Skip to main content
Log in

Joule-heating effects in mixed electroosmotic and pressure-driven microflows under constant wall heat flux

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

Heat-transfer characteristics of mixed electro-osmotic and pressure-driven flows are obtained in a two-dimensional straight microchannel by a solving steady-state energy equation. Both thermally developing and fully developed regions are considered for hydraulically fully developed mixed flows under isoflux channel wall conditions. The steady temperature distribution is obtained from the superposition of homogeneous solution and particular function. The particular solution is derived based on the constant heat-flux condition in the fully developed region, while the homogeneous solution is presented in terms of infinite series containing Kummer confluent hypergeometric functions due to the existence of non-self-adjoint eigenvalues. The coefficients of the homogeneous solution are found by utilizing the Gram-Schmidt orthogonalization procedure, and the Secant method is utilized to obtain the corresponding eigenvalues. Our analytical techniques are verified by obtaining an excellent agreement with existing literature for slug, pressure-driven, and pure electroosmotic flow cases. In the fully developed region, the Nusselt number of mixed flow is independent of the thermal Peclet number for a particular Joule heating and imposed surface heat flux. The entry length of mixed flow significantly depends on the applied/induced pressure gradient to the electro-osmotic flow

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kutter J.P. (2000). Current developments in electrophoretic and chromatographic separation methods on microfabricated devices. Trac-Trends in Analyt. Chem. 19:352–363

    Article  MathSciNet  Google Scholar 

  2. Yang J., Li C.W., Yang M.S. (2002). Lab-on-a-chip (microfluidics) technology. Acta Bioch. Biop. Sin. 34: 117–123

    Google Scholar 

  3. Verpoorte E. (2002). Microfluidic chips for clinical and forensic analysis. Electrophoresis 23:677–712

    Article  Google Scholar 

  4. Cui H., Keisuke H., Dutta P., Ivory C.F. (2005). Isoelectric focusing in a poly(dimethylsiloxane) microfluidic chip. Analyt. Chem. 77:1303–1309

    Article  Google Scholar 

  5. Selvaganapathy P., Ki Y.S.L., Renaud P., Mastrangelo C.H. (2002). Bubble-free electrokinetic pumping. J. Microelectromech. Syst. 11:448–453

    Google Scholar 

  6. Probstein R.F. (1994). Physiochemical Hydrodynamics Second ed. Wiley and Sons, New York 400 pp.

    Google Scholar 

  7. Chen C.H., Santiago J.G. (2002). A planar electro-osmotic micropump. J. Microelectromech. Syst. 11:672–683

    Article  Google Scholar 

  8. Tripp J.A., Svec F., Fechet J.M.J., Zeng S.L., Mikkelsen J.C., Santiago J.G. (2004). High-pressure electro-osmotic pumps based on porous polymer monoliths. Sensors Actuat. B 99:66–73

    Article  Google Scholar 

  9. Fan Z., Harrison D.J. (1994). Micromachining of capillary electrophoresis injectors and separators on glass chips and evaluation of flow at capillary intersections. Analyt. Chem. 66:177–184

    Article  Google Scholar 

  10. Ermakov S.V., Jacobson S.C., Ramsey J.M. (1998). Computer simulations of electrokinetic transport in microfabricated channel structures. Analyt. Chem. 70:4494–4504

    Article  Google Scholar 

  11. Jacobson S.C., Culbertson C.T., Daler J.E., Ramsey J.M. (1998). Microchip structures for submillisecond electrophoresis. Analyt. Chem. 70:3476–3480

    Article  Google Scholar 

  12. Swinney K., Bornhop D.J. (2002). Quantification and evaluation of Joule heating in on-chip capillary electrophoresis. Electrophoresis 23:613–620

    Article  Google Scholar 

  13. Burgi D.S., Salomon K., Chien R.L. (1991). Methods for calculating the internal temperature of capillary columns during capillary electrophoresis. J. Liq. Chromatogr. 14:847–867

    Article  Google Scholar 

  14. Maynes D., Webb B.W. (2003). Fully developed electro-osmotic heat transfer in microchannels. Int. J. Heat Mass Transfer 46:1359–1369

    Article  MATH  Google Scholar 

  15. Maynes D., Webb B.W. (2003). Fully-developed thermal transport in combined pressure and electro-osmotically driven flow in microchannels. J. Heat Transfer Trans. ASME 125:889–895

    Article  Google Scholar 

  16. Ross D., Locascio L.E. (2002). Microfluidic temperature gradient focusing. Analyt. Chem. 74:2556–2564

    Article  Google Scholar 

  17. Graetz L. (1883). Ueber die Wärmeleitungsfähigkeit von Flüssigkeiten (Erste Abhandlumg). Ann. Phys. Chem. 18:78–94

    Google Scholar 

  18. Agrawal H.C. (1960). Heat transfer in laminar flow between parallel plates at small Peclet numbers. Appl. Sci. Res. A9:177–189

    Article  Google Scholar 

  19. Hsu C.J. (1971). An exact analysis of low Peclet number thermal entry region heat transfer in transversally nonuniform velocity fields. AIChE J. 17:732–740

    Article  Google Scholar 

  20. Michelsen M.L., Villadsen J.(1974). The Graetz problem with axial heat conduction. Int. J. Heat Mass Transfer 17:1391–1402

    Article  MATH  Google Scholar 

  21. Papoutsakis E., Ramkrishna D., Lim H.C. (1980). The extended Graetz problem with prescribed wall flux. AIChE J. 26:779–787

    Article  MathSciNet  Google Scholar 

  22. Lahjomri J., Oubarra A. (1999). Analytical solution of the Graetz problem with axial conduction. J. Heat Transfer Trans. ASME 121:1078–1083

    Article  Google Scholar 

  23. Telles A.S., Querioz E.M., Filho G.E. (2001). Solution of the extended Graetz problem. Int. J. Heat Mass Transfer 44:471–483

    Article  MATH  Google Scholar 

  24. Weigand B., Kanzamar M., Beer H. (2001). The extended Graetz problem with piecewise constant wall heat flux for pipe and channel flows. Int. J. Heat Mass Transfer 44:3941–3952

    Article  MATH  Google Scholar 

  25. Lahjomri J., Zniber K., Oubarra A., Alemany A. (2003). Heat transfer by laminar Hartmann’s flow in thermal entrance region with uniform wall heat flux: the Graetz problem extended. Energy Conv. Manag. 44:11–34

    Article  Google Scholar 

  26. Sparrow E.M., Novotny J.L., Lin S.H. (1963). Laminar flow of a heat-generating fluid in a parallel-plate channel. AIChE J. 9:797–804

    Article  Google Scholar 

  27. Horiuchi K., Dutta P. (2004). Joule heating effects in electroosmotically driven microchannel flows. Int. J. Heat Mass Transfer 47:3085–3095

    Article  MATH  Google Scholar 

  28. Dutta P., Beskok A. (2001). Analytical solution of combined electroosmotic/pressure driven flows in two-dimensional straight channels: finite debye layer effects. Analyt. Chem. 73:1979–1986

    Article  Google Scholar 

  29. Lyklema J., Rovillard S., De Coninck J. (1998). Electrokinetics: the properties of the stagnant layer unraveled. ACS J. Surf. Colloids 14:5659–5663

    Google Scholar 

  30. Arfken G. (1985). Mathematical Methods for Physicists Third ed. Academic Press, Boca Raton, FL 815 pp.

    Google Scholar 

  31. 31. Burmeister L.C. (1994). Convective Heat Transfer. Wiley and Sons, New York 790 pp.

    Google Scholar 

  32. Cess R.D., Shaffer E.C. (1959). Heat transfer to laminar flow between parallel plates with a prescribed wall heat flux. Appl. Sci. Res. A8:339–344

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prashanta Dutta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horiuchi, K., Dutta, P. & Hossain, A. Joule-heating effects in mixed electroosmotic and pressure-driven microflows under constant wall heat flux. J Eng Math 54, 159–180 (2006). https://doi.org/10.1007/s10665-005-9019-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-005-9019-9

Keywords

Navigation