
Empirical Software Engineering (2024) 29:60
https://doi.org/10.1007/s10664-024-10467-3

Comparative analysis of real issues in open-source machine
learning projects

Tuan Dung Lai1 · Anj Simmons1 · Scott Barnett1 · Jean-Guy Schneider2 ·
Rajesh Vasa1

Accepted: 14 February 2024
© The Author(s) 2024

Abstract
Context In the last decade of data-driven decision-making, Machine Learning (ML) systems
reign supreme. Because of the different characteristics between ML and traditional Software
Engineering systems, we do not know to what extent the issue-reporting needs are different,
and to what extent these differences impact the issue resolution process.
Objective Weaim to compare the differences betweenMLand non-ML issues in open-source
applied AI projects in terms of resolution time and size of fix. This research aims to enhance
the predictability of maintenance tasks by providing valuable insights for issue reporting and
task scheduling activities.
Method We collect issue reports fromGithub repositories of open-sourceML projects using
an automatic approach, filter them using ML keywords and libraries, manually categorize
them using an adapted deep learning bug taxonomy, and compare resolution time and fix size
for ML and non-ML issues in a controlled sample.
Result 147 ML issues and 147 non-ML issues are collected for analysis. We found that
ML issues take more time to resolve than non-ML issues, the median difference is 14 days.
There is no significant difference in terms of size of fix between ML and non-ML issues. No
significant differences are found between different ML issue categories in terms of resolution
time and size of fix.
Conclusion Our study provided evidence that the life cycle for ML issues is stretched, and
thus further work is required to identify the reason. The results also highlighted the need for
future work to design custom tooling to support faster resolution of ML issues.

Keywords Machine learning · Applied AI · Empirical analysis · Bug · Issue

Communicated by: Maria Teresa Baldassarre and Neil Ernst

This article belongs to the Topical Collection: Special Issue on Registered Reports.

B Tuan Dung Lai
tuan.lai@deakin.edu.au

Extended author information available on the last page of the article

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-024-10467-3&domain=pdf
http://orcid.org/0000-0002-1358-3351
http://orcid.org/0000-0001-8402-2853
http://orcid.org/0000-0002-3187-4937
http://orcid.org/0000-0002-9827-5496
http://orcid.org/0000-0003-4805-1467

 60 Page 2 of 28 Empirical Software Engineering (2024) 29:60

1 Introduction

Broad adoption of machine learning (Janssen et al. 2022; Rawindaran et al. 2021; Baskaran
et al. 2021) instigates an exploration into whether this impacts the nature and attributes of
software issues. In contrast to traditional software systems where instructions are explicitly
implemented in the code, machine learning involves the development of statistical algorithms
capable of generalising data to perform tasks without explicit instructions. As a result, soft-
ware teams encounter issues specific to a) bugs from changes in the input data streams, b)
training and evaluation pipelines, and c) models and choice of hyper-parameters. Under-
standing the effort required to complete fixes for the issues that arise in machine learning
applications has implications on project estimates and schedules.

Software defects are well studied and best practices for reporting traditional software
system issues are well known (Chou et al. 2001; Li et al. 2006; Lal and Sureka 2012; Bhat-
tacharya et al. 2013; Davies andRoper 2014; Tan et al. 2014; Ghanavati et al. 2020). However,
it is unknown if this research applies to issues found in machine learning applications. Works
that focus on the ML aspect fit into two groups 1) issues that occur in machine learning
frameworks (Morovati et al. 2023) and 2) issues that arise in ML applications. However,
these works do not distinguish between issues related to machine learning and issues in the
surrounding software. We aim to close these gaps. Our goal is to collect empirical evidence
to help inform resource allocation, reporting tools, and maintenance infrastructure specific
to ML issues. In this paper, we use ML issues to refer to tickets raised in open-source ML
projects that indicate an ML-specific problem in the ML code of the software (as opposed to
non-ML issues related to the system surrounding the ML code, such as configuration, data
collection, and data verification components). Figure 1 shows an example ML-issue from an
open-source project1 (a data-centric declarative deep learning framework) that arises during
training time and does not immediately cause a failure. The highlighted red indicates issues
around components related to the model and the training process which are unique to ML.

Current research on ML issues focuses on bug classification (Sun et al. 2017; Humbatova
et al. 2020; Thung et al. 2012), root cause analysis (Chen et al. 2022; Shen et al. 2021; Zhang
et al. 2020, 2019; Islam et al. 2019; Zhang et al. 2018), testing techniques for ML (Braiek
and Khomh 2020), defect detection (Nikanjam et al. 2021; Wardat et al. 2022; Liu et al.
2021; Yan et al. 2021) and fault localisation (Wardat et al. 2021). These studies provide an
understanding of the characteristics of ML issues but do not compare to the existing body of
knowledge on software issues. Without drawing a direct comparison to prior knowledge, we
cannot assess if existing best practices apply toML issues. Specifically, we do not know ifML
issues follow the same distribution for i) resolution time or ii) fix size. By investigating the
differences between ML and non-ML issues we discover if bespoke ML-specific adaptation
of software engineering best practices is required. To the best of our knowledge, we are the
first to study the differences between ML and non-ML issues.

There are no known techniques for guaranteeing robustness against all possible failure
modes;MLwill eventually fail due to data shift (Wang et al. 2018; Parker andKhan 2015).ML
applications also have a higher complexity level compared with the traditional ones (Amershi
et al. 2019) and possess multiple unique challenges in engineering (Galin 2004) due to added
components in the architecture that increase technical debt such as the data pipeline, model
training, and monitoring systems (Sculley et al. 2014). Development processes also change
with the inclusion ofmachine learning (Seymoens et al. 2018).Model training is one example
of an extra component in ML applications compared to traditional software systems. Unlike

1 https://github.com/ludwig-ai/ludwig/issues/1093

123

https://github.com/ludwig-ai/ludwig/issues/1093

Empirical Software Engineering (2024) 29:60 Page 3 of 28 60

Fig. 1 A closed ML issue related to the training process. (ML-specific aspects underlined)

traditional software systems,ML functionality is learned from data which requiresML-aware
tools (i.e. debuggers, linters, and development environments) and operating procedures. ML-
specific testing strategies help, but are insufficient for guaranteeing bug-free software –
failure cases will be missed during testing. Thus, rapid response to machine learning failures
is required to ensure reliable software.

The research aims to answer the following research questions:

– RQ1.What is the frequency of ML issue categories in open-source applied ML projects?
– RQ2.How does the distribution of ML and non-ML issues compare in terms of resolution
time and size of fix?

– RQ3. How does the distribution of different ML issue categories compare in terms of
resolution time and size of fix?

In our research, we have 6 categories of ML issues under consideration: GPU Usage,
Mode, Tensor and Input, Training Process, Third-party Usage, and Other. The definitions of
each category are described in Table 3. To answer the research questions, we studied ML
issues andnon-ML issues from4,524open-source appliedAI projects released fromGonzalez
et al. (2020). Our research aims to benefit software engineers, and industry practitioners who
work on software systems with ML components. Most software engineers are not building
ML frameworks, they build applications that utilise them. To be able to generalise what SE
works on in the industry, we focus on empirical analysis of ML applications where ML
frameworks and libraries are used instead of ML frameworks. Our study compared 147 ML
with 147 non-ML issues. Our key findings include 1) ML issues take a median difference
of 14 days longer to fix compared to non-ML issues, 2) the most frequently reported types
of ML issues are due to the Model, Tensor and Input, or Training Process, rather than GPU
Usage or Third-party Usage, in alignment with Humbatova et al. (2020) (albeit we obtain a
different distribution), and 3) no statistical difference in size of fix between ML and non-ML
issues. These findings provide insight into the prevalence and characteristics of ML issues,
emphasizing the importance of addressing them effectively in the field of machine learning.
The methodology of this study has been published in a registered report (Lai et al. 2022). A
minor change from the original study was a revised taxonomy from Humbatova et al. (2020)

123

 60 Page 4 of 28 Empirical Software Engineering (2024) 29:60

as an agreement between the authors could not be achieved when classifying issues. See the
technical report in the supplementary materials for more details. We release data and code
for our analysis online2.

The contribution of the research is summarised below:

– Empirical evidence showing the differences between ML and non-ML issues in terms of
resolution time and size of fix.

– Replicable methodology to automatically filter machine learning issues in open-source
projects.

– Validation of a known taxonomy of machine learning issues, including testing applica-
bility of the taxonomy on known issues using an iterative manual process.

– A dataset of closed ML and non-ML issues, consisting of the project name, issue title,
associated pull requests (PR) to fix, resolution time, and size of the fix. For ML issues,
the dataset also includes the particular ML issue category, which has been validated and
labelled using an iterative method with a moderate level of consistency.

The structure of the paper is as follows. We first explain the background of the research
in Section 2. The methodology followed to answer each research question is then explained
in Section 4. The results of each research question are presented in Section 5 which are
discussed in Section 6. Related works are mentioned in Section 3 and threats to the validity
in Section 7. Finally, we conclude the paper in Section 8.

2 Background

In this section, we describe how recent literature in empirical Software Engineering for AI
defines and classifies ML issues. After that, we will define theML issue lifecycle to highlight
the differences between ML issues and non-ML issues.

2.1 Definition of ML Issues

Machine learning issues in open-source projects have been empirically studied, different
terminologies are used in those studies including bugs in ML projects (Sun et al. 2017), deep
learning failures, deep learning faults (Humbatova et al. 2020), deep learning bugs (Islam
et al. 2019; Zhang et al. 2018), ML issues (Thung et al. 2012), and issues in AI projects
(Arya et al. 2019). However, the authors of these works only consider open-source ML
frameworks and treat all the issues from the projects as ML issues. Table 1 shows the open-
source projects used in recent studies to understandML issues. In our study, we define anML
issue as a problem, bug, enhancement, or task related to the development, implementation,
or improvement of machine learning functionality in the context of developing, training, or
deploying machine learning models within an open-source project.

2.2 Classification of ML Issues

We classified ML issues as a subset of issues found in ML applications that contain ML
keywords found in the issue title and involve the utilisation of ML libraries to address them.
Humbatova et al. (2020) introduced a taxonomyof faults inDeepLearning systems containing

2 https://github.com/DungLai/EMSE_dataset

123

https://github.com/DungLai/EMSE_dataset

Empirical Software Engineering (2024) 29:60 Page 5 of 28 60

Table 1 Number of projects included in recent empirical studies on ML issues

Study Total Projects

Morovati et al. (2023) 2 TensorFlow, Keras

Chen et al. (2022) 4 TensorFlow, PyTorch, MXNet, DL4J

Humbatova et al. (2020) 3 TensorFlow, Keras, PyTorch

Tambon et al. (2021a) 2 Keras, TensorFlow

Shen et al. (2021) 3 TVM (Apache), Glow (Facebook), nGraph (Intel)

Islam et al. (2019) 5 Caffe, Keras, Tensorflow, Theano, Torch

Sun et al. (2017) 3 Scikit-learn, Paddle, Caffe

Thung et al. (2012) 3 Apache Mahout, Lucene, and OpenNLP

Our study 27 Shown in Table 4

5 top-level categories by conducting interviews with practitioners and analysing GitHub
artefacts and Stackoverflow posts related to TensorFlow, Keras, and PyTorch. We use a
revised version of Humbatova et al.’s taxonomy to label our ML issue dataset.

2.3 Challenges of ML in Issue Lifecycle

The life cycle of a software issue is well understood (Gegick et al. 2010). An example life
cycle for the Bugzilla issue tracker is shown in Fig. 2. Our overall hypothesis is thatML issues
will take longer to fix and have a larger size of fix than non-ML issues because ML systems
have a higher complexity level compared with the traditional ones (Amershi et al. 2019) and
possess multiple unique challenges in engineering (Galin 2004) due to added components
in the architecture that increase technical debt such as the data pipeline, model training, and
monitoring systems (Sculley et al. 2014). Below we motivate how delays for ML issues can

Fig. 2 Bugzilla issue life cycle (Gegick et al. 2010)

123

 60 Page 6 of 28 Empirical Software Engineering (2024) 29:60

occur at each stage of the issue lifecycle. Issues that take an unexpected amount of time to
close impact project schedules and increase maintenance costs.

Unconfirmed, New Issues raised for a software system occur when a user experiences a
system failure. Users fill out an issue report that documents the failure in a ticketing system
to be assigned to a developer. Project teams need a thorough understanding of the application
and the category of the issue to be able to estimate the time to create a fix. However,ML issues
have specific defect categories (Humbatova et al. 2020). In some cases, the only symptom of
these defects is that the prediction is incorrect (Tambon et al. 2021a). This requires exploration
time to understand the root cause. Whether the categories of ML issues impact resolution
time is unknown.

Assigned Knowing who to assign an ML issue to is challenging as ML issues occur in
a) the architecture of the model, b) training pipelines, c) choice of hyperparameters, d)
serving pipelines, and d) assumptions about inputs. Unlike traditional bugs, solving ML
issues requires different skills from data scientists, software engineers, and domain experts
to collaborate together to address data, code and model-related bugs (Seymoens et al. 2018).

Resolved Once a developer has been assigned an issue they attempt to locate, and resolve
the issue. To resolve an ML issue like the one in Fig. 1, understanding is required of the
different model architectures and the training process that causes the error. Resolving ML
issues requires extra time to prepare, train, and validate an ML model.

Verified Verifying of ML is an on-going research area (Xiang et al. 2018). The difficulties
of verifying if an ML issue has been resolved lie in understanding the unbounded function
learned by the machine – the limitations of the machine cannot be inspected by a human. ML
have inference and training, inferring the root cause of failures and unexpected behaviour
is challenging, usually requiring much human thought, and is both time-consuming and
error-prone Lourenço et al. (2019).

Closed, Re-Opened ML issues resolved by retraining involve no code or configuration
changes (i.e., only model versions and training data are updated). This requires additional
infrastructure outside of the source code repository indicating how the training strategy (i.e.,
hyperparameters, and training data) addressed the issue for replication.

In conclusion, due to the new issues that arise in each stage of the life cycle because of the
unique characteristics of ML, we hypothesize that the resolution time is higher and the issue
life cycle is stretched. Our research will further confirm this hypothesis. After that evidence
is established to look further into what steps of the life cycle actually differ for ML and cause
the resolution time to increase. We will investigate different stages of the life cycle and the
corresponding ML problem raised.

2.4 Comparison of ML and Non-ML Systems

Machine Learning (ML) systems, as a superset of traditional non-ML systems, inherit all
the challenges of the latter while introducing unique complexities related to their data-driven
nature Sculley et al. (2015). Unlike non-ML systems, which primarily rely on logic, rules, and
direct computation, ML systems are heavily dependent on the quality and quantity of data for

123

Empirical Software Engineering (2024) 29:60 Page 7 of 28 60

training algorithms to learn patterns or features Zhou et al. (2017). This leads to challenges
such as overfitting, where the model excessively learns from training data including its noise,
and underfitting, where the model fails to capture the underlying data patterns. Bias in ML
systems can arise from skewed training data, where certain groups are under-represented
in the dataset, leading to prejudiced outcomes Mehrabi et al. (2021). Other critical issues
include interpretability, the difficulty in understanding complex model decisions, fairness in
decision-making, the generalisation capability of models to perform well on unseen data,
and drift, which refers to changes in data patterns over time affecting model performance Lu
et al. (2018).

In contrast, non-ML systems focus on direct problem-solving, manual processes, and
designing infrastructure, with challenges centred around scalability, maintainability, and effi-
ciency. Their evaluation is based on correctness and resource usage, and they lack the dynamic
adaptation and self-evolution capabilities ofML systems. The complexity in non-ML systems
is not related to data but to the nature of the problem and application scale. The knowledge
domain for ML includes data science, statistics, and machine learning algorithms, whereas
non-ML requires expertise in software development and engineering. Therefore, ML sys-
tems, with their additional layers of data dependency, training, and algorithmic challenges,
represent a more complex and evolving subset of traditional computing systems. Table 2
summarises the different characteristics of ML and non-ML systems.

3 RelatedWork

Research on understanding ML issues has been conducted on open-source ML frameworks
and has focused on categorising bugs and building taxonomies (Sun et al. 2017; Humbatova
et al. 2020; Thung et al. 2012), finding root causes (Zhang et al. 2019, 2020; Islam et al.
2019; Zhang et al. 2018), ranking bugs by frequency and severity (Zhang et al. 2020; Thung
et al. 2012; Zhang et al. 2019; Islam et al. 2019), extracting common fix patterns (Sun et al.
2017; Zhang et al. 2020), and measuring resolution time (Sun et al. 2017; Thung et al.
2012). Some classes of ML defects are more severe than others and require an extended
time to fix (Sun et al. 2017). In 2017, Sun et al. (2017) conducted an empirical study on
real bugs in ML frameworks from 329 ML issues from 3 large open-source ML projects
from Github and found that nearly 70% of bugs are fixed within one month, certain types
of defects are more severe than others and require an extended time to fix (Sun et al. 2017).
However, they did not compare the empirical statistics against a baseline for non-ML issues.
In 2019, Arya et al. used supervised learning to extract common topics from 15 complex
issues reports and their comments from 3 open-source ML projects Arya et al. (2019). The
aim of their study was not to understand ML-specific issues but to generalise these topics to
software projects. In 2020, Humbatova et al. analysed Github issues/ pull requests/ commits
and Stack Overflow discussion to propose a taxonomy of deep learning faults and conducted
interviews with practitioners to rank categories of bugs based on severity and effort required
(Humbatova et al. 2020). However, the severity and effort estimates for each category are
based on interviews rather than an empirical analysis of issues.

Software engineering research in understanding issues in open-source software projects
focuses on effort estimation techniques to predict resolution time which can benefit bug fix
scheduling and team allocation tasks (Du et al. 2022; Al-Zubaidi et al. 2017; Ardimento and
Boffoli 2022). Akbarinasaji et al. conducted a study on open-source software to verify an
existing model for predicting resolution time and found that the existing model that estimated

123

 60 Page 8 of 28 Empirical Software Engineering (2024) 29:60

Ta
bl
e
2

C
om

pa
ri
so
n
of

M
L
an
d
no
n-
M
L
sy
st
em

s
ch
ar
ac
te
ri
st
ic
s

A
sp
ec
t

M
L
sy
st
em

s
N
on
-M

L
sy
st
em

s

D
at
a
D
ep
en
de
nc
y

H
ig
hl
y
de
pe
nd

en
to

n
da
ta
qu

al
ity

an
d
qu

an
tit
y

R
el
ie
s
le
ss

on
da
ta
,m

or
e
on

lo
gi
c,
ru
le
s,
an
d
di
re
ct
co
m
-

pu
ta
tio

n

T
ra
in
in
g
Pr
oc
es
s

R
eq
ui
re
s
tr
ai
ni
ng

al
go
ri
th
m
s
on

a
da
ta
se
tt
o
le
ar
n
pa
tte
rn
s

or
fe
at
ur
es

In
vo
lv
es

di
re
ct

pr
ob

le
m
-s
ol
vi
ng

te
ch
ni
qu

es
,
a
m
an
ua
l

pr
oc
es
s,
an
d
de
si
gn
in
g
in
fr
as
tr
uc
tu
re

Te
st
in
g

D
ep
en
ds

on
pe
rf
or
m
an
ce

m
et
ri
cs

su
ch

as
ac
cu
ra
cy
,p

re
-

ci
si
on
,r
ec
al
l,
F1

sc
or
e

E
va
lu
at
io
n

is
ba
se
d

on
co
rr
ec
tn
es
s,

ef
fic
ie
nc
y,

an
d

re
so
ur
ce

us
ag
e

E
vo
lu
tio

n
Se
lf
-e
vo
lv
es

ov
er

tim
e,
dy

na
m
ic
ad
ap
ta
tio

n
du

e
to

dr
if
t

So
lu
tio

ns
ar
e
st
at
ic
,r
eq
ui
re

m
an
ua
lu

pd
at
es

fr
om

de
ve
l-

op
er
s

C
ha
lle
ng
es

O
ve
rfi
tti
ng
,u

nd
er
fit
tin

g,
bi
as
,i
nt
er
pr
et
ab
ili
ty
,d

ri
ft
,f
ai
r-

ne
ss
,g

en
er
al
iz
at
io
n,

da
ta
pr
iv
ac
y

Sc
al
ab
ili
ty
,m

ai
nt
ai
na
bi
lit
y,
ef
fic
ie
nc
y,
co
m
pa
tib

ili
ty

D
om

ai
n
Sp

ec
ifi
c

R
eq
ui
re
s
kn
ow

le
dg
e
in

da
ta

sc
ie
nc
e,

st
at
is
tic
s,
m
ac
hi
ne

le
ar
ni
ng

al
go

ri
th
m
s

R
eq
ui
re
s
kn

ow
le
dg

e
in

so
ft
w
ar
e
de
ve
lo
pm

en
t,
en
gi
ne
er
-

in
g,
an
d
de
pl
oy
m
en
t

C
om

pl
ex
ity

C
om

pl
ex
ity

ar
is
e

fr
om

th
e

vo
lu
m
e

of
da
ta
,
fe
at
ur
e

se
le
ct
io
n,

tu
ni
ng

of
pa
ra
m
et
er
s,
an
d
al
go
ri
th
m
s.
H
id
de
n

te
ch
ni
ca
ld
eb
tf
ro
m
m
od

el
,t
ra
in
in
g,
an
d
m
on

ito
ri
ng

co
m
-

po
ne
nt
s

C
om

pl
ex
ity

is
ge
ne
ra
lly

no
t
re
la
te
d
to

da
ta

bu
t
to

th
e

na
tu
re

of
th
e
pr
ob

le
m

its
el
f
(a
lg
or
ith

m
ic

co
m
pl
ex
ity

).
C
om

pl
ex
ity

ev
ol
ve
s
w
ith

th
e
sc
al
e
of

th
e
ap
pl
ic
at
io
ns

an
d

ne
w
fe
at
ur
es

123

Empirical Software Engineering (2024) 29:60 Page 9 of 28 60

the bug fixing time is robust enough to be generalized Akbarinasaji et al. (2018). However,
with the unique characteristics of ML applications, we do not know if this is still applicable
to ML issues. To understand the relationship between the size of fix (which was referred to
as code-churn value) and resolution time, Vieira et al. analysed 55 projects from the Apache
ecosystems to conclude that if an issue has a higher size of fix and linked to other existing
issue reports, resolution time will be at least twice as long (Vieira et al. 2022).

4 Methodology

In this section, we describe the methodology followed to understand the differences between
ML and non-ML issues. First, we explain the changes between the methodology and the
registered report for this research, and then we describe the data collection methodology for
theML issue and non-ML issue datasets. Finally, we explain howwe conducted the statistical
analysis to answer our three research questions.

4.1 Deviation from the Original Proposed Study Registered Report

We made a change to the registered report: the process of labelling ML issues. For labelling
ML issues: In our registered report for this research (Lai et al. 2022), we planned to label the
ML issues against the 18 sub-categories present in Humbatova’s taxonomy (Humbatova et al.
2020) and to conduct the comparison among those categories. However, our attempt to apply
the taxonomy to issues in applied AI projects indicates that the taxonomy is inadequate for
labelling our dataset, and resulted in no agreement measured by Light’s Kappa metric (Light
1971). As Humbatova’s taxonomy was derived from artifacts and discussions related to deep
learning frameworks for Python, we adapted the taxonomy to be able to use it on real bugs
in applied AI projects. For this reason, we narrowed down the number of ML categories that
will be used to 6 including an “other” category, the other 5 categories are derived from the 5
parent nodes in the original taxonomy, i.e. GPU Usage, Model, Tensor and Input, Training,
and API. We also proposed a protocol for the labelling process and a clearer definition for
each category to avoid ambiguity. A detailed process for labelling ML issues, the details of
what led to the decision to modify the taxonomy, the results of the labelling iterations, and
the extended definitions and adjustments for the 6 ML issue categories were documented in
our technical report in the supplementary materials. Table 3 shows the definitions of 6 ML
issue categories that are used in our three research questions after the adaptation process.

Overall, after 3 labelling iterations, we made the following 6 changes to the original
taxonomy. The decision-making process and the challenges we faced during the labelling
process are documented in the technical report in the supplementary material:

– We collapsed and condensed the definitions provided by Humbatova et al. (2020) into the
definitions provided in Table 3. In the study by Humbatova et al. (2020), the definitions
are provided for each low-level sub-categories, the authors also explain how the interview
process leads to the creation of the taxonomy in the text. This makes it difficult for people
who have not read the whole Humbatova et al. (2020) study to understand how to apply
the taxonomy created independent standalone set of definitions to establish our labelling
protocol.

– We changed “API” to “Third-party usage” because some issues belong to other libraries,
we generalised it to cover more cases.

123

 60 Page 10 of 28 Empirical Software Engineering (2024) 29:60

Table 3 Extended definitions of 6 ML issue categories

Categories Definitions

GPU Usage Incorrect or inefficient usage of GPUs, wrong reference
to GPU device, failed parallelism, incorrect state sharing
between subprocesses, faulty transfer of data to a GPU
device.

Model Inappropriate, inefficient or incorrect model initialisa-
tion, choice of architecture. Inappropriate use of activa-
tion function, incorrect properties for a neural network
layer, missing, redundant or wrong layer. Errors occur
during inference.

Tensor and Input Error or inefficiencies in data quality such as low-quality
data, noisy data, imbalanced data, and insufficient data.
Inappropriate preprocessing of data such as scaling, nor-
malisation, and feature engineering. Incorrect shapes of
input, wrong dimensions, size, inappropriate file type,
encoding, and selection of data format.

Training Process Inappropriate or inefficient training processes exclud-
ing data-related problems, such as inappropriate batch
sizes, and learning rates. Hyperparameter issues such as
learning rate, dropout rate, and number of epochs. Inap-
propriate optimiser, inappropriate choice of loss function
when using during training. Inefficient or incorrect vali-
dation/ testing procedure.

Third-party Usage Inappropriate usage of third-party programs or libraries,
such as TensorFlow, PyTorch, Keras, and Numpy.

Other Documentation issues or anything unrelated to the 5 cat-
egories above.

– “Training data quality” and “Preprocessing of training data” which were originally in
“Training” are now moved into “Tensor and Input” categories. This change is to make
“Tensor and Input” specifically only contain issues related to data.

– We changed “Training” to “Training process” to ensure all issues in this category are
related to the process instead of the data.

– We added an additional “Other” category to fit all issues that do not belong to any category
in the original taxonomy.

– We change the definitions of each category so that Enhancement, code refactoring, and
non-critical issues (issues that do not crash the program) can be classified and labelled
as ML issues.

These changes will not affect RQ2 and RQ3. RQ 2 is unaffected as this question requires
a comparison betweenML and non-ML issues. The coarse grain application of the taxonomy
will not change this result. Using the fine-grain version of the taxonomy (as per the original
design) would have made RQ1 and RQ3 unanswerable due to the size of the resulting dataset
(147 spread over 6 coarse grain categories).

4.2 Data Collection

In 2020, Microsoft released a paper (Gonzalez et al. 2020) containing all AI andML relevant
projects from Github in the past 10 years. The dataset from this paper is used as a starting

123

Empirical Software Engineering (2024) 29:60 Page 11 of 28 60

point containing 4,524 applied AI & ML projects. After that, we applied filters described in
Fig. 3. Overall, we used Github API to retrieve repository metadata to filter the projects. We
then downloaded pull requests and issues to filter the issues by ML keywords in the issue’s
title and ML libraries in the pull request. After that, we labelled the ML issues and sampled
the non-ML issues. The data collection process resulted in a dataset containing 147ML issues
from 27 applied AI projects, manually labelled into 6 categories (described in our technical
report in the supplementary materials) and 147 non-ML issues. This section provides details
of each filtering step shown in Fig. 3 (Table 4).

4.2.1 Filter ML Projects

This step filters 4,524 projects to 428 projects by language, newness, popularity, and active-
ness.We first chose to focus on Python because 1) it is themost popular language for machine
learning and 2) the taxonomy was originally applied to Python projects.

Fig. 3 High-level methodology for data collection (green: manual process, yellow: automatic approach, blue:
dataset, purple: an automatic approach using Github API)

123

 60 Page 12 of 28 Empirical Software Engineering (2024) 29:60

Table 4 List of applied AI projects, number of ML issues and non-ML issues after the data collection

Projects (owner/ name) ML issues Non-ML issues

sktime/sktime 32 32

ludwig-ai/ludwig 20 20

NRCan/geo-deep-learning 15 15

kymatio/kymatio 14 14

blue-oil/blueoil 10 10

medipixel/rl_algorithms 6 6

intel/dffml 5 5

brendanhasz/probflow 5 5

aiqm/torchani 5 5

pyro-ppl/funsor 4 4

onnx/onnxmltools 4 4

qubvel/efficientnet 3 3

HunterMcGushion/hyperparameter_hunter 3 3

BindsNET/bindsnet 3 3

philipperemy/keras-tcn 2 2

netrack/keras-metrics 2 2

hackingmaterials/automatminer 2 2

atomistic-machine-learning/schnetpack 2 2

DeepLabCut/DeepLabCut 2 2

stared/livelossplot 1 1

mozilla/bugbug 1 1

marl/openl3 1 1

justinshenk/fer 1 1

catalyst-team/catalyst 1 1

autonomio/talos 1 1

ProGamerGov/neural-style-pt 1 1

HazyResearch/fonduer 1 1

Total: 27 Projects 147 ML issues 147 Non-ML issues

For each project, we collected the metadata and other API URLs for the repository in the
form of a JSON file. By following this method, we locally downloaded JSON files for 4,524
repositories using the project names and owner names from the Microsoft dataset (Gonzalez
et al. 2020). These projects are original (not forked from another project). 2,342 repositories
are found to use Python as their programming language. However, we found that 37 projects
could not be retrieved using the API due to the projects being deleted, set to private, or
renamed since the dataset’s release.

We further select ML repositories using the following criteria (commonly used in prior
works in empirical open-source software issues research (Biswas et al. 2019; Morovati et al.
2023)): newness (the projects must be created in the last 5 years), popularity (the projects
must have at least 100 stars), activeness (the projects must have at least a commit in the last 2
years), we set 1 Jan 2023 as the current date of research. This resulted in a list of 435 projects,
we then filtered out projects with zero issues, resulting in 428 projects.

123

Empirical Software Engineering (2024) 29:60 Page 13 of 28 60

4.2.2 Collect Issues and Pull Request

For each issue in the 428 projects from the previous step, we downloaded issue reports with
associated merged pull requests. We noticed that many of the issue numbers were redirected
to a pull request. To obtain a list of only issue numbers, we excluded the pull request numbers
from the list of issue numbers. This left us with 40,933 issue reports across all 428 projects.

To filter out issues closed by merged pull requests, we downloaded the timeline of each
issue, and then selected issues that had at least one pull request mentioning them. When a
pull request mentions an issue by using the hashtag followed by the issue number, this event
is stored in the issue timeline. A pull request from a different project can mention an issue in
another project, we checked that the pull requests originate from the same project as the issue.
This process identified 3,969 out of the 40,933 issues. Finally, we further filtered the list of
issues to include only those that were closed and only if the pull requests that mentioned the
issue were merged into the main repository’s codebase. This reduced the number of issues
from 3,969 to 3,133.

4.2.3 Filter Issues with ML Keywords in Titles

Overall, we checked the titles of 3,133 issues in the previous steps and 304 issues were
found to have at least 1 of the 280 ML keywords. Filtering by keywords is a technique
commonly used in empirical software research to filter the topic of a project or issue (Kim
et al. 2021; Biswas et al. 2019). We first started with ML keywords from the ML Glossary
from Google3. The ML keywords glossary includes overloaded words such as “class”, and
“test” which could refer to either ML or non-ML concepts and thus lead to false positives. To
mitigate this issue, 3 researchers (the first 3 authors of the study) with applied AI experience
manually checked each keyword and we narrowed down the list to 280 keywords (a full list
of keywords is provided in the supplementary material). After that, we converted the issue
title text to lowercase, removed special characters, commas, and dots, split the titles by white
space, trim leading and trailing white space before checking if at least an ML keyword was
in the title. This process resulted in 304 issues.

4.2.4 Collect Commits

This step is an automatic process done to prepare for the next step, which is filtering the
issues with pull requests that contain ML code. For each merged pull request associated with
the issues that we found in previous steps, we use Github API to retrieve the list of commits
associated with the pull request and download the raw content of each code file modified by
a commit.

4.2.5 Filter Issues with Pull Requests that Contain ML Code

Overall, we checked that the code in the pull requests used to fix the issue has to use at
least one ML library as a second filtering layer, this process filtered 304 issues to 151 ML
issues. Filtering ML issues only by keywords in the title has the possibility to be imprecise,
this is a challenge faced by prior research (Biswas et al. 2019) because the keywords can be
used in many contexts. We first select ML libraries currently used in popular Python deep

3 https://developers.google.com/machine-learning/glossary

123

https://developers.google.com/machine-learning/glossary

 60 Page 14 of 28 Empirical Software Engineering (2024) 29:60

learning frameworks: TensorFlow, Keras, PyTorch. These libraries are popular and widely
adopted in the machine-learning community and commonly used in research to understand
deep learning and ML bugs (Zhang et al. 2018; Jia et al. 2020; Tambon et al. 2021b; Chen
et al. 2022; Morovati et al. 2023; Islam et al. 2019).

For each of the 304 issues, we have downloaded all the files modified by the PRs that
addressed the issue. We then extracted the dependencies using the ‘FindImports’ library,4

this library extracts Python module dependencies by parsing source files. It can report names
that are imported but not used. We then included only the issues in which at least one ML
library (TensorFlow, Keras, PyTorch) was used in the fix. Finally, we got the list of 151 ML
issues that satisfy two criteria: 1) issues containing ML keywords in the title, and 2) the issue
is associated with at least one pull request that contains a change in the context of a script
that uses ML libraries.

4.2.6 Apply Revised Humbatova’s Taxonomy

Wemanually labelML issues in theML issue dataset against an existing taxonomy (Humbat-
ova et al. 2020) using an iterative approach. The attached technical report in the supplementary
materials describes the detail of the labelling, adjustment and how we apply the taxonomy to
achieve a moderate level of agreement using the Light’s Kappa metric (Light 1971). Initially,
three researchers independently (the first three authors) labelled a random sample of 30 ML
issues, resulting in no agreement. The taxonomy was revised in the second iteration, merging
subcategories to reduce ambiguity. Another set of 30 ML issues was labelled, resulting in
weak agreement. After that, the number of categories was reduced to 6, and a labelling pro-
tocol was established, adjustments were made to the taxonomy, including changing ”API”
to ”Third-party usage” and redefining categories related to data quality issues. The modifi-
cations aimed to improve the taxonomy’s applicability and clarity in identifying ML issues.
The third iteration showed moderate agreement (Kappa = .67), after that, the first author
labelled the rest of the ML issues dataset.

4.2.7 Sample non-ML Issues

To compare ML and non-ML issues, we randomly sampled a non-ML issues dataset from
each selected project, in equal proportion to the number of ML issues detected in that project
(this sampling strategy helps to prevent confounding effects arising from project factors).
Non-ML issues are those that don’t meet the ML criteria (ML keywords in the titles and ML
libraries involved in the fix) but meet all other criteria (i.e., the closed issue with an associated
pull request). In 4 projects, wewere unable to sample non-ML issues due to the project having
only one ML-related issue. We removed these projects from the dataset, leaving us with a
total of 294 issues, comprising 147 ML and 147 non-ML issues.

4.2.8 Measuring Resolution Time and Size of Fix

Resolution Time This attribute is measured by the number of days. For each issue, because
only closed issues were considered in our filtering process, we were able to use Github API
to get the date when the issue was created and closed and calculate the difference between
these two dates. If an issue is closed on the same day it is opened, the resolution time will be
zero.

4 https://pypi.org/project/findimports/

123

https://pypi.org/project/findimports/

Empirical Software Engineering (2024) 29:60 Page 15 of 28 60

Size of Fix This attribute is a cumulative count measured by the sum of the number of lines
added and deleted that are performed in a pull request that fixes the issue. This calculation
method measures the code churn size which has an intuitive relationship with the developer’s
effort Shihab et al. (2013) and was commonly used in empirical research on software issues
El Asri et al. (2019); Zhu and Godfrey (2021). Each issue can have more than one corre-
sponding pull request that mentions it. The first author manually inspected each issue and
selected the one pull request that fixed it. In rare scenarios where multiple pull requests were
the fix to the same issue, we selected the pull request that was created last. The pull requests
created before were partial fixes and were disregarded.

4.3 Data Analysis

RQ1. What is the Frequency of ML Issue Categories in Open-source Applied ML
Projects?

To answer this research question,we report the results of our study and compare them to the
results obtained by Humbatova et al. (2020). As we used a revised version of Humbatova’s
taxonomy, we first matched categories in Humbatova’s original taxonomy to our revised
taxonomy to calculate the number of issues per revised category that would be obtained
according to the results reported in Humbatova et al. (2020) study. The chi-square statistical
test is conducted to determine if the observed differences in issue frequencies between the two
studies are statistically significant or merely due to chance followed by Cramer’s V (Cramér
1999) to measure the effect size. Negative results from this research question will invalidate
the need to conduct further research and motivate research questions two and three, which
are all based on the results of Humbatova et al. (2020) study.

RQ2. How Does the Distribution of ML and Non-ML Issues Compare in Terms of Resolu-
tion Time and Size of Fix?

To answer this research question, we first generate tables to compare the mean andmedian
resolution time and size of fix, followed by boxplots to inspect the distribution. For this
analysis, we use the Mann-Whitney U Test (McKnight and Najab 2010) (also known as
the Wilcoxon rank-sum test), which is used to compare differences between two indepen-
dent groups when the dependent variable is either ordinal or continuous, but not normally
distributed. If the difference is significant by the test, we will measure the rank-biserial corre-
lation (Cureton 1956) to measure the effect size. Furthermore, we manually sample the data
to gain insights into the results. Answering this research question will answer our hypothesis
that the lifecycle for ML issues is stretched. The results will have an implication for the task
scheduling activities, resource allocations and effort estimation for ML projects.

RQ3. How Does the Distribution of Different ML Issue Categories Compare in Terms of
Resolution Time and Size of Fix?

To answer this research question, we first generate descriptive statistics tables to compare
the mean and median in terms of resolution time and size of fix for each ML issue category.
After that, we conduct Kruskal-Wallis H-test (MacFarland et al. 2016) (a non-parametric
version of ANOVA) to determine if the medians of the groups differ. The result of this
research question provides deeper insights into what will be found in research question 2.
The initial evidence derived from this research questionwill provide insights intowhat should

123

 60 Page 16 of 28 Empirical Software Engineering (2024) 29:60

be investigated to understand why there is a difference in the size of fix or resolution time
for ML issues.

5 Results

We investigated and labelled 147 ML issues, 147 non-ML issues, and compared the distri-
bution of ML issues between 6 categories between Humbatova et al. (2020) study and our
study. After that, we visualised the distribution, provided a descriptive statistic summary and
compared the difference betweenML and non-ML issues in terms of resolution time and size
of fix. In the following sections, we present our answers to each of our formulated research
questions.

5.1 RQ1:What is the Frequency of ML Issue Categories in Open-source AppliedML
Projects?

In summary, we analysed 147ML issues within 6 manually labelled ML categories and ran a
chi-square test to compare the frequencies of ML issues between our study and Humbatova
et al. (2020) study. The statistical analysis highlights a statistically significant difference
between the frequency of ML issue categories in Humbatova et al. (2020) study compared
to our study. In our study, Model and Training Process issues were most frequent, whereas
GPU Usage and Third-party Usage are the categories with the least number of issues.

We matched and aligned the categories in Humbatova’s original taxonomy to our revised
taxonomy. “Training data quality” and “Preprocessing of training data”whichwere originally
in “Training” are now moved into “Tensor and Input” categories. The contingency table
(Table 5) compares the number of issues per category between Humbatova et al. (2020)
study and our study.

The total number of issues being analysed in Humbatova’s study and our study were
different, and thus, we normalised the data by dividing the number of issues in each category
by the total number of issues being collected and analysed in each study (375 and 111
respectively). This is shown in Fig. 4. In contrast to Humbatova et al.’s study, our study
indicates that Tensor and Input (data-related issues) are not the most frequent types of issues.
Similarly to Humbatova et al, we found GPU Usage issues are the least frequent type of

Table 5 Contingency table:
Number of issues per category in
Humbatova’s study and our study

Humbatova et al. (2020) Our study

GPU Usage 11 (2.9%) 2 (1.8%)

Model 74 (19.7%) 32 (28.8%)

Tensor and Input 185 (49.3%) 28 (25.2%)

Training Process 85 (22.7%) 32 (28.8%)

Third-party Usage 20 (5.3%) 17 (15.3%)

Total 375 111

123

Empirical Software Engineering (2024) 29:60 Page 17 of 28 60

Fig. 4 Normalised distribution of numbers of issues in 5 ML categories - Original taxonomy (Humbatova
et al. 2020) vs our empirical analysis

issue, representing 2.9% of issues in Humbatova et al.’s study and only 1.8% of issues in our
study.

We conducted a chi-square statistical test to compare the frequency of machine learning
issues in our study and Humbatova’s study (p=1.2 · 10−25, α=0.05, χ=121.86, df=4). With
such a small p-value, we can reject the null hypothesis and conclude that there is a statistically
significant difference in the frequencies of machine learning issues between our study and
Humbatova’s study, i.e., the observed differences between the two studies are unlikely to
have occurred by chance alone. The calculated Cramer’s V value (Cramér 1999) is 0.17,
which indicates a small effect size. This result indicates that there is a modest association
between the categories in the two studies.

5.2 RQ2. HowDoes the Distribution of ML and Non-ML Issues Compare in Terms of
Resolution Time and Size of Fix?

In summary, we compared 147 ML issues against 147 non-ML issues, with the number of
issues per project for the two groups being equal.ML issues take a longer time to fix compared
to non-ML issues, the difference is statistically significant, and the difference between the
medians is 14 days. The mean size of fix for ML issues and non-ML issues are respectively
484 lines and 557 lines, however, the difference is not statistically significant.

5.2.1 Comparing the Resolution Time of ML and Non-ML Issues

The descriptive statistics for resolution time (fix duration) as shown in Table 6 reveal notable
differences between ML issues and non-ML issues. On average, ML issues have a resolution
time of approximately 101 days, with a wider variation (standard deviation of 177 days). In
contrast, non-ML issues have a shorter average resolution time of approximately 61 days,

123

 60 Page 18 of 28 Empirical Software Engineering (2024) 29:60

Table 6 Descriptive Statistics for
Fix Duration (Resolution Time)

Descriptive Statistics ML Issues Non-ML Issues

Count 147 147

Mean 101 days 61 days

Standard Deviation 177 days 127 days

Minimum 0 days 0 days

25th Percentile 5 days 2 days

Median (50th %ile) 25 days 11 days

75th Percentile 105 days 56 days

Maximum 1008 days 871 days

with a smaller variation (standard deviation of 127 days). The data also shows that ML issues
tend to have longer upper quartiles (105 days) compared to non-ML issues (56 days).

The means and median of fix duration in Table 7 show that ML issues take longer time to
resolve than non-ML issues based on the data collection used in this research. The box plot
in Fig. 6 shows many outliers, 20 outliers for ML and 19 outliers for the non-ML category.
The median difference in resolution time between ML and non-ML issues is 14 days, with
ML issues taking longer time to fix. Visualisation of the two distributions using a cumulative
distribution plot, showing the percentage of resolved issues as a function of resolution time
is shown in the survival plot in Fig. 5.

TheMann-Whitney UTest shows that the fix duration forML issues is significantly longer
than for non-ML issues (p=0.01). We use the Mann-Whitney U Test, a non-parametric test
that depends only on the rank and is thus robust to outliers. Given that the sizes of the two
groups are equal (n1 = n2 = 147) and the U statistic is 12653.5, we measure rank-biserial
correlation (Cureton 1956): r = 1 − (2U)/(n1 ∗ n2) = −0.17. This suggests a small effect
size. The negative sign confirms that the fix duration of ML issues tends to be longer than
the fix duration of non-ML issues.

Furthermore, we manually investigated issues that took more than 200 days to close
(14 non-ML issues and 23 ML issues), and we found that (i) the issue is non-critical; an
enhancement to increase efficiency (ii) the issue requires removing unnecessary dependen-
cies/ refactoring or (iii) The issue requires multiple pull requests to fix (Fig. 6).

5.2.2 Comparing the Size of Fix of ML and Non-ML Issues

The non-parametric Mann-Whitney U Test (Mann and Whitney 1947) indicates that the
difference between ML and non-ML issues in terms of the size of fix is not significant
(p=0.46). We use a logarithmic scale in the box plot in Fig. 7 because of extreme outliers
(issues with large size of fix), there are 15 outliers for the ML category and 20 outliers for
the non-ML category. For the size of fix, the values for both ML and non-ML categories
are similar, except for the maximum. In ML issues, the maximum size of fix is 9126 lines,
while in non-ML issues, the maximum size reaches 23767 lines. These outliers indicate
instances where significant code changes were made. We use the Mann-Whitney U Test, a
non-parametric test that depends only on the rank and is thus robust to outliers (Table 8).

We manually investigated the 12 ML issues with size of fix more than 1000 lines size of
fix, our observation is that these cases are because (i) the pull request is a new feature that
fixes multiple issues, (ii) restructured code (.rst) for documentation is included in the fix, or
(iii) new file/ model/ optimiser/ components are added with inline documentation.

123

Empirical Software Engineering (2024) 29:60 Page 19 of 28 60

Ta
bl
e
7

M
ea
n
an
d
M
ed
ia
n
of

6
M
L
ca
te
go
ri
es

fo
r
R
es
ol
ut
io
n
T
im

e
an
d
Si
ze

of
Fi
x

M
L
ca
te
go

ry
C
ou

nt
M
ea
n
Fi
x
D
ur
at
io
n

M
ed
ia
n
Fi
x
D
ur
at
io
n

M
ea
n
L
in
e
C
ha
ng

e
M
ed
ia
n
L
in
e
C
ha
ng

e

G
PU

U
sa
ge

2
2

2
29

29

M
od

el
32

12
1

15
54

6
14

2

Te
ns
or

an
d
In
pu

t
28

14
3

38
35

0
71

T
ra
in
in
g
Pr
oc
es
s

32
78

20
85

4
52

T
hi
rd
-p
ar
ty

U
sa
ge

16
70

11
94

32

O
th
er

37
90

35
41

2
15

9

123

 60 Page 20 of 28 Empirical Software Engineering (2024) 29:60

Fig. 5 Survival function of resolution time between ML and non-ML issues

Fig. 6 ML and non-ML issues using boxplot

123

Empirical Software Engineering (2024) 29:60 Page 21 of 28 60

Fig. 7 Comparison of Size of Fix using Log Scale: ML vs non-ML issues

5.3 RQ3. HowDoes the Distribution of Different ML Issue Categories Compare in
Terms of Resolution Time and Size of Fix?

Overall, we analysed 147ML issues across 6 categories, we found that there are no significant
differences between the ML categories for size of fix or resolution time.

Table 7 shows the number of issues per category, GPU Usage is the category with only
2 issues found. The Kruskal-Wallis H-test (MacFarland et al. 2016) (a non-parametric sta-
tistical test that compares three or more unpaired groups to determine if there are significant
differences between them) was used to test the null hypothesis (H0) that all groups come
from populations with the same median.

For resolution time between ML categories, we fail to reject the null hypothesis (p=0.47,
α=0.05). This means that based on the data, there’s no significant evidence to conclude that
the median fix duration differs across the categories of machine learning issues.

Table 8 Descriptive Statistics for
Size of Fix

Descriptive Statistics ML Issues Non-ML Issues

Count 147 147

Mean 484 lines 557 lines

Standard Deviation 1340 lines 2186 lines

Minimum 2 lines 1 line

25th Percentile 22 lines 15 lines

Median (50th %ile) 88 lines 80 lines

75th Percentile 342 lines 285 lines

Maximum 9126 lines 23767 lines

123

 60 Page 22 of 28 Empirical Software Engineering (2024) 29:60

For size of fix, again, we fail to reject the null hypothesis (p=0.27, α=0.05). This means
that there is no significant evidence to conclude that the median size of fix (number of lines
of code changed) differs across the categories of machine learning issues.

6 Discussion

Our findings suggest a nuanced approach for engineering teams to adapt their practices for
applied ML projects. First, our results show that the fix duration of ML issues is longer than
non-ML issues. Project teams should allocate additional time when allocating ML issues
although whether ML issues are harder to estimate remains future work. The reason whyML
issues take longer could be that debugging in ML issues is performance-based and not solely
to locate and fix bugs (Wan et al. 2019). Experimentation is also needed to discover where
the ML bug is located as per the updated taxonomy (training process, model, GPU usage, or
tensor and input).

Second, our results show no statistically significant differences in the size of fix between
ML and non-ML issues. This shows that the fix duration is not directly proportional to the
scale of the code modifications. This further adds weight to the hypothesis that training time
is where the additional time is spent. An alternative explanation is that understanding and
locating the defect is where the time is spent. Our research finding confirms our hypothesis
that the ML life cycle is stretched due to the new problems that arise in each stage of the
issue life cycle. In future research, we look further into each stage of the issue lifecycle and
identify the challenges in each stage that caused the life cycle to be prolonged.

Another possible explanation for the significant difference in resolution time andnot size of
fix between ML and non-ML issues is the longer issue reporting process and the information
evolution. If ML issues take longer to resolve than non-ML issues, but the size of fix is not
different, that means the extra time is spent elsewhere and not writing code. We predict that
the extra components in ML systems, i.e. data processing pipeline, training and inferences
pipeline, model andmonitoring have caused the developer to not report sufficient information
in the initial issue reports. This leads to time-consuming and iterative interactions between
the issue fixers and the reporters to gather and build up information. To tackle this issue, in
future research, we plan to empirically investigate the attributes required in issue templates
used by applied AI project owners. Future research will take interactions, i.e. comments in
the issue timeline, into consideration.

Thefinding that therewere “Other” types ofMLbugsnotmentioned in existing taxonomies
by Humbatova et al. (2020) is empirical evidence for the need for a further research direction
into understanding the types of issues and assist with triaging (categorising and assigning
developers) for ML-specific issues.

In contrast with previous studies in understandingML issues (Sun et al. 2017; Humbatova
et al. 2020), our study focused on issues in applied ML applications, not ML frameworks.
Our experience from applying a taxonomy for ML issues and the questions raised from our
study shows that further research is needed to better understand ML issues. Furthermore, our
project filtering criteria have substantially cut down the number of projects included in the
analysis. In future work, we plan to loosen up the criteria and conduct a large-scale analysis
of ML vs non-ML issues to further validate our results.

Research on understanding software issues in open-source projects focused on building
and testing models for resolution time prediction (Vieira et al. 2022; Ardimento and Boffoli
2022). However, with our newfinding thatML issues take longer time to resolve than non-ML
issues, futurework is needed to validate these predictionmodels on appliedMLprojects.Also,

123

Empirical Software Engineering (2024) 29:60 Page 23 of 28 60

we believe that the findings indicate a lack of tooling catered toML-specific applications. The
resolution time of issues in open-source software has been studied before through empirical
analysis, a previous study suggested that issues with fewer stakeholders are resolved faster
than those with more stakeholders Nguyen Duc et al. (2011). Software quality and code
maintainability ratings are correlated with faster issue resolution of defects and enhancement
Bijlsma et al. (2012). Furthermore, based on an analysis of 14000 issue reports taken from 34
open source projects, issue resolution time was found to depend on the maintenance types,
i.e. corrective, adaptive, perfective or preventive maintenanceMurgia et al. (2014). However,
we do not think these results will bias our research findings because we sampled an equal
number of ML and non-ML issues per project in our analysis. Additionally, our selection of
ML issues per project is independent of the issue types.

Developers have different expertise levels when it comes to bug fixing based on their
unique skill set and specific domain knowledge. However, we do not think this will bias the
research results because the pool of developers who fix issues in each project is the same.
Thus, our study results will only be biased if open-source applied AI projects have different
sub-teams for fixing ML-specific issues vs other types of issues and these sub-teams differ
based on expertise. We do not have any evidence to suggest that there are different sub-teams
for fixing ML-specific issues in open-source applied AI projects or that people working on
ML-specific issues would be slower or faster than people working on other types of issues as
a result of expertise differences, we don’t investigate this aspect in the study, though accept
that it could be an alternative explanation for the longer resolution time of non-ML issues.

Code can vary significantly between developers, even when they are working on the same
problem, leading to differences in time and code size. It is true that developers do not always
write identical code, we do not think this will bias our result because we are considering the
mean size of fix. Also, the sample size is not small, so we can generalise the result. In future
work, we plan to examine the interrelationship of the expertise of the developer with ML and
non-ML resolution time and code size is an interesting idea for future work.

In futurework,we plan to scale the investigation by studying a larger dataset to seewhether
the results generalise beyond the sample investigated. Understand the human element further
through surveys and interviews, i.e. what do developers find different between fixing ML
vs non-ml issues, what about the data preparation effort that is not going to be reflected in
the commit history, is there data repositories and other repositories for an ML that is not
public. Furthermore, we plan to do an investigation into how the types of issues influence the
resolution time, there are insufficient data from our study to be conclusive.

7 Threats to Validity

In this section, we will discuss the validity threats in three key areas: internal validity, which
examines the accuracy of our findings within the dataset; external validity, concerning the
generalizability of our results; and construct validity, which assesses the suitability of our
measurement and interpretation methods. Addressing these threats is essential to ensure the
credibility and relevance of our study in the broader context ofML and software development.

7.1 Internal Validity

The size of fix may be misleading in some cases, such as a project refactor. In particular, past
research identified cases of repositories that encoded data as Python files, leading to source

123

 60 Page 24 of 28 Empirical Software Engineering (2024) 29:60

files with over 50,000 lines of code (Simmons et al. 2020). To lessen the impact of this risk,
we make use of non-parametric tests (e.g., that test for a difference of the median rather than
the mean, and are thus less sensitive to outliers). Furthermore, our analysis involves visual
inspection of the distributions, which allows identifying outliers and investigation of possible
causes.

Some of the non-ML issues could still be ML-related but didn’t make use of one of the
three deep learning libraries we checked for. However, our selection methodology ensures
that projects that didn’t make use of Tensorflow, Keras, or PyTorch at all would have had 0
ML issues and therefore no non-ML issues would be selected either.

7.2 External Validity

Our analysis assumes that ML issues are reported using the issue tracker, that the pull request
fixing the issue is linked to the relevant issue report, and that the issue is closed after resolution.
However, ML development may follow a less formal process than traditional software, for
example, may be conducted in notebooks using informal versioning practices (Rule et al.
2018), in which case ML issues with linked pull requests containing fixes may not be present
in the issue tracker. Future work will be to investigate whether ML issues are being reported
and fixed through informal processes.

The scope of our study is limited to ML projects written in Python. This was necessary so
that we could identify ML code modules in a consistent manner (based on the libraries they
import). Python is the most popular language for open-sourceML projects on Github (Braiek
et al. 2018), but restricting the scope to a single language may still limit the generality of our
findings.

Furthermore, we only analyse open-source projects, and thus may not capture the issues
faced by companies running proprietaryML pipelines in production. In particular, ML issues
such as data shift are inevitable for companies running ML in production, but may not occur
in open-source ML projects that serve as a library or are demonstrated on static datasets.

7.3 Construct Validity

Our study measures the resolution time and size of fix. However, the interpretation of these
constructs is nuanced. A long resolution time could be because the issue was difficult to
resolve, or it could simply be because the issue was considered low priority by developers.
Similarly, an issue that is of a large size may indicate that it was more complex to resolve,
or could simply point to poor coding practices.

8 Conclusion

In conclusion, our analysis revealed thatML issues take longer to resolve than non-ML issues
by a median of 14 days while there is no significant difference between the size of fix, which
is associatedwith the developer’s effort. These results suggest that the time difference is spent
elsewhere and is yet to be found and confirmed. Although we have pointed out the challenges
that arise in each stage of an issue’s life cycle due to the unique characteristics of ML, further
investigation is required to identify the causes. Our study provides empirical evidence that
existing SE resource allocation tools and effort prediction models need to be re-evaluated
before applying in ML applications. Furthermore, our study highlighted the need for future

123

Empirical Software Engineering (2024) 29:60 Page 25 of 28 60

work to investigate what stages in the issue life cycle are stretched causing the resolution time
to prolong. Because the size of fix between ML and non-ML has no significant difference,
while the median difference in resolution time is 14 days, with ML issues taking longer to
resolve.Wepredict the information evolution in theML issue reporting process iswhat caused
the resolving time to increase, developers reporting ML issues require more back-and-forth
interactions with the fixers to gather sufficient information to resolve the issue.

Our analysis reveals that there is a statistically significant association between our study
and Humbatova et al. (2020) study in terms of the frequency of ML issues. Although the
level of association is modest, this led us to continue using the taxonomy to investigate the
differences between the 6 differentML issue categories in terms of resolution time and size of
fix. In total, we havemanually labelled 147ML issues; however, no significant differences are
found among the 6 categories. Notably, our analysis revealed that GPUUsage andThird-party
Usage exhibited the lowest occurrence of issues within the ML context.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s10664-024-10467-3.

Acknowledgements The first author of this paper would like to acknowledge that the research activity is
funded by a postgraduate scholarship provided by the Applied Artificial Intelligence Institute (A2I2), Deakin
University, Melbourne Australia.

Funding Open Access funding enabled and organized by CAUL and its Member Institutions.

Data Availability The datasets generated during and/or analysed during the current study are available in the
https://github.com/DungLai/EMSE_dataset.

Declarations

Conflicts of interests The authors declare that there are no conflicts of interest to disclose in relation to this
research.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Akbarinasaji S, Caglayan B, Bener A (2018) Predicting bug-fixing time: A replication study using an open
source software project. J Syst Softw 136:173–186

Al-Zubaidi WHA, Dam HK, Ghose A, Li X (2017) Multi-objective search-based approach to estimate issue
resolution time. In: Proceedings of the 13th international conference on predictive models and data
analytics in software engineering, pp 53–62

Amershi S, Begel A, Bird C, DeLine R, Gall H, Kamar E, Nagappan N, Nushi B, Zimmermann T (2019) Soft-
ware engineering for machine learning: a case study. In: 2019 IEEE/ACM 41st International conference
on software engineering: software engineering in practice (ICSE-SEIP), IEEE, pp 291–300

Ardimento P, Boffoli N (2022) A supervised generative topic model to predict bug-fixing time on open source
software projects. In: ENASE, pp 233–240

123

https://doi.org/10.1007/s10664-024-10467-3
https://doi.org/10.1007/s10664-024-10467-3
https://github.com/DungLai/EMSE_dataset
http://creativecommons.org/licenses/by/4.0/

 60 Page 26 of 28 Empirical Software Engineering (2024) 29:60

Arya D,WangW, Guo JL, Cheng J (2019) Analysis and detection of information types of open source software
issue discussions. In: 2019 IEEE/ACM 41st International conference on software engineering (ICSE),
IEEE, pp 454–464

Baskaran A, Kautz EJ, Chowdhary A, Ma W, Yener B, Lewis DJ (2021) Adoption of image-driven machine
learning for microstructure characterization and materials design: A perspective. Jom 73:3639–3657

Bhattacharya P, Ulanova L, Neamtiu I, Koduru SC (2013) An empirical analysis of bug reports and bug
fixing in open source android apps. In: 2013 17th European conference on software maintenance and
reengineering, IEEE, pp 133–143

Bijlsma D, Ferreira MA, Luijten B, Visser J (2012) Faster issue resolution with higher technical quality of
software. Softw Qual J 20:265–285

Biswas S, Islam MJ, Huang Y, Rajan H (2019) Boa meets python: A boa dataset of data science software
in python language. In: 2019 IEEE/ACM 16th international conference on mining software repositories
(MSR), IEEE, pp 577–581

Braiek HB, Khomh F (2020) On testing machine learning programs. J Syst Softw 164:110542
Braiek HB, Khomh F, Adams B (2018) The open-closed principle of modernmachine learning frameworks. In:

Proceedings of the 15th international conference on mining software repositories, MSR 2018, Gothen-
burg, Sweden, May 28-29, 2018, ACM, pp 353–363. https://doi.org/10.1145/3196398.3196445

Chen J, Liang Y, Shen Q, Jiang J (2022) Toward understanding deep learning framework bugs.
arXiv:2203.04026

Chou A, Yang J, Chelf B, Hallem S, Engler D (2001) An empirical study of operating systems errors. In:
Proceedings of the eighteenth ACM symposium on Operating systems principles, pp 73–88

Cramér H (1999) Mathematical methods of statistics, vol 26. Princeton University Press
Cureton EE (1956) Rank-biserial correlation. Psychometrika 21(3):287–290
Davies S, Roper M (2014) What’s in a bug report? In: Proceedings of the 8th ACM/IEEE international

symposium on empirical software engineering and measurement, ESEM ’14. https://doi.org/10.1145/
2652524.2652541,

Du J, Ren X, Li H, Jiang F, Yu X (2022) Prediction of bug-fixing time based on distinguishable sequences
fusion in open source software. J Softw Evol Process e2443

El Asri I, Kerzazi N, Uddin G, Khomh F, Idrissi MJ (2019) An empirical study of sentiments in code reviews.
Inf Softw Technol 114:37–54

Galin D (2004) Software quality assurance: from theory to implementation. Pearson education
Gegick M, Rotella P, Xie T (2010) Identifying security bug reports via text mining: an industrial case study.

In: 2010 7th IEEE working conference on mining software repositories (MSR 2010), IEEE, pp 11–20
Ghanavati M, Costa D, Seboek J, Lo D, Andrzejak A (2020) Memory and resource leak defects and their

repairs in java projects. Empir Softw Eng 25(1):678–718
GonzalezD, ZimmermannT,NagappanN (2020) The state of theml-universe: 10 years of artificial intelligence

&machine learning software development on github. In: Proceedings of the 17th international conference
on mining software repositories, pp 431–442

Humbatova N, Jahangirova G, Bavota G, Riccio V, Stocco A, Tonella P (2020) Taxonomy of real faults in
deep learning systems. In: Proceedings of the ACM/IEEE 42nd international conference on software
engineering, pp 1110–1121

Islam MJ, Nguyen G, Pan R, Rajan H (2019) A comprehensive study on deep learning bug characteristics.
In: Proceedings of the 2019 27th ACM joint meeting on european software engineering conference and
symposium on the foundations of software engineering, pp 510–520

Janssen A, Bennis FC, Mathôt RA (2022) Adoption of machine learning in pharmacometrics: an overview of
recent implementations and their considerations. Pharmaceutics 14(9):1814

Jia L, Zhong H, Wang X, Huang L, Lu X (2020) An empirical study on bugs inside tensorflow. In: Database
systems for advanced applications: 25th international conference, DASFAA 2020, Jeju, South Korea,
September 24–27, 2020, Proceedings, Part I 25, Springer, pp 604–620

Kim M, Kim Y, Lee E (2021) Denchmark: a bug benchmark of deep learning-related software. In: 2021
IEEE/ACM 18th international conference on mining software repositories (MSR), IEEE, pp 540–544

Lai TD, Simmons A, Barnett S, Schneider JG, Vasa R (2022) Comparative analysis of real bugs in open-source
machine learning projects–a registered report. arXiv:2209.09932

Lal S, Sureka A (2012) Comparison of seven bug report types: A case-study of google chrome browser project.
In: 2012 19th Asia-Pacific software engineering conference, IEEE, vol 1, pp 517–526

Li Z, Tan L, Wang X, Lu S, Zhou Y, Zhai C (2006) Have things changed now? an empirical study of bug
characteristics in modern open source software. In: Proceedings of the 1st workshop on architectural and
system support for improving software dependability, pp 25–33

Light RJ (1971) Measures of response agreement for qualitative data: some generalizations and alternatives.
Psychol Bull 76(5):365

123

https://doi.org/10.1145/3196398.3196445
http://arxiv.org/abs/2203.04026
https://doi.org/10.1145/2652524.2652541
https://doi.org/10.1145/2652524.2652541
http://arxiv.org/abs/2209.09932

Empirical Software Engineering (2024) 29:60 Page 27 of 28 60

Liu C, Lu J, Li G, Yuan T, Li L, Tan F, Yang J, You L, Xue J (2021) Detecting tensorflow program bugs
in real-world industrial environment. In: 2021 36th IEEE/ACM International conference on automated
software engineering (ASE), IEEE, pp 55–66

Lourenço R, Freire J, Shasha D (2019) Debugging machine learning pipelines. In: Proceedings of the 3rd
International workshop on data management for end-to-end machine learning, pp 1–10

Lu J, Liu A, Dong F, Gu F, Gama J, Zhang G (2018) Learning under concept drift: A review. IEEE Trans
Knowl Data Eng 31(12):2346–2363

MacFarland TW, Yates JM, MacFarland TW, Yates JM (2016) Kruskal–wallis h-test for oneway analysis of
variance (anova) by ranks. Introduction to nonparametric statistics for the biological sciences using R,
pp 177–211

Mann HB, Whitney DR (1947) On a test of whether one of two random variables is stochastically larger than
the other. Ann Math Stat 50–60

McKnight PE, Najab J (2010) Mann-whitney u test. The Corsini encyclopedia of psychology, pp 1
Mehrabi N, Morstatter F, Saxena N, Lerman K, Galstyan A (2021) A survey on bias and fairness in machine

learning. ACM Comput Surv (CSUR) 54(6):1–35
Morovati MM, Nikanjam A, Khomh F, Jiang ZM (2023) Bugs in machine learning-based systems: a faultload

benchmark. Empir Softw Eng 28(3):62
Murgia A, Concas G, Tonelli R, Ortu M, Demeyer S, Marchesi M (2014) On the influence of maintenance

activity types on the issue resolution time. In: Proceedings of the 10th international conference on
predictive models in software engineering, pp 12–21

Nguyen Duc A, Cruzes DS, Ayala C, Conradi R (2011) Impact of stakeholder type and collaboration on issue
resolution time in oss projects. In: IFIP International conference on open source systems, Springer, pp
1–16

NikanjamA,BraiekHB,MorovatiMM,KhomhF (2021)Automatic fault detection for deep learning programs
using graph transformations. ACM Trans Softw Eng Methodol (TOSEM) 31(1):1–27

Parker B, Khan L (2015) Detecting and tracking concept class drift and emergence in non-stationary fast data
streams. In: Proceedings of the AAAI conference on artificial intelligence, vol 29

Rawindaran N, Jayal A, Prakash E (2021) Machine learning cybersecurity adoption in small and medium
enterprises in developed countries. Computers 10(11):150

Rule A, Tabard A, Hollan JD (2018) Exploration and explanation in Computational notebooks. Conference on
human factors in computing systems - proceedings 2018-April:1–12. https://doi.org/10.1145/3173574.
3173606

Sculley D, Holt G, Golovin D, Davydov E, Phillips T, Ebner D, Chaudhary V, Young M (2014) Machine
learning: The high interest credit card of technical debt. Softw Eng Mach Learn

Sculley D, Holt G, Golovin D, Davydov E, Phillips T, Ebner D, Chaudhary V, Young M, Crespo JF, Dennison
D (2015) Hidden technical debt in machine learning systems. Adv Neural Inf Process Syst 28:2503–2511

Seymoens T, Ongenae F, Jacobs A, Verstichel S, Ackaert A (2018) A methodology to involve domain experts
andmachine learning techniques in the design of human-centered algorithms. In: IFIPworking conference
on human work interaction design, Springer, pp 200–214

Shen Q, Ma H, Chen J, Tian Y, Cheung SC, Chen X (2021) A comprehensive study of deep learning compiler
bugs. In: Proceedings of the 29th ACM joint meeting on european software engineering conference and
symposium on the foundations of software engineering, pp 968–980

Shihab E, Kamei Y, Adams B, Hassan AE (2013) Is lines of code a good measure of effort in effort-aware
models? Inf Softw Technol 55(11):1981–1993

Simmons AJ, Barnett S, Rivera-Villicana J, Bajaj A, Vasa R (2020) A large-scale comparative analysis of
Coding Standard conformance in Open-Source Data Science projects. In: International symposium on
empirical software engineering and measurement. https://doi.org/10.1145/3382494.3410680

Sun X, Zhou T, Li G, Hu J, Yang H, Li B (2017) An empirical study on real bugs for machine learning
programs. In: 2017 24th Asia-Pacific software engineering conference (APSEC), IEEE, pp 348–357

Tambon F, Nikanjam A, An L, Khomh F, Antoniol G (2021a) Silent bugs in deep learning frameworks: An
empirical study of keras and tensorflow. arXiv:2112.13314

Tambon F, Nikanjam A, An L, Khomh F, Antoniol G (2021b) Silent bugs in deep learning frameworks: an
empirical study of keras and tensorflow. arXiv:2112.13314

Tan L, Liu C, Li Z, Wang X, Zhou Y, Zhai C (2014) Bug characteristics in open source software. Empir Softw
Eng 19(6):1665–1705

Thung F, Wang S, Lo D, Jiang L (2012) An empirical study of bugs in machine learning systems. In: 2012
IEEE 23rd international symposium on software reliability engineering, IEEE, pp 271–280

Vieira R, Mesquita D, Mattos CL, Britto R, Rocha L, Gomes J (2022) Bayesian analysis of bug-fixing time
using report data. In: Proceedings of the 16th ACM/IEEE international symposium on empirical software
engineering and measurement, pp 57–68

123

https://doi.org/10.1145/3173574.3173606
https://doi.org/10.1145/3173574.3173606
https://doi.org/10.1145/3382494.3410680
http://arxiv.org/abs/2112.13314
http://arxiv.org/abs/2112.13314

 60 Page 28 of 28 Empirical Software Engineering (2024) 29:60

Wan Z, Xia X, Lo D, Murphy GC (2019) How does machine learning change software development practices?
IEEE Trans Softw Eng 47(9):1857–1871

Wang S,Minku LL, YaoX (2018) A Systematic Study of Online Class Imbalance Learningwith Concept Drift.
IEEE Trans Neural Netw Learn Syst 29(10):4802–4821. https://doi.org/10.1109/TNNLS.2017.2771290

WardatM,LeW,RajanH (2021)Deeplocalize: fault localization for deep neural networks. In: 2021 IEEE/ACM
43rd international conference on software engineering (ICSE), IEEE, pp 251–262

WardatM, CruzBD, LeW,RajanH (2022)Deepdiagnosis: automatically diagnosing faults and recommending
actionable fixes in deep learning programs. In: 2022 IEEE/ACM44th international conference on software
engineering (ICSE), IEEE, pp 561–572

Xiang W, Musau P, Wild AA, Lopez DM, Hamilton N, Yang X, Rosenfeld J, Johnson TT (2018) Verification
for machine learning, autonomy, and neural networks survey. arXiv:1810.01989

YanM,Chen J, ZhangX, TanL,WangG,WangZ (2021) Exposing numerical bugs in deep learning via gradient
back-propagation. In: Proceedings of the 29th ACM joint meeting on european software engineering
conference and symposium on the foundations of software engineering, pp 627–638

Zhang R, Xiao W, Zhang H, Liu Y, Lin H, Yang M (2020) An empirical study on program failures of deep
learning jobs. In: 2020 IEEE/ACM 42nd international conference on software engineering (ICSE), IEEE,
pp 1159–1170

Zhang T, Gao C, Ma L, Lyu M, Kim M (2019) An empirical study of common challenges in developing deep
learning applications. In: 2019 IEEE 30th international symposium on software reliability engineering
(ISSRE), IEEE, pp 104–115

Zhang Y, Chen Y, Cheung SC, Xiong Y, Zhang L (2018) An empirical study on tensorflow program bugs. In:
Proceedings of the 27th ACM SIGSOFT international symposium on software testing and analysis, pp
129–140

Zhou L, Pan S, Wang J, Vasilakos AV (2017) Machine learning on big data: Opportunities and challenges.
Neurocomputing 237:350–361

Zhu W, Godfrey MW (2021) Mea culpa: How developers fix their own simple bugs differently from other
developers. In: 2021 IEEE/ACM 18th international conference on mining software repositories (MSR),
IEEE, pp 515–519

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Authors and Affiliations

Tuan Dung Lai1 · Anj Simmons1 · Scott Barnett1 · Jean-Guy Schneider2 ·
Rajesh Vasa1

Anj Simmons
a.simmons@deakin.edu.au

Scott Barnett
scott.barnett@deakin.edu.au

Jean-Guy Schneider
Jean-Guy.Schneider@monash.edu

Rajesh Vasa
rajesh.vasa@deakin.edu.au

1 Applied Artificial Intelligence Institute, Deakin University, Geelong, Australia
2 Faculty of Information Technology, Monash University, Clayton, Australia

123

https://doi.org/10.1109/TNNLS.2017.2771290
http://arxiv.org/abs/1810.01989
http://orcid.org/0000-0002-1358-3351
http://orcid.org/0000-0001-8402-2853
http://orcid.org/0000-0002-3187-4937
http://orcid.org/0000-0002-9827-5496
http://orcid.org/0000-0003-4805-1467

	Comparative analysis of real issues in open-source machine learning projects
	Abstract
	1 Introduction
	2 Background
	2.1 Definition of ML Issues
	2.2 Classification of ML Issues
	2.3 Challenges of ML in Issue Lifecycle
	2.4 Comparison of ML and Non-ML Systems

	3 Related Work
	4 Methodology
	4.1 Deviation from the Original Proposed Study Registered Report
	4.2 Data Collection
	4.2.1 Filter ML Projects
	4.2.2 Collect Issues and Pull Request
	4.2.3 Filter Issues with ML Keywords in Titles
	4.2.4 Collect Commits
	4.2.5 Filter Issues with Pull Requests that Contain ML Code
	4.2.6 Apply Revised Humbatova's Taxonomy
	4.2.7 Sample non-ML Issues
	4.2.8 Measuring Resolution Time and Size of Fix

	4.3 Data Analysis

	5 Results
	5.1 RQ1: What is the Frequency of ML Issue Categories in Open-source Applied ML Projects?
	5.2 RQ2. How Does the Distribution of ML and Non-ML Issues Compare in Terms of Resolution Time and Size of Fix?
	5.2.1 Comparing the Resolution Time of ML and Non-ML Issues
	5.2.2 Comparing the Size of Fix of ML and Non-ML Issues

	5.3 RQ3. How Does the Distribution of Different ML Issue Categories Compare in Terms of Resolution Time and Size of Fix?

	6 Discussion
	7 Threats to Validity
	7.1 Internal Validity
	7.2 External Validity
	7.3 Construct Validity

	8 Conclusion
	Acknowledgements
	References

