved using process explicit 
PBDMs, we compare the applications of the CSDM CLIMEX model and a PBDM to the 
analysis of the invasion of the South American tomato pinworm Tuta absoluta (Meyrick) 
(Lepidoptera: Gelechiidae) across wide areas of the Palearctic (Ponti et al., 2021). We note 
that the pest has also invaded Asia and Africa, but the same model can be used to evaluate 
the pest there. The PBDM for this pest was based on biology data summarized in Campos 
et al. (2021). As preamble, we briefly review the underpinning concepts of major models 
used to predict species responses to environmental change with focus on methods used to 
assess invasive species.

2 � Predicting population responses to novel environments

Johnston et al., (2019; see also Briscoe et al., 2019) assessed several approaches used to 
predict species responses to environmental change. They cautioned that both correlative 
and mechanistic approaches have limitations, stressing that most approaches used are cor-
relative that ignore the individual-level mechanisms underlying population dynamics, and 
hence cannot reliably extrapolate outside of the observed environmental range (e.g., to 
novel climates and/or geographic areas). Johnston et al. (2019) concluded that little pro-
gress has been made in developing a standardized approach that captures the mechanisms 
driving population dynamics such as physiology, behavior, and evolution in a spatially 
explicit way and that is general enough to be applied to all species and environmental sce-
narios. Johnston et al. (2019) cite the following constraints:

•	 The limited availability of data to parametrize the model at the individual level and to 
calibrate and validate models at the population level, with data available being often 
presence/absence or aggregate animal population dynamics data.

•	 The need to develop and test quantitative methods for representing individual mech-
anisms and the interactions between them, and that many competing theoretical 
approaches with different goals exist that need to be integrated into a single framework.

•	 The need for realistic and multi-dimensional environmental scenarios that can serve as 
input to population models and include multiple standardized stressors such as land use, 
atmospheric CO2 concentration, and nitrogen availability.

These constraints suggest Johnston et  al. (2019) are seeking a generalized one-to-one 
model of nature.

The recent 6th IPCC Assessment Report (IPCC, 2022) pointed out that:

•	 “A lack of understanding of physiological constraints and mechanisms remains a bar-
rier to predicting many of the ecological effects of climate change […].

•	 Many behavioral, morphological, and physiological responses are highly species- and 
context-specific, making generalizations difficult. […]

•	 Improved understanding of the mechanistic basis for observed geographic patterns in 
thermal tolerance and plasticity is needed to identify the physiological limits of species 
[…].”

The unpredictable nature of biological invasions and the inability to incorporate insights 
gained from CSDMs case studies (Novoa et  al., 2020) support the need for a unifying 
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predictive approach across species (Cuthbert et al., 2019; de Vries & Caswell, 2019; John-
ston et al., 2019; Roy et al., 2018).

Johnston et  al. (2019) categorized current population modelling approaches accord-
ing to their ability to describe the individual-level mechanisms (physiology, behavior, and 
evolution) that drive population responses to environmental changes in spatially explicit 
landscapes:

•	 Species distribution models
•	 Individual-based models
•	 Demographic models

In Sects. 2.1 to 2.3, we briefly review CSDMs models and other population modeling 
approaches using these categories and use them in Sect. 2.4 to identify where the PBDM 
modeling approach fits.

2.1 � Correlative species distribution models (CSDMs)

Correlative species distribution models approaches are widely used for assessing inva-
sive species risk (Yates et al., 2018), and predicting the potential range of a species using 
averaged climatic and other data correlated with occurrence records in the known range 
that strongly influence the predictions of potential geographic range (Elith, 2017; Elith 
& Leathwick, 2009). Specifically, the predictive power of CSDMs approaches is poten-
tially lower than simple spatial interpolation as it is largely due to the spatial patterns of 
environmental variables (e.g., climate data) and species occurrence data, with no under-
lying functional relationship (Bahn & McGill, 2007). Because they model observed spa-
tial patterns statistically, correlative approaches cannot reliably extrapolate outside of the 
observed environmental range, and this substantially limits their transferability in space 
(invasive range expansion) and time (projected climate change) (Evans, 2012; Heikkinen 
et  al., 2012; Liu et  al., 2020, 2022; Srivastava et  al., 2019; Yates et  al., 2018). Further, 
because CSDMs fail to explicitly model biological and ecological mechanisms underlying 
species responses to environmental change (Johnston et al., 2019), they have limited ability 
to explain and hence manage the potential distribution and economic impact of invasive 
species (Briscoe et al., 2019; see Thompson et al., 2021). To circumvent such limitations 
requires mechanistic modeling of the processes underlying the spatial patterns of species 
occurrence (geographic distributions) (Bahn & McGill, 2007), as given its resource base, 
weather driven vital rates determine the phenology and population dynamics of species, 
and ultimately their observed (and potential) distribution and relative abundance (Gutier-
rez, 1996).

Among the CSDMs methods widely used to assess invasive species is the commer-
cially available software CLIMEX (Sutherst & Maywald, 1985). Based on physiologi-
cal indices, CLIMEX has quasi-mechanistic roots in the assumed normalized concave 
growth response of species to various factors with minimum and maximum values and 
an optimum (Gutierrez et al., 2010). Unlike other CSDMs methods, CLIMEX was spe-
cifically developed for modelling invasive species (Elith, 2017), and has its roots in the 
early studies by Fitzpatrick and Nix (1970) on growth indices developed to estimate 
the climatic limits of Australian grasslands types, and by Gutierrez et  al. (1974) and 
Gutierrez and Yaninek (1983) to capture the climatic limits of aphids in southeast-
ern Australia. Aspects of these growth indices are found in PBDMs (Gutierrez, 1996). 
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Recently, Barker et al. (2020) proposed Degree-Days, Risk, and Phenological (DDRP) 
event mapping that is similar to CLIMEX but has a daily rather than weekly time step, 
is limited to insects, and seeks to predict phenology in addition to climatic suitability.

Integration of physiological mechanisms and population processes into CSDMs 
has been proposed for climate impact assessments (Kearney & Porter, 2009) includ-
ing for invasive species (Kearney et  al., 2009). To address the shortcomings of cor-
relative approaches, additional processes such as demographic rates, physiological and 
behavioral constraints to movement, connectivity between suitable patches, and popu-
lation dynamics have been incorporated in what are now identified as process-based 
SDMs (Briscoe et al., 2019; Dormann et al., 2012; Kearney & Porter, 2009; Kearney 
et  al., 2008; Rougier et  al., 2015; Teal et  al., 2012; Thuiller et  al., 2013). Dormann 
et al. (2012) pointed out that the resulting integration is substantially closer to the cor-
relative end of the process-correlation modeling continuum and hence should still be 
considered part of the CSDMs methodological base. However, CSDMs can provide 
a reasonable first approximation when only occurrence data are available (Fordham 
et al., 2018). Further, most CSDMs were not designed to assess invasive species (Elith, 
2017) but continue to serve important functions in ecology and evolutionary biology 
research as they did in their early applications (Elith & Leathwick, 2009).

Dynamic range models (DRMs) have been developed that provide probabilistic 
forecasts of future dynamics of species ranges under environmental change, using both 
occurrence and abundance data to statistically infer species niches and spatio-temporal 
population dynamics (Zurell et  al., 2016). Yet, DRMs remain statistical models that 
use environmental variables as correlates of demographic rates, density dependence, 
and dispersal rates based on species occurrence and abundance data (Pagel & Schurr, 
2012).

2.2 � Individual based models (IBMs)

Individual-based models, also called agent-based models (ABMs), simulate popula-
tions composed of individual organisms each having a set of state variables or attrib-
utes (e.g., spatial location, physiological traits, and behavioral traits) and behaviors 
(e.g., growth, reproduction, habitat selection, foraging, and dispersal), with popula-
tion-level dynamics resulting from the interactions among individuals and their abiotic 
environment (DeAngelis & Grimm, 2014; DeAngelis & Mooij, 2005; Grimm, 1999). 
However, IBMs/ABMs require individual-level data for parametrization, and hence 
are not widely used (Johnston et al., 2019). Applications of IBMs/ABMs increasingly 
include models that describe individual-level mechanisms, thus improving predictions 
outside of the range of environmental conditions for which they were parametrized. For 
example, Energy–Environment–Earthworm (EEEworm) is a mechanistic individual-
based model of Lumbricus terrestris populations developed by Johnston et al. (2018) 
as a tool for assessing how soil systems respond to combinations of land manage-
ment and climate change. Extensive validation showed how the EEEworm mechanis-
tic approach can extrapolate across diverse soil, management, and weather conditions. 
Other applications of IBMs/ABMs include assessments  of biodiversity management 
and policy under environmental change (Stillman et  al., 2015) and invasive species 
assessment (e.g., Coulter et al., 2022; Dominiak & Fanson, 2023; Goslee et al., 2006).
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2.3 � Demographic models (DM)

Demographic matrix models (DMs) (Leslie, 1945) played an initial role in population 
ecology, enabling inclusion of intrinsic birth and survivorship rates and population den-
sity. Advances in computational and statistical approaches in ecology (Griffith et al., 2016) 
enabled development of more powerful approaches, such as integral projection DMs that 
include both mass and life stage for improved representation of population structure (East-
erling et  al., 2000), and integrated DMs that combine individual- and population-level 
data to better estimate the influence of individual variation on demographic rates (Schaub 
& Abadi, 2011). However, these DMs are still based on statistical relationships between 
demographic rates and observed environmental conditions, and hence are unsuited for pre-
dicting population responses to novel environments (i.e., invasive species, climate change), 
that requires inclusion of mechanisms that underpin demographic rates (Johnston et  al., 
2019). Despite the increasing combination of integral projection DMs with energy budget 
models (Smallegange et al., 2017), the model predictions remain informed by the observed 
population data, limiting predictions of population responses to novel environmental con-
ditions (Johnston et al., 2019).

2.4 � Physiologically based demographic models (PBDMs)

PBDMs are time-varying life tables models that can incorporate age, mass, and other 
attributes of field populations (see Gutierrez, 1996, p. 231). The effects of factors deter-
mining the vital rates may be captured using mechanistic weather driven physiology of 
resource acquisition and allocation (i.e., metabolic pool models, MPMs; e.g., Gutierrez, 
1996; Gutierrez & Baumgärtner, 1984) or as biodemographic functions (BDFs) that cap-
ture cohort level responses to weather (e.g., Gutierrez et al., 2021). These components are 
described below with real world applications. PBDMs may also be cast as metapopula-
tion models with movement of pest and natural enemy between plants (see Gutierrez et al., 
1999), or as dispersal model estimating the dispersal of the invasive chestnut gall wasp (see 
Gilioli et al., 2013).

Using Johnston et  al. (2019) classification, PBDMs include features of matrix DMs 
(time-varying life tables), integral projection DMs (include life stages and mass), and inte-
grated DMs (use both individual- and population-level data). Further, PBDMs include per 
capita mechanistic physiological processes of resource acquisition and allocation in the 
form of MPMs with dry matter (energy) acquisition, including behavior such as stage pref-
erence, and allocation linking trophic levels in an age-stage specific manner. Aspects of 
growth indices included in the quasi-mechanistic CSDM CLIMEX are also components of 
PBDM/BDFs. Through more than 40 years of development (see Gutierrez & Baumgärtner, 
1984; Gutierrez, 1992, 1996), PBDMs have incorporated a range of population modeling 
features contributing to basic bioeconomic theory (Regev et  al., 1998) and helped solve 
many applied field problems (e.g., Gilioli et al., 2017, 2022; Gutierrez et al., 2012, 2014). 
PBDMs bridge the gap between purely theoretical analytic models and overly complicated 
simulation models. The population dynamics of PBDMs may use a variety of mathemati-
cal models to model field populations (Di Cola et  al., 1999; Gutierrez, 1996). A known 
caveat of PBDMs is that they do not model movement explicitly except for background 
immigration levels. The major area for improvement is the need to make the PBDM meth-
ods easier to access and implement by developing a modeling software platform of general 
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applicability to any invasive taxa by unifying the wide variety of modeling features for 
examining field problems that PBDMs have addressed over more than 40 years of develop-
ment (see Gutierrez & Ponti, 2022).

2.4.1 � Population dynamics models

A mathematical model that captures the distribution of maturation times of age-stage struc-
tured populations is the distributed delay models (DDMs) (Abkin & Wolf, 1976; Manetsch, 
1976; Vansickle, 1977) (Fig.  1, see supplemental materials). A mathematically more 
nuanced dynamics model is the forward Kolmogorov model (Buffoni & Pasquali, 2007), 
that for the same biology would yield similar results to that of DDMs.

Specifically, absent mortality, if the mean developmental time of cohort individuals is 
del with variance var, the maturation times of a cohort members in a DDM are charac-
terized by Erlang distribution captured using k = del2/var age classes (Fig. 1a). Note that 
the larger the value of k, the narrower is the Erlang distribution of developmental times 
(Fig. 1b). In the model, time and age are in physiological time units (proportion develop-
ment or degree days, see below). The DDM captures the flow (aging) between age classes 
within and between stages (Fig.  1a) in a time-temperature-resource dependent manner. 
While Fig.  1 illustrates the development of an insect, the same model has been used to 
model the population dynamics of whole plant or plant sub units like buds (or any other 
organ) through flowering and maturity (see Gutierrez, 1996 for references).

Two approaches have been used to parameterize PBDMs:

Fig. 1   Population dynamics: a an age structured model for the dynamics for the egg (circle with letter e), 
larval (circle with letter l), pupal (square), and adult (triangle) stages of an insect species, with arrows indi-
cating flows (aging) between age classes and stages, and double arrows in some stages indicating the net 
age-specific mortality; and b the distribution of developmental times based on the number of age cohorts 
(Erlang parameter k = del2/var) in sub figure a (see Severini et al., 2005)
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1.	 mechanistic models of energy/dry matter acquisition and allocation (metabolic pool 
models, MPMs) and

2.	 biodemographic functions (BDFs) that summarize the effects of various factors (e.g., 
temperature) on the species vital rates.

Attributes such as mass, sex, dormancy, and other factors can be easily incorporated 
(Gutierrez, 1996), as well as microclimate effects such as that of solar irradiance on tem-
perature in the leaf mine microclimate (Ponti et  al., 2021). Because the BDFs are the 
resultant of resource acquisition and allocation under different biotic and abiotic condi-
tions, both MPMs and BDFs paths lead to PBDMs that are time varying life tables (sensu 
Gilbert et al., 1976).

2.4.2 � Mechanistic metabolic pool models (PBDM/MPMs)

The underpinning basis of this approach is that all organisms are consumers and all have 
similar resource acquisition (supply) functions and allocation (demand) priorities; a notion 
that allows use of the same resource acquisition model and birth–death dynamics models 
to describe explicitly the biology of heterotherm species across trophic levels (see Gutier-
rez & Baumgärtner, 1984; Gutierrez, 1992, 1996), including the economic level (Regev 
et al., 1998) (Fig. 2). The inflow and outflow processes are analogous across species and 
have similar shapes. Resource acquisition (i.e., the supply, S) is a search driven functional 
response process driven by organism demand (D) for resources under current biotic and 
abiotic conditions, with allocation occurring in priority order to egestion, conversion costs, 
respiration, and reproduction, growth, and reserves (see Fig.  2). The ratio 0 ≤ S/D < 1 
occurs because of imperfect search for resources and serves to scale vital rates from the 
genetic maximum (Gutierrez, 1992, 1996). A wide range of real-world ecosystem-level 
problems driven by global change have been analyzed using this unifying supply/demand 
(i.e., 0 ≤ S/D < 1) approach based on the paradigm of ecological analogies (see http://​www.​
casas​global.​org). This approach is highly suitable for modeling the dynamics of plant 
population and for herbivores consuming plant subunits. An important drawback is that 
appropriate data are rarely available, but are not difficult to assemble (e.g., Gutierrez & 
Baumgärtner, 1984).

2.4.3 � The biodemographic functions approach (PBDM/BDFs)

An alternate modeling path that streamlines implementation of PBDM development is the use 
of biodemographic functions (BDFs) (see Fig. 3; Gutierrez & Ponti, 2013b; Gutierrez et al., 
2021) that capture the resultant resource driven effects on the species vital rates (i.e., Fig. 2, 
MPMs). BDFs capture the resultant effects of temperature and resource-based effects on spe-
cies birth, death, and developmental rates common to all species using a modest number of 
measurable parameters. Specifically, similar shaped birth–death rates sub-models are fitted to 
data and embedded in age (mass) structured population dynamics models (i.e., DDMs) that 
are forced principally by temperature and resource levels, but other factors can be easily added 
as identified (Fig. 3). Among the BDFs are temperature-dependent developmental rates, age-
specific fecundity, and mortality and other factors such as diapause (see Fig. 3; modified from 
Gutierrez & Ponti, 2013b). The BDFs capture analogous processes in the life histories of spe-
cies across trophic levels enabling establishing the relationships between resource and con-
sumer species. These analogous BDFs simplify parameter estimation and provide significant 

http://www.casasglobal.org
http://www.casasglobal.org
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guidance in reviewing the literature for relevant biological data required to parameterize 
PBDMs for any trophic level. The resulting advantages are:

•	 Easier harvesting, organization, standardization, and integration of data.
•	 Guidance for identification of data gaps and discrepancies in extant biological data when 

plotted on the same scale of a putative BDF.
•	 Identification of experiments needed to address data gaps and discrepancies.

The BDF path has been used in numerous PBDM analyses (Gutierrez & Ponti, 2013a; 
Gilioli et al., 2016, 2021, 2022; see Table 15.1 in Gutierrez & Ponti, 2022). In this paper, we 
review the PBDM analysis of the tomato pinworm T. absoluta as our foil (Ponti et al., 2021).
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Fig. 2   The physiological basis of PBDMs. All organisms have common patterns of energy acquisition (sup-
ply) and allocation (demand) (a), and this allows the use of the same modeling paradigm to describe the 
biology of the species in all trophic levels (b) (see Gutierrez, 1996). Development of PBDMs with a met-
abolic pool model (MPM) approach entails describing the energy (dry matter) acquisition and allocation 
functions
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3 � Methods

3.1 � The PBDM/BDF for Tuta absoluta

The PBDM for T. absoluta is based on BDFs (Fig. 4) that were parameterized largely using 
the biology and data summarized in Campos et al. (2021) and additional data in the sci-
entific literature (see Gutierrez & Ponti, 2013b, 2022). For T. absoluta, the parameters 
include developmental times in physiological time for each stage, and the constants for 
the fitted BDFs for developmental rate, fecundity as a function of age and temperature, 
and temperature-dependent mortality (Fig. 4). As illustrated by Table 2 in Gutierrez et al. 
(2021), a set of analogous BDF parameters can be developed to describes the biology of 
any species, with the BDF parameters of six fruit fly species discriminating their weather 
driven geographic distribution and relative abundance. Historically, occurrence records 
have been used to assess invasiveness of the tropical fruit flies, with vague concepts such as 
“fruit fly-friendly regions” used to declare establishment (Carey et al., 2017; Papadopoulos 
et al., 2013). The BDFs that describe the biology T. absoluta and of the fruit flies in Gutier-
rez et al. (2021) are the same mathematical forms fitted to different datasets of the species’ 
vital rates. Knowing the shape of the BDFs provides significant guidance in reviewing the 
literature for relevant biological data (e.g., Fig.  4). As noted, BDFs guide identification 
of data gaps and discrepancies when available biological data from the same or different 
sources are plotted on the same scale of the putative BDF, so that missing biological data 
can be collected efficiently. The number of BDF parameters for the T. absoluta PBDM 

Fig. 3   PBDM biodemographic functions (BDFs, modified from Gutierrez & Ponti, 2013b; Gutierrez et al., 
2021). a The rate of development on temperature (e.g., Briére et al., 1999). b The effects of nutrition and 
other factors on developmental time may also be included (e.g., nutrition affects developmental time as a 
limiting factor when shortfalls or excesses are toxic). c The per capita fecundity profile on female age (e.g., 
Bieri et al., 1983) at the optimum temperature (i.e., the vertical dashed line in d). d The effects of tempera-
ture on normalized fecundity. e The effects of temperature on daily mortality at different temperatures (Gut-
ierrez, 1996). f The proportion diapause induction as a function of day length (e.g., grapevine moth, Gutier-
rez et al., 2012), but it could also be due to the interaction with temperature (see pink bollworm; Gutierrez 
et al., 1981) and other factors
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was six parameters fitted to three BDFs in addition to a polynomial fit of temperature-
dependent mortality (Fig. 4e) that replaced a simpler BDF (Fig. 3e) for higher accuracy. 
The PBDM also enabled modeling the effects of altered temperatures experienced by T. 
absoluta larvae and pupae in leaf mines using data from Pincebourde and Casas (2006).

3.2 � Comparison of PBDM predictions with CLIMEX assessments

PBDM/BDF projections of the geographic distribution and relative abundance of T. abso-
luta made for the Palearctic (Ponti et al., 2021) were compared to projections of CLIMEX 
ecoclimatic indices (EI) of favorability for the same region (Desneux et  al., 2010; Han 
et al., 2019; Santana et al., 2019). The CLIMEX EI is scaled from 0 to 100, with 0 indicat-
ing climatically unsuitable locations and 100 indicating highly suitable locations. The open 
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Fig. 4   Thermal biology of Tuta absoluta summarized as biodemographic functions (BDFs): development, 
reproduction, and mortality as a function of temperature. a Developmental rate as a function of temperature 
(data from Barrientos et al., 1998; Krechemer & Foerster, 2015; Martins et al., 2016; Campos et al., 2021). 
b Age-specific fecundity (data from Marcano, 1995). c Normalized gross fecundity as a function of tem-
perature (data from Marcano, 1995; Krechemer & Foerster, 2015). d Oviposition per female as a function 
of age and temperature (Eq. 8). e Temperature-dependent mortality (data from Van Damme et  al., 2015; 
Krechemer & Foerster, 2015; Martins et al., 2016; Kahrer et al., 2019) with the line indicating the fitted 
polynomial function used in the model. From Ponti et al. (2021)
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source geographic information system (GIS) GRASS (see http://​grass.​osgeo.​org) originally 
developed by the United States Army Corps of Engineers (GRASS Development Team, 
2022) was used for geospatial data management and the comparative analysis of T. abso-
luta geographic distribution. PBDM output was mapped using bicubic spline interpolation 
on a 3-km raster grid. The same grid was used to compare PBDM and CLIMEX maps. 
The maps of three CLIMEX studies (Desneux et al., 2010; Han et al., 2019; Santana et al., 
2019) were imported as raster maps from the PDFs of the published papers to GRASS GIS 
using the r.import module, and then orthorectified using the g.gui.gcp module. Relevant 
vector data in imported raster maps, such as locations of species occurrence (vector points) 
in maps from Desneux et al. (2010) or areas of favorability (vector polygons) from Santana 
et  al. (2019) and Han et  al. (2019) were manually digitized using the g.gui.vdigit mod-
ule. Raster and vector maps digitized from the CLIMEX studies were then converted to 
the Albers Equal Area projection used in the PBDM study to enable the PBDM-CLIMEX 
comparisons (Neteler et al., 2012).

Specifically, geographic locations of T. absoluta first occurrence during 2006–2010 in 
Fig. 1 of Desneux et al. (2010) (see Fig. 5, square symbols) were used:

•	 to identify the closest CLIMEX EI point estimate from Fig. 2 of Desneux et al. (2010) 
(see Fig. 5, circle symbols) using the v.distance GRASS module;

•	 to sample the corresponding raster values of CLIMEX EI in Fig. 1 of Han et al. (2019) 
and Fig. 3a of Santana et al. (2019), and PBDM relative abundance in Fig. 4a in Ponti 
et al. (2021) (see Fig. 6) using the v.what.rast module.

 
The results of the v.distance and v.what.rast analysis at locations of known T. abso-

luta occurrence were then checked manually for consistency with the published CLIMEX 
maps, to detect errors introduced by the differing spatial resolution of the digitized maps or 
by the digitization process. This allowed comparison of CLIMEX EI predictions of climate 
suitability (Desneux et al., 2010; Han et al., 2019; Santana et al., 2019), and PBDM-based 
predictions (Ponti et al., 2021) in the absence of the original CLIMEX data.

4 � Results

4.1 � Comparison of CLIMEX and PBDM at locations of known species occurrence

The predictions of climate suitability of the three CLIMEX analyses are compared with 
PBDM-based predictions of invasiveness at 56 specific latitude and longitude locations 
where T. absoluta was present in 2010 (see Fig. 5, square symbols; Desneux et al., 2010), 
with results for each location reported in supplementary Table S1. Prediction error occurs 
when CLIMEX and/or PBDM predict a specific location is unsuitable for T. absoluta 
but the species was detected there by national plant protection services. Desneux et  al. 
(2010) predicted unsuitable climate at 16 of 56 locations where T. absoluta was present 
(error = 29%); Han et al. (2019) at 15 of 56 (error = 27%); Santana et al. (2019) at 10 of 56 
(error = 18%); and the Ponti et al. (2021) PBDM analysis at 2 of 56 (error = 4%). Compared 
to the PBDM analysis, the CLIMEX predictions were problematic in non-Mediterranean 
Basin European countries and colder areas of Northern Italy (see supplementary Table S1) 
because the CLIMEX analyses lacked information on cold tolerance and facultative 

http://grass.osgeo.org
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diapause in T. absoluta. Further, CLIMEX predictions are given as wide intervals making 
comparison with PBDM predictions problematic. Supplementary Table 1 provides a par-
tial comparison of CLIMEX vs. PBDM in terms of species presence-absence only.

4.2 � Comparing mapped predictions of CLIMEX and PBDM

Figure 6 compares visually the predictions of the two most recent CLIMEX analyses (Han 
et al., 2019; Santana et al., 2019) to those of the PBDM (Ponti et al., 2021) for the west-
ern Palearctic, Nearctic, and Mexico. Note the PBDM simulates the daily dynamics of T. 
absoluta life stages for each of the ~33,000 lattice cells in the mapped regions (e.g., Fig. 6g 
for Sacramento, California, USA during years 2009 and 2010; Ponti et  al., 2021), while 

EI = 0
EI = 25
EI = 50
EI = 75
observed distribution in 2010

predicted distribution in 2010
(ecoclimatic index, EI)

Fig. 5   Predicted and observed geographic distribution of Tuta absoluta in the Palearctic region as reported 
in the first CLIMEX study on the species by Desneux et al. (2010). Predicted distribution is shown using 
the CLIMEX ecoclimatic index (EI) of favorability that ranges from 0 to 100, with EI = 0 indicating cli-
matically unsuitable locations shown as blue triangles and increasing values of EI > 0 indicating locations 
of increasing suitability shown as circles of darker shades of orange. Only one red circle with the maximum 
EI = 75 is indicated by an arrow. Locations of first occurrence of T. absoluta in 2006–2010 are indicated as 
black squares. Geospatial data on T. absoluta presence and CLIMEX EI were digitized from Desneux et al. 
(2010) using GRASS GIS (see Ponti et al., 2021; GRASS Development Team, 2022)
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the cumulative number of pupae produced per square meter per year is used as a metric of 
climatic suitability/invasiveness in each lattice cell in tomato-growing areas of the west-
ern Palearctic (Fig. 6e), and the Nearctic (United States and Mexico) where the pest has 
not invaded (Fig. 6f). Values above the midpoint of the color legend (i.e., 150 pupae) are 
increasing levels of favorability and vice versa.

Only the results of Santana et al. (2019) are comparable to the PBDM predictions that 
explained the biological bases for the invasiveness of T. absoluta across the regions (Ponti 
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Fig. 6   Comparison of invasion risk for Tuta absoluta as predicted by two recent CLIMEX assessments 
(Han et al., 2019; Santana et al., 2019) and the PBDM (Ponti et al., 2021). The geographic distribution in 
the Euro-Mediterranean region (a, c, e) and in the USA and Mexico (b, d, f) of the CLIMEX ecoclimatic 
index (EI) from Han et al. (2019) (a, b) and from Santana et al. (2019) (c, d) are compared to the prospec-
tive average geographic distribution and relative abundance (i.e., invasiveness) predicted by the PBDM (e, 
f). Simulated daily PBDM population dynamics of T. absoluta life stages during 2009 and 2010 in Sac-
ramento, California (USA) (g). The location of Sacramento is shown in (f) as a dot symbol connected to 
(g) by a dashed arrow. Increasing EI values indicate increasing climate suitability for T. absoluta in all 
CLIMEX studies. Geospatial data in (a–d) were digitized from Han et al. (2019) and from Santana et al. 
(2019) using GRASS GIS (see Ponti et al., 2021; GRASS Development Team, 2022)
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et  al., 2021): namely, the moth has a modest low developmental threshold (7.9  °C) and 
a facultative diapause (Campos et al., 2021), that combined with its high degree of cold 
hardiness (Kahrer et al., 2019) enabled its northward range expansion. The northward lim-
its can be defined by the cumulative yearly mortality rates of 3.5 at temperatures below 
7.9 °C, and southward by high temperatures that adversely affect reproduction and survival 
rates, particularly in hot-dry desert areas of North Africa, USA, and Mexico.

Had the data illustrated in Fig.  4 been available before 2006 and incorporated in a 
PBDM, the analysis would have accurately identified the pest’s high invasive potential, its 
current distribution, and would have triggered global quarantine measures that could have 
prevented its invasion. In contrast, correlative methods (e.g., Santana et  al., 2019) could 
make similar projections only after the invasion had occurred over the full area.

5 � Discussion

Tuta absoluta is a native insect pest of tomato in South America (Desneux et al., 2010) that 
was not identified as a serious threat by the European Union, the USA, or other tomato-
growing areas until it invaded Spain in 2006, from where it spread rapidly across Europe, 
Africa, and Asia (Biondi et al., 2018; Han et al., 2019; Pratt et al., 2017). Before invad-
ing the Euro-Mediterranean region, T. absoluta was not a regulated quarantine pest in 
the European Union and the United States (Biondi et al., 2018). The failure to recognize 
its invasive potential was due in large measure because correlative methods were used to 
assess the invasive potential of the pest in the Palearctic.

Three CLIMEX studies of T. absoluta invasiveness were conducted during the period 
2010–2019 after the initial 2006 detection (Desneux et al., 2010; Han et al., 2019; Santana 
et al., 2019). The first study (Desneux et al., 2010; Fig. 5) projected that only coastal south-
ern Europe would be favorable, this despite the pest having been recorded from central 
Europe in 2009–2010. This result was predicted because the known range expansion of 
T. absoluta is from South America and its first reported range expansion was to tomato 
in areas of Brazil with warm climates similar to coastal areas of the Mediterranean. Fur-
thermore, data on its thermal biology (Fig. 7) were available only in the range of favorable 
temperatures above 12 °C, and did not accommodate the fact the pest putatively originated 
from the cold semi-arid climate of the Andean highlands (Biondi et al., 2018).

The second CLIMEX assessment in 2019 (Han et al., 2019) also failed to predict fully 
the areas of Europe invaded by the pest for similar reasons (Fig. 6a). The third CLIMEX 
assessment (Santana et  al., 2019) provided good predictions for the Euro-Mediterranean 
region because it used occurrence data from the larger invaded Palearctic region, a lower 
thermal threshold, and a wider thermal range for development. This, however, was a post 
hoc assessment after the pest’s widespread invasion of Europe and the Mediterranean 
Basin (Fig. 6c).

The development of the PBDM was also hampered by gaps in knowledge of the thermal 
biology of T. absoluta at low temperatures—data filled in piecemeal fashion over 13 years 
after the species was first recorded in Spain in 2006 (Fig. 7). Studies on the thermal biology 
below 12 °C became available only in 2015 (Van Damme et al., 2015; Krechemer & Foer-
ster, 2015; Martins et al., 2016), after the invasion of central Europe made the overwinter-
ing potential of the species evident. Kahrer et  al. (2019) estimated T. absoluta survival 
below 0 °C (Fig. 7) and Campos et al. (2021) explored survival at low temperatures and 
the development of facultative diapause. Had the BDF research path suggested in Fig. 3 
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been implemented proactively before the pest’s invasion of Europe, its potential geographic 
distribution could have been assessed using PBDMs (see Fig. 6) that explain the biologi-
cal bases for T. absoluta’s prospective geographic distribution and relative abundance (i.e., 
invasiveness) in the European Mediterranean region (see Fig. 6e, f, and g). Furthermore, 
because the PBDM/BDF for T. absoluta captures its weather driven biology, the model was 
transferable to the analysis of its invasive potential in the USA, and Mexico/Central Amer-
ica and more recently Africa (unpublished). Lastly, given the availability of appropriate 
weather data, the analysis of other regions is possible, as well as analyses of climate change 
effects on range expansion/contraction (see climate change analysis in Ponti et al., 2021).

6 � Final remarks

David Pimentel foresight analyses brought into focus the “uncomfortable knowledge” of 
the impact of invasive species for policy makers whose agencies are responsible for pest 
risk assessment, quarantine and control/eradication efforts, and who increasingly need 
updated information to deal with a complex and changing world of global change (Elli-
ott et al., 2021; Roy et al., 2018). However, while holistic analyses are often advocated 
(e.g., Gill et al., 2021; Gilman et al., 2010; Hulme, 2006; Pullin et al., 2009; Simberloff 
et al., 2013; Sutherst & Bourne, 2009; Zavaleta et al., 2001), such analyses are rarely 
conducted because they are thought to be too complicated, that there are simply too 
many factors (Barlow, 1999). Pest risk assessments that go beyond opinion and verbal 

Fig. 7   Temperature-dependent mortality rate of Tuta absoluta (data from Van Damme et  al., 2015; Kre-
chemer & Foerster, 2015; Martins et al., 2016; Kahrer et al., 2019) with the red line being the fitted polyno-
mial function used in the PBDM model (Ponti et al., 2021). Colored regions indicate when (i.e., year) the 
mortality data became available in the literature. Modified from Ponti et al. (2021)
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summaries of the literature are only now being adopted; methods that enable effective 
management of real-world problems.

Currently, correlative species distribution models (CSDMs) are the de facto standard 
commonly used in invasive species risk assessment to infer the invasive potential as 
correlates of aggregate weather data at locations of species occurrence records. Unfor-
tunately, as indicated here for T. absoluta, accurate assessment of invasion risk using 
correlative CSDM methods may accrue as post hoc analysis after the pest’s invasion 
of its potential range. A recent study on T. absoluta using the most widely used CSDM 
(Qazi et al., 2022; Yan et al., 2021) Maxent (Phillips et al., 2006) confirms that CSDMs 
require constant updating with occurrence records in new areas to generate useful inva-
sion risk assessments (Marchioro & Krechemer, 2023). This paradox was illustrated 
using T. absoluta where well-organized plant quarantine systems underestimated the 
invasion risk posed, allowing a pest of South American tomato crops to become a global 
food security threat to solanaceous crops. As outlined herein, mechanistic physiologi-
cally based demographic models (PBDMs) can circumvent many of the limitations of 
correlative CSDM approaches without additional parameters or complexity. For exam-
ple, the PBDM of T. absoluta included 6 to 10 parameters to fit BDFs of the vital rate 
data (Fig.  4), while the CLIMEX models required 13 parameters (see Santana et  al., 
2019) fitted statistically to monthly average weather and other factors correlated with 
species distribution data without biological underpinnings. The identification of data 
needs using BDFs (see Fig.  3) simplifies the process (see Campos et  al., 2021) and 
enables rapid development of the model for projection of the population dynamics and 
the resultant prospective distribution and relative abundance of a species as driven by 
weather (Ponti et al., 2021). More nuanced models of trophic interactions and the added 
complexity of the introduction of natural enemies for biological control can be added 
seamlessly (see Gutierrez & Ponti, 2022). Most important, because PBDMs capture the 
weather driven biology, they are not time-place specific and may be transferred to other 
regions, with the capacity to assess the effects of future climate change on the systems 
(e.g., Fig. 7). Lastly, marginal analysis of PBDM results allow examination of the tar-
get system from many perspectives (see Gutierrez & Ponti, 2022), helping to develop 
increased system sustainability and resilience in the face of social, cultural, economic, 
and climate change.

The PBDM approach has been used in many holistic analyses that challenged politically 
sensitive environmental issues such as questioning the fallacy of an eradication program in 
central California where the pest could not establish (Gutierrez & Ponti, 2013b), and the 
dystopic Indian hybrid Bt cotton system (Gutierrez et al., 2020). The PBDM approach can 
help bridge the pervasive gap between advocacy for, and successful implementation of, 
holistic solutions to invasive species and related environmental problems worldwide.

While the PBDM/GIS approach has an extensive record of success (see http://​www.​
casas​global.​org) and has been proposed as an alternative to CSDMs at national and 
international scientific fora, adoption has been low because off-the-self software to 
develop PBDMs by scientists globally is currently unavailable. Hence, a clarion call is 
made for the development of dedicated laboratories to assemble the appropriate biologi-
cal data (e.g., Fig. 3) required to build mechanistic models, and a generalized software 
system for developing PBDMs, enabling researchers globally to develop risk assessment 
models for invasive species of any taxa.

Supplementary Information  The online version contains supplementary material available at https://​doi.​
org/​10.​1007/​s10668-​023-​03698-9.
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