
Empirical Software Engineering (2024) 29:72
https://doi.org/10.1007/s10664-024-10458-4

Two is better than one: digital siblings to improve
autonomous driving testing

Matteo Biagiola1 · Andrea Stocco2,3 · Vincenzo Riccio4 · Paolo Tonella1

Accepted: 7 February 2024
© The Author(s) 2024

Abstract
Simulation-based testing represents an important step to ensure the reliability of autonomous
driving software. In practice, when companies rely on third-party general-purpose simu-
lators, either for in-house or outsourced testing, the generalizability of testing results to
real autonomous vehicles is at stake. In this paper, we enhance simulation-based testing
by introducing the notion of digital siblings—a multi-simulator approach that tests a given
autonomous vehicle onmultiple general-purpose simulators built with different technologies,
that operate collectively as an ensemble in the testing process.We exemplify our approach on
a case study focused on testing the lane-keeping component of an autonomous vehicle. We
use two open-source simulators as digital siblings, and we empirically compare such a multi-
simulator approach against a digital twin of a physical scaled autonomous vehicle on a large
set of test cases. Our approach requires generating and running test cases for each individual
simulator, in the form of sequences of road points. Then, test cases are migrated between sim-
ulators, using feature maps to characterize the exercised driving conditions. Finally, the joint
predicted failure probability is computed, and a failure is reported only in cases of agreement
among the siblings. Our empirical evaluation shows that the ensemble failure predictor by
the digital siblings is superior to each individual simulator at predicting the failures of the
digital twin. We discuss the findings of our case study and detail how our approach can help
researchers interested in automated testing of autonomous driving software.

Communicated by: Bibi Stamatia, Bowen Xu, Xiaofei Xie and Maxime Cordy

B Matteo Biagiola
matteo.biagiola@usi.ch

Andrea Stocco
andrea.stocco@tum.de ; stocco@fortiss.org

Vincenzo Riccio
vincenzo.riccio@uniud.it

Paolo Tonella
paolo.tonella@usi.ch

1 Università della Svizzera italiana (USI), Via Buffi, 13, Lugano, Switzerland

2 Technical University of Munich, Boltzmannstraße 3 Garching near Munich, Munich, Germany

3 fortiss GmbH, Guerickestraße 25, Munich, Germany

4 Università degli Studi di Udine, Via Gemona 92, Udine, Italy

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-024-10458-4&domain=pdf
http://orcid.org/0000-0002-7825-3409

 72 Page 2 of 33 Empirical Software Engineering (2024) 29:72

Keywords AI testing · Self-driving cars · Simulation-based testing · Digital twins · Deep
neural networks · Autonomous vehicles.

1 Introduction

Thedevelopment of autonomous vehicles (AVs) has received great attention in the last decade.
As of 2020, more than $150 billions have been invested in AVs, a sum that is expected to
double in the near future (Boutan 2020). AVs typically integrate multiple advanced driver-
assistance systems (e.g., for adaptive cruise control, parking assistance, and lane-keeping)
into a unified control unit, using a perception-plan-execution strategy (Yurtsever et al. 2020).
Advanced driver-assistance systems based on Deep Neural Networks (DNNs) are trained on
labeled input-output samples of real-world driving data provided by the vehicle sensory to
learn human-like driving actions (Grigorescu et al. 2020).

Before deployment on public roads, AVs are thoroughly tested in the field, on private test
tracks (BGR Media 2018; Borg et al. 2021; Cerf 2018; Stocco et al. 2022). While essential
for fully assessing the dependability of AVs on the road, field testing has known limitations in
terms of cost, safety and adequacy (Stocco et al. 2022). To overcome these limitations, driving
simulators are used to generate several real-life edge case scenarios that are unlikely to be
experienced during field testing, or that are dangerous to reproduce for human operators (Borg
et al. 2021; Koopman andWagner 2016). Simulation-based testing represents a consolidated
testing practice, being more affordable than field testing, yet capable of exposing many bugs
before deployment (BGR Media 2018; Borg et al. 2021; Cerf 2018; Stocco et al. 2022).

In this paper, we distinguish two main categories of driving simulators, namely digital
twins (DTs) and general-purpose simulators (GPSims). DTs provide a software replica of
specific real vehicles, that are digitally recreated in terms of appearance, aerodynamics, and
physical interactions with the environment (Borg et al. 2021). In the context of mixed-reality
testing approaches (Tang et al. 2022; U.S. Department of Transportation 2018), such as
Hardware-in-the-Loop and Vehicle-in-the-Loop, the digital twin is connected to physical AV
components to further increase the degree of fidelity. In this paper, we consider simulation-
based testing where the digital twin is a software replica of a specific real vehicle. Developing
a DT is expensive (Kothlow 2021; van Dinter et al. 2022) and can take up to five years (Infin-
ity Simulator 2022). Hence, it remains an exclusive prerogative of big companies such as
Uber (Waabi World (2022)), Waymo (Simulation City (2021)) or Wayve (Infinity Simulator
(2022)). GPSim are generally designed without the need to faithfully reproduce a specific
vehicle or testing scenario, as they rather offer generic APIs to run one or more AVs on vir-
tual road tracks. GPSim such as Siemens PreScan (Software 2022) or ESI Pro-SiVIC (Group
2021) offer a more affordable alternative to the expensive DT development, and are widely
used for outsourcing testing tasks to third-party companies (May 2019), for which access to,
or customizations of the original DT are not feasible for each individual vehicle (Hu et al.
2023).

Despite affordability, GPSim can be affected by a fidelity and reality gap, when the sim-
ulated experience does not successfully transfer from the GPSim to the reference DT and
eventually to the real AV (Hu et al. 2023). These discrepancies can lead to a distrust in
simulation-based testing, as reported by recent surveys (Afzal et al. 2021; García et al. 2020;
Hu et al. 2023; Tang et al. 2022). While comparative works of GPSim exist in the litera-
ture (Kaur et al. 2021; Rosique et al. 2019), cross-simulator testing for AVs is a relatively
unexplored avenue for research. Only a recent study (Borg et al. 2021) investigates the use

123

Empirical Software Engineering (2024) 29:72 Page 3 of 33 72

of multiple GPSim for testing a pedestrian vision detection system. The study compares a
large set of test scenarios on both PreScan (Software 2022) and Pro-SiVIC (Group 2021) and
reports inconsistent results in terms of safety violations and behaviors across these simula-
tors. Consequently, using a single-simulator approach for AV testing might be unreliable, as
the testing results are highly dependent on the chosen GPSim.

In this paper, we target the fidelity gap between GPSim and DT by proposing a multi-
simulator approach for AV testing called digital siblings (DSS). Our approach involves
automated test generation and a novel cross-simulator feature map analysis that combines
the outcome of several simulator-specific test generators into a unified view. We use DSS as
a surrogate model of the behavior of a DT. Our intuition is that agreement among multiple
GPSimwill increase the confidence in observing the same behavior in DT. On the other hand,
in the presence of disagreements, DSS can mitigate or even eliminate the risk of choosing
the worst GPSim, which would give poor simulation testing results.

In detail, our case study consists in the automatic generation of test cases, i.e., sequences
of road points determining the roads where the AV drives, to test the lane-keeping component
of an AV. We then use feature maps to characterize both the structure of such test cases, and
the behaviors of the AV in each of them, to group failures by similarity, and to avoid reporting
the same failures repeatedly. To account for the specificities of each GPSim, we execute test
generation separately for each sibling. Then, we migrate the tests generated for one sibling
to the other sibling. Finally, we merge failing and non failing executions based on similarity
of features and estimate the overall joint failure probability.

In our case study we use DSS to test three state-of-the-art DNN lane-keeping models, i.e.,
Nvidia Dave-2 Bojarski et al. (2016); Chauffeur (2016), and Epoch (2016) (the last two were
developed by the respective teams in the Udacity challenge competition (Udacity challenge
2020)). We consider as siblings two open-source simulators, namely Udacity (2019) and
BeamNG (2022), widely used in previous studies to test lane-keeping software (Gambi et al.
2019; Jahangirova et al. 2021; Riccio and Tonella 2020; Stocco et al. 2020; Zohdinasab et al.
2021). As DT, we adopt an open-source framework (Tawn Kramer 2022) used in previous
research (Stocco et al. 2022; Tang et al. 2022; Verma et al. 2021; Viitala et al. 2020; Zhou
et al. 2021) featuring a virtual replica of a 1:16 scale electric AV. We evaluate DSS with both
offline and online testing (Haq et al. 2021), i.e., the lane-keeping models are tested both w.r.t.
the accuracy of its predictions on labeled individual inputs, and at the system-level for their
capability to control the vehicle on several hundreds automatically-generated roads.

Our empirical evaluation shows that, at the model-level, the distribution of prediction
errors of DSS is statistically indistinguishable from that of the DT. Overall, at the system-
level, the failure probability of DSS highly correlates with the true failure probability of
the DT. More notably, the quality of driving measured in DSS can predict the true failure
probability of theDT,which suggests thatwe can use the digital siblings to possibly anticipate
the failures of the lane-keeping component of the real-world AV more reliably than with a
single GPSim. A practical implication of our findings for software engineers is the usage
of digital siblings when testing DNN-based lane-keeping software, to increase the level of
fidelity of the observed behaviors and failures. The same recommendation holds for AV
testing researchers.

Our paper makes the following contributions:

– Digital Siblings. A novel approach for testing DNN-based lane-keeping software that
generates road scenarios in multiple general-purpose simulators, and combines their
testing outcomes to approximate a digital twin. This is the first solution that leverages a
multi-simulator approach to overcome the simulation fidelity gap.

123

 72 Page 4 of 33 Empirical Software Engineering (2024) 29:72

– Evaluation.Anempirical study showing that the digital siblings are effective at predicting
the failures of the AV under test in the digital twin for a physical scaled vehicle in the
lane-keeping task.

2 Motivation and Background

In this section, we provide additional motivation for our approach, andwe briefly describe the
main concepts to understand the rest of the paper. In particular, we discuss the lane-keeping
functionality of an AV, and we introduce evolutionary search as a tool to generate challenging
test scenarios for AVs.

2.1 Motivation

In practice, test engineers use simulation platforms for testing early releases of their
autonomous driving software, prior to real-world physical testing. The gap between simulated
and real-world test outcomes hinders trustworthiness in the testing process. Thus, effortsmust
be made to provide evidence that simulation-based testing campaigns can expose real-world
AV failures.

In an ideal scenario, the chosen simulation platform is able to accurately replicate the
physics of the AV under test. Such high-fidelity digital twins are used by automotive com-
panies as a proxy for their physical AVs. Under this assumption, the high-fidelity digital
twin allows to safely carry out a testing campaign while saving costs and, at the same time,
improving the robustness of the software.

However, high-fidelity digital twins are costly to develop and maintain, and not all man-
ufacturers can afford them (those who can are not keen to disclose their high-fidelity digital
twins, as these are valuable assets that give them a competitive advantage). Moreover, AV
manufacturers outsource most of the testing processes to small/medium companies and such
high-fidelity digital twins are not available to them. These companies adopt GPSims as a
low-cost alternative for simulation-based testing of AVs.

The goal of our approach is to increase the reliability of simulation-based testing of
AVs, specifically targeting environments that adopt general purpose simulators that are not
designed to represent a specific AV, but rather focus on high-level scenario-based testing. To
mitigate this design limitation, we propose a testing methodology employing an ensemble of
GPSims. This approach involves aggregating the outcomes of multiple GPSims to mitigate
the risks associated with simulator flakiness or representativeness. We combine multiple
relatively low-cost simulators to obtain reliable test results as if we used a very costly dataset
from the real operation or a high-cost simulator such as a high-fidelity digital twin. Our
approach is particularly beneficial when these GPSims exhibit complementary behaviors,
allowing them to compensate for each other’s weaknesses while combining their strengths.
Our research hypothesis is that the combination of complementary GPSims provides a more
reliable estimation of testing outcomes than the usage of a single GPSim. In this paper, we
present the initial findings supporting this hypothesis, exploring and evaluating one practical
implementation of our approach using widely accessible open-source simulation platforms.

We instantiate our approach for testing the lane-keeping component of anAV, implemented
with a DNN. The test cases are sequences of road points, which determine the two-lane
roads where the AV is supposed to drive autonomously. To assess the benefits of our multi-
simulator approach (i.e., DSS), we use the digital twin (DT) of a physical 1:16 scale electric

123

Empirical Software Engineering (2024) 29:72 Page 5 of 33 72

AV (Tawn Kramer 2022), as a surrogate for the real-world AV behaviors. Indeed, we assume
having access only to multiple GPSims as, in practice, a DT is often unavailable. In our
evaluation, we validate our hypothesis by comparing the extent to which both DSS and each
individual sibling can predict the failures of the DNN lane-keeping component in DT, thus
quantifying the reliability of testing.

2.2 Background

2.2.1 Lane-keeping

This paper focuses on testing AVs that perform the lane-keeping functionality from driving
samples labeled by humans. Lane-keeping, also called lane-centering or lane-following, is
an automated driving assistance feature of an AV to keep the vehicle at the center of the
lane. This system can be implemented at different levels, from a warning to the driver when
the vehicle crosses one of the lanes up to the driverless version, which steers the vehicle
automatically when it detects a departure from the center of the lane.

In this paper we consider the driverless version since it is a crucial component for the
safe deployment of AVs on public roads. Indeed, according to a report by NHTSA (2007),
off-road crashes due to failures of the lane-keeping component are first in cost ($15 billion)
and second in frequency. From a technical standpoint, the lane-keeping task is implemented
by behavior cloning DNNs, which learn end-to-end from supervised expert demonstrations.
The training dataset consists of driving images captured with a camera sensor mounted on
board of the vehicle, appropriately labeled with the driving commands of a human driver.

We consider lane-keeping DNNmodels, such as NVIDIA’s Dave-2 Bojarski et al. (2016),
that predict the steering angle at which the car should steer to keep the vehicle in lane,
given a single driving image. These models are generally trained with stochastic gradient
descent (Saad 1998) on stationary datasets, with the goal of minimizing the error between
the predicted and the ground-truth steering angles.

Such labels are typically an array of commands, i.e., steering, throttle and brake, although
in the simplest case only the steering is provided, while the throttle is determined as a function
of the steering and the velocity of the vehicle. Given the dataset, a DNN model, such as the
Dave-2 model from Nvidia Bojarski et al. (2016), is trained to predict the label given an
image by minimizing the Mean Squared Error (MSE) between the current prediction and the
ground-truth label.

2.2.2 Evolutionary Search

Evolutionary or metaheuristic search is a class of techniques that apply randomness and
heuristics to find near-optimal solutions to optimization problems Luke (2013). Such tech-
niques are very general, since they only require evaluating how good a candidate solution
is. The goodness of a solution is called fitness and the objective of the search algorithm is
to optimize it (either maximize it or minimize it). The algorithm manipulates a solution to
exploit the known parts of the search space, and creates new solutions to explore the parts
that are unknown.

Search algorithms have been applied to testing problems and have been particularly effec-
tive tools for test generation (Fraser and Arcuri 2012; Panichella et al. 2017; Lukasczyk
et al. 2020). In this paper, we use the MapElites search algorithm (Mouret and Clune 2015),
implemented in the DeepHyperion tool (Zohdinasab et al. 2021), to generate test cases for

123

 72 Page 6 of 33 Empirical Software Engineering (2024) 29:72

the DNN model under test. The algorithm explores the solution feature space at large, in
order to provide a comprehensive characterization of the behaviors of the driving model.

3 Multi-simulator AV Testing with Digital Siblings

The goal of our approach is to use digital siblings to test the DNN-based lane-keeping
component of an AV, by generating a large set of road scenarios. Our approach takes as input
a DNN lane-keeping model M , and uses an existing road generator to test its behavior, by
generating roads for multiple driving simulators. The key intuition is that multiple GPSims
can better approximate the driving behavior of the AV executed in DT, which we use as a
proxy for the behavior of the real-world AV, as opposed to a single-simulator approach.

Our approach supports an arbitrary number of digital siblings. For simplicity of exposition,
engineering effort, and evaluation, we describe and experiment it using two simulators.
However, we present the most important steps of our approach, i.e., migration (step ❸) and
merge (step ❹), in a generic manner that accommodates any number of siblings.

Figure 1 (top) shows an overview of our approach in which two digital siblings, namely
DS1 andDS2, are used to test the behavior of a drivingmodel under testM , i.e., an end-to-end
DNN for lane-keeping. In the first phase, M is either trained or fine-tuned (step ❶) to run
on both DS1 and DS2, as well as on the target platform (i.e., DT). A test generation phase
(step ❷) is executed for each digital sibling, generating road scenarios for each simulator and
producing two featuremaps FMDS1 and FMDS2 . Featuremaps group together test caseswith
similar feature combination values, to reduce redundancy and summarize the AV behaviors in
unique feature combination (Zohdinasab et al. 2021, 2022). The value in a feature map cell,
displayed in a colored heat scale, represents the average test case outcome, i.e., the behavioral

Fig. 1 Overview of our multi-simulator approach and its usage

123

Empirical Software Engineering (2024) 29:72 Page 7 of 33 72

information about the execution of M in each test scenario (e.g., the failure probability). For
each simulator, the test generation algorithm produces test scenarios that are executed to
assess the behavior of the driving model M under many different circumstances. Hence, the
output of test generation is simulator and model dependent and the feature maps of DS1
(FMDS1) and DS2 (FMDS2) can be different.

The next step of our approach (step❸) requires tomigrate the test cases across simulators.
In detail, the test cases in FMDS1 are executed on DS2, resulting in the feature map FMDS1 .
Similarly, the test cases in FMDS2 are executed on DS1, resulting in the feature map FMDS2 .
Then, for both DS1 and DS2, we compute the union of the two feature maps, obtaining FMU1

for DS1 and FMU2 for DS2. Both maps contain the same set of test cases, although executed
on two different simulators. The final output of the digital siblings (step ❹) is obtained by
merging FMU1 and FMU2 into the final feature map FMDSS .

Step ❺ assesses the correlation of the FMDSS map with the FMDT map, to evaluate
the predictive capability of the digital siblings. Figure 1 (bottom) shows an overview of the
evaluation of our approach (detailed later, in Section 4). All the test cases in the final feature
map FMDSS are executed (i.e., migrated) on the DT, to obtain the ground truth feature map
FMDT .

3.1 Test Scenarios

3.1.1 Representation

We adopted an abstract representation of the road in each driving simulator so that only a
sequence of road control points is needed when creating a new road in the driving scene.
We follow the representation given by Riccio and Tonella (2020) who defined a two-lane
road using a series of control points (displayed as red stars in Fig. 2). The control points are
interpolated using Catmull-Rom splines (Barry and Goldman 1988), giving the road its final
shape (yellow solid line).

Figure 2 shows the visualization of a test scenario generated at step ❷. Specifically, the
road is defined using nine control points whereas the Catmull-Rom spline only goes through
seven of them. This is because a spline segment (e.g., P2 − P3) is always defined by four
control points (e.g., P1, P2, P3, P4). Since two of them are on either side of the endpoints
of the spline segment (e.g., P1 and P4), the spline cannot traverse the extreme endpoints
(e.g., P1 and P9). Hence, P2 defines the start point of the road (depicted as a black triangle)
whereas P8 defines the end point (depicted as a black square).

Fig. 2 Example of test scenario for a lane-keeping autonomous driving system

123

 72 Page 8 of 33 Empirical Software Engineering (2024) 29:72

3.1.2 Implementation

The default initial state of each test case involves positioning the vehicle in the first drivable
control point (i.e., P2 in Fig. 2), at the center of the right lane following the road orientation.

We uniformed the 3D rendering of each simulator such that the driving scenarios have
the same look and feel: a two-lane asphalt road, where the road is delimited by two solid
white lines on each side and the two driving lanes are separated by a single solid yellow
line. The road is placed on top of a green plane representing grass. Harmonization of the
driving scenarios across simulators ensures that geometrical features are preserved for the
collected driving images and that any color transformation applied to them during training
preprocessing remains applicable (Bojarski et al. 2016).

3.1.3 Validity and Oracle

After interpolation, a road is deemed valid if it respects the following constraints: (1) the
start and end points are different; (2) the road is contained within a squared bounding box
of a predefined size (specifically 250 × 250); and, (3) there are no intersections. A test case
is deemed successful when the vehicle drives within the right lane until the last road control
point (e.g., P8 in Fig. 2). On the contrary, a test case failure occurs when the vehicle drives
out of bound (OOB).

3.2 Creating/Fine-Tuning the DrivingModel

3.2.1 Data Collection

For the creation or fine-tuning of a self-driving model (step ❶), a labeled dataset of driving
scenes is needed. We automate labeled data collection by resorting to autopilots that have
global knowledge of the driving scenario such as the detailed road geometry and precise vehi-
cle position. In particular, in each simulator, at each step of the simulation, the steering angle
of the autopilot is computed by a Proportional-Integral-Differential (PID) controller (Farag
2020) according to the formula:

steering = KP · LP + KD · diffLP + KI · totalLP (1)

where LP stands for lateral position (Stocco and Tonella 2020) (in particular, the lateral
position is zero when the vehicle drives at the center of the lane). Equation (1) states that
the proportional constant KP acts on the raw error while the derivative constant KD controls
the difference between two consecutive errors and the integral constant KI considers the
total sum of the errors during the whole simulation until the current timestep. Finally, the
steering value is clipped in the interval [−1,+1], where −1 means steering all the way to
the left and +1 to the right (0 means the vehicle goes straight as no steering is applied). The
steering values are normalized in order to account for the different simulators that we use in
our approach.

The autopilot produces a steering angle label for each image which is used to train the
driving model. We aligned the frame rates of the different simulators at 20 fps such that, in
each simulator, the autopilot collects a comparable number of labeled images. The speed of
the vehicle, both for the autopilot andM , is controlled by the throttle via a linear interpolation
between the minimum speed and maximum speed so that the car decreases the speed when

123

Empirical Software Engineering (2024) 29:72 Page 9 of 33 72

the steering angle increases (e.g., in a curve). The following formula computes the throttle
based on the speed of the vehicle and the steering:

throttle = 1 − steering2 −
(speed

K

)2
(2)

where K is set to a predefined low value L when the measured speed is greater than a given
maximum speed threshold, to enforce strong deceleration; viceversa, K is set to a high value
H when the measured speed is lower than or equal to the maximum speed threshold, to
reduce the deceleration component. From (2), we can see that the throttle is close to 1 (the
highest possible value) when the vehicle does not steer (steering = 0) and the speed is
substantially lower than the maximum allowed speed (in this case, K = H); when one of
the two conditions is false the throttle decreases, because of either deceleration component.
Similarly to the steering angle values, we clip the throttle value in the interval [0, 1].

3.2.2 Model Fine-Tuning via Hybrid Training

The next step involves training the model M using all simulators and the data collected
in step ❶. Alternatively, if an existing trained model M is available for the target DT, our
approach requires fine-tuning it for all digital siblings. In both scenarios, we use hybrid
training based on gradient descent (Bottou and Bousquet 2007).

Hybrid training requires combining the datasets collected for different simulators/platforms
into a unified dataset, making sure that each dataset is equally represented (i.e., the unified
dataset contains the same number of samples from each simulator/platform specific dataset).
Then, the unified dataset is split into training and validation sets (e.g., using the standard
80/20 ratio). The training pipeline is designed in such a way that each image, of dimensions
320×160, is processed according to the simulator/platform it was taken from. For example,
images may be cropped differently. Depending on the vehicle size, the front part of the car
may, ormay not be visible in the frame captured by the camera.Another example of simulator-
specific adaptation is the cropping of the above-horizon portion of the image, unnecessary for
the lane-keeping task. After cropping, each image is resized to the size required for training,
i.e., 320×160.

The training pipeline can be further configured to use plain synthetic virtual images from
the driving simulators, or pseudo-real images resembling real-world driving images. The first
configuration represents the standard practice in AV testing. In the second configuration, the
reality gap due to low photo-realism is reduced by an image-to-image transformation that
translates the driving images of each simulator into images similar to those captured by the
real-world AV during on-road driving. This practice was proposed in the literature (Stocco
et al. 2022) and in industry (Bewley et al. 2019) to increase the transferability of the driving
model tested in simulation to the real world.

More specifically, this second configuration requires training a CycleGAN model for
each driving simulator (Zhu et al. 2017). CycleGAN entails two generators, one that learns
how to translate images from simulated to real world (sim2real) and the other that learns
the opposite transformation (real2sim). During training of the model, we use the sim2real
generator trained for the respective simulator to translate the corresponding training set
images. During testing, the sim2real generator translates images at runtime, i.e., during the
execution of the simulation. We refer to the translated images as pseudo-real, since they are
the output of a generative process designed to resemble real images.

Figure 3 shows an example of image translation with a CycleGAN trained for each simu-
lator. The corresponding networks translate an image of a road curve taken in the simulated

123

 72 Page 10 of 33 Empirical Software Engineering (2024) 29:72

Fig. 3 Example of CycleGAN translation for the three simulators

domain (left) to an image belonging to the real domain (right)—the test track of a small scale
physical AV. During training and testing of the driving model in a given simulator, we use
the generator of the CycleGAN trained for such simulator.

In our evaluation (Section 4),we consider both configurations of our approach, i.e., training
using either simulator or pseudo-real images. We refer to the model trained on simulator
images as MS , and the model trained on pseudo-real images as MR .

3.3 Test Generation

While our approach is compatible with any test generation algorithm, in this paper we adopt
the MapElites (Mouret and Clune 2015) algorithm implemented in DeepHyperion Zohdi-
nasab et al. (2021), because the output of DeepHyperion is projected to a feature map that
characterizes each generated test scenario according to its features. In other words, test cases
having equivalent features (e.g., 3 turns and maximum curvature of 0.2) are grouped into the
same cell of the feature map.

Figure 4 shows an example of featuremap generated byDeepHyperion. The roads (i.e., the
test cases) in the map are characterized by two structural features, i.e., the number of turns in
the road (x axis) and the curvatureof the road (y axis), the latter defined as theminimumradius
of the circles going through each sequence of three consecutive road points (Zohdinasab et al.

Fig. 4 Example of feature map by DeepHyperion. The two axes represent structural features of the generated
roads (i.e., curvature and number of bends)

123

Empirical Software Engineering (2024) 29:72 Page 11 of 33 72

Algorithm 1 DeepHyperion algorithm
Input : M , DNN model under test;

S, Simulator instance;
Ps , Population size;
N , Number of iterations.

Output: Fm , feature map.
1 M ← initFeatureMap()
2 pop ← ∅
3 /* Generate Initial Population */
4 while i ≤ Ps do
5 tc ← generateIndividual()
6 f ← executeIndividual(tc , M , S)
7 placeIndividualMap(Fm , f , tc)
8 pop ← pop ∪ {tc}
9 end

10 /* Evolve Individuals */
11 while i ≤ N do
12 tc ← selectIndividual(pop)
13 t̂c ← mutateIndividual(tc)
14 f ← executeIndividual(t̂c , M , S)
15 placeIndividualMap(Fm , f , t̂c)
16 end
17 return Fm

2021). Such features have been used in previous work and have been shown to be effective at
characterizing the search space of road generators (Zohdinasab et al. 2021). Characterizing a
test case based on its structural features, i.e., only based on the properties of the road, allows
us to identify unique failure scenarios, i.e., failure scenarios with distinctive road properties.

During test generation, the test cases are distributed in the map according to their features.
The value of each cell is influenced by the behavior ofM when driving on the roads pertaining
to a cell. The minimum lateral distance recorded by the simulator is used by DeepHyperion
as a fitness of the generated test case. The lateral distance is the opposite of the lateral position,
i.e., it has the highest valuewhen the vehicle drives at the center of the lane, and it decreases as
the vehicle approaches the roadside. In particular, it is negative when the model misbehaves
(i.e., the vehicle goes out of bound). In Fig. 4 the two dashed-encircled cells point out two
failure cells for M (i.e., cells containing roads with negative fitness).

Algorithm 1 shows the pseudocode of the DeepHyperion algorithm. It takes as input
the driving model under test M , the simulator instance S and two hyperparameters, i.e.,
the population size Ps and the number of iterations N the search is allowed to run, i.e.,
the budget of the algorithm. The algorithm starts by initializing an empty feature map and
population (Lines 1–2). Then, the while loop at Lines 4–9 fills the initial population by
randomly generating an individual (Line 5) and executing it to collect its fitness value f
(Line 6).

The assignment to the feature map (Line 7) is done by the procedure placeIndivid-
ualMap based on the feature values of the individual tc (to determine the coordinates of the
target cell) and its fitness value. If the target cell is empty, the individual is placed in the cell.
If the cell is non-empty (i.e., another test case was already generated for that cell), a local
competition based on the value of the fitness takes place. If the fitness of the individual in
the cell is greater than the fitness of the candidate individual, the individual in the cell gets
replaced with the candidate individual. Otherwise, no replacement is carried out, which also

123

 72 Page 12 of 33 Empirical Software Engineering (2024) 29:72

holds if the individual in the cell already has a negative fitness. The selection function ensures
that the search space of the features is explored at large, while the local competition on the
individual cells keeps only the lowest performing individuals (i.e., potential misbheaviours)
at the end of the generation in order to guide the search towards misbehaviors with unique
feature values.

The while loop at Lines 11–16 evolves the initial population of individuals. First, an
individual is selected (Line 12) and mutated (Line 13), i.e., the control points of the road are
changed in order to form a new individual t̂c with different features. Such individual is then
executed (Line 14) and placed in the map (Line 15). The algorithm terminates after a number
N of iterations (Line 16).

Algorithm 1 returns a feature map with a single individual for each cell, i.e., the one with
the lowest fitness (Line 17). In order to further explore the search space, we run DeepHy-
perion multiple times for each digital sibling to generate multiple feature maps. Then, we
combine such maps by considering the bounds of each feature map axis in all the runs (i.e.,
minimum and maximum value), and place each generated individual in the combined map,
whose bounds are the lowest (resp. highest) bound values across maps. In this way, there
are potentially multiple individuals in each cell, and the value of a cell represents the metric
of interest averaged over all individuals in that cell (see FMDS1 and FMDS2 in Fig. 1). For
instance, considering the failure probability, the value of a cell represents the number of times
the model under test failed over the number of all individuals in the cell (a failure occurs
when the fitness of an individual is negative).

3.4 Migration and Union

The test generation step produces two feature maps FMDS1 and FMDS2 , for DS1 and DS2,
respectively (in general, N feature maps, i.e., FMDS1 , …, FMDSN). The next step of our
approach (i.e., step ❸, see Fig. 1) consists of migrating the test cases in FMDS1 to DS2
(producing FMDS1) and viceversa (producing FMDS2). In general, migrating the test cases
in FMDSi (with i = 1, . . . , N) to DS j (with j �= i), would produce FMDSi j . For instance,

if N = 3, migrating the test cases in FMDS2 to the other siblings, would produce FMDS21
when migrating to DS1, and FMDS23 when migrating to DS3. Such operation consists of
instantiating the abstract (control point based) road representation of the test case being
migrated, such that it respects the dimensionality constraints, and it can be supplied as input
to the target simulator.

After migration, for both DS1 and DS2 (in general, DS1, …, DSN), we consider the union
of their maps. We consider the bounds of each feature in the two maps, and we place the
respective test cases in a new unified map according to their coordinates, producing the map
FMU1 for DS1 (i.e., FMDS1 +FMDS2) and themap FMU2 for DS2 (i.e., FMDS2 +FMDS1).
In general, FMUi = FMDSi + ∑

j �=i FMDSji . For instance, if N = 3, FMU2 = FMDS2 +
(FMDS12 + FMDS32). Hence, the two maps, or N maps in general, contain the same tests
that fill the same cells at the same coordinates.

The value of each cell in the unionmaps FMU1 , FMU2 is recomputed from the individuals
assigned to them. For the failure probability, if a given cell in FMDS1 has n1/N1 failing
individuals, while the corresponding cell in FMDS2 has n2/N2 failing individuals, the failure
probability value of the cell in the union map FMU1 will be (n1+n2)/(N1+N2). In general,
for a given cell in FMUi , the failure probability is computed as (n1+· · ·+ni +. . . nN)/(N1+
· · · + Ni + · · · + NN). When a quality of driving metric is computed instead of a failure
probability, the union map contains the average of the respective quality of driving metrics:

123

Empirical Software Engineering (2024) 29:72 Page 13 of 33 72

qm = (qm1 +qm2)/2, where qm1, qm2 are the quality of driving metrics found in the same
cell in the two feature maps being united (FMDS1 , FMDS2 , or FMS2 , FMS1), while qm is
the resulting quality of driving metric, in the union map (FMU1 or FMU2). In general, for a
given cell in FMUi , the quality metric is computed as (qm1 + · · · + qmi + . . . qmN)/N .

3.5 Merge

The final step of the approach (i.e., step ❹ in Fig. 1) requires to merge the two union maps
FMU1 and FMU2 into FMDSS (in general, N union maps FMU1 , …, FMUN). The objective
of the merge operation is to combine the testing output of the two digital siblings. Since
we aim to use the digital siblings to approximate the behavior of M on DT and predict
its failures, the merge operator privileges agreements between the maps of the two digital
siblings, i.e., only cells in the maps that have a hot color (e.g., a high failure probability) will
produce a hot color in the merged cell. Indeed, such tests are likely to represent simulator-
independent misbehaviors of the model under test, which are critical for the safety of the
system. Specifically, if the failure probability of FMU1 is f p1 = n1/N1 and that of FMU2 is
f p2 = n2/N2, in themergedmap the failure probability will be the product, f p = f p1× f p2
(in general, the failure probability of a given cell inDSSwouldbe f p = f p1×· · ·× f pi×· · ·×
f pN). When a quality of driving (resp. lack of quality of driving) metric is computed instead
of a failure probability, the merged map will conservatively contain the maximum (resp.
minimum) of the respective quality of driving metrics. In particular, qm = max{qm1, qm2}
(resp. qm = min{qm1, qm2}), where qm1, qm2 are the quality of driving metrics found in
the same cell in FMU1 and FMU2 respectively, while qm is the resulting quality of driving
metric in the merged map. In general, the quality metric of a given cell in DSS would be
qm = max{qm1, . . . , qmi , . . . , qmN }, and the lack of quality of driving of a given cell
would be qm = min{qm1, . . . , qmi , . . . , qmN }. By giving priority to failures (resp. quality
of driving degradations) that occur in both siblings and are hence very likely to be relevant for
the target platform, this choice better accommodates the limited testing budget available for
production/field testing (BGR Media 2018; Borg et al. 2021; Cerf 2018; May 2019; Stocco
et al. 2022).

3.6 Evaluation Scenario

While our approach assumes that DT is not available in practice, to evaluate whether the DSS
can approximate the behavior of M and predict its failures when executed on DT, we migrate
all the tests in the digital siblings feature map (i.e., FMDSS) to an actual DT, which is used
to obtain the ground truth map FMDT (see “Evaluation Scenario” in Fig. 1 (bottom)). The
two maps being compared contain the same tests in the same cells, but the values of the cells
might differ, depending on the behavior of M in the different simulators. Thus, we analyze
and compare the two feature maps FMDSS and FMDT , to assess the capability of DSS at
predicting the failures of the model when executed on DT.

4 Case Study

The goal of the empirical study is to evaluate whether two digital siblings (DSS) can better
approximate the behavior of a driving model and predict its failures on a digital twin (DT),
w.r.t. using only one general-purpose simulator (GPSim). We rely on DT only to evaluate

123

 72 Page 14 of 33 Empirical Software Engineering (2024) 29:72

the benefits of our multi-simulator approach, as a proxy for the behaviors of the AV in the
real world, since DT is often unavailable in practice. In our empirical study, we focus on
testing a lane-keeping DNN model by generating road scenarios. To this aim, we consider
the following research questions:
RQ1 (Offline Evaluation)How do the offline prediction errors by the DSS compare to those
of the DT?

We first test our hypothesis at the model-level. For all simulators, we compute the errors
between the model predictions and each autopilot ground truth labels on a stationary driving
images dataset. We compare the error distributions of each individual simulator with the DT,
as well as their combination as digital siblings.

With RQ1 we aim to assess whether a correlation between the offline predictions exists
at the model-level, which can be useful for developers to gain trust about their DNN model
prediction accuracy, prior to running system-level tests.
RQ2 (Failure Probability) How does the failure probability of the DSS compare to that of
the DT?

In RQ2 we test the model at the system-level, specifically the hypothesis that combining
the failure probabilities of the two digital siblings provides a better predictor of the ground
truth failure probability of the model executed on DT w.r.t. using a single simulator. A
positive answer toRQ2 would imply that amulti-simulator approach can predict, and possibly
anticipate, the failures of the DNN-based lane-keeping model on DT, which are expected to
be accurate proxies of the AV real-world failures.
RQ3 (Quality of Driving)How does the quality of driving of the DSS compare to the failure
probability of the DT?

By considering only the failure probability, wemight overlook the correlation between real
failures on DT and near-failures on DSS—test cases in which the model exhibits a degraded
driving quality without necessarily going off-road. Thus, with RQ3, we also assess whether
finer-grained driving quality metrics can predict the ground truth failure probability of the
lane-keeping model on DT.

4.1 Test Object and Simulators

4.1.1 Study Object

We considered three self-driving architectures, i.e., Dave-2 Bojarski et al. (2016); Chauffeur
(2016) and Epoch (2016). Such architectures were used in previous studies on AV testing
in the literature (Stocco et al. 2022, 2020; Tang et al. 2022; Jahangirova et al. 2021; Stocco
et al. 2022; Stocco and Tonella 2020, 2021; Zohdinasab et al. 2021; Panichella et al. 2021;
Gambi et al. 2022; Biagiola et al. 2023), and the respectivemodels feature different number of
parameters. The Dave-2 model has 2.8M parameters, Chauffeur has 100k parameters while
Epoch has 26M parameters (we used a reduced version of the Epochmodel to reduce training
and inference time (Stocco et al. 2022)).

Architecturally, Dave-2 consists of five convolutional layers, followed by three fully-
connected layers Bojarski et al. (2016). Chauffeur has six convolutional layers each followed
by a dropout and a max pooling layer (except the last one) (Chauffeur 2016). Epoch has
three convolutional layers and one fully-connected layer, which makes up for most of the
parameter count of the model (Epoch 2016).

123

Empirical Software Engineering (2024) 29:72 Page 15 of 33 72

4.1.2 Digital Siblings (DSS)

We implemented and investigated the effectiveness of DSS using the simulators (BeamNG
2022) and (Udacity 2017).We chose themas digital siblings because: (1) they support training
and testing of a DNN that performs lane-keeping, including Dave-2, Chauffeur and Epoch;
(2) they are often used as simulator platforms for AV testing, as highlighted by a recent survey
on autonomous driving testing (Tang et al. 2022); (3) they are potentially complementary
because they are developed with different technologies/game engines, and they are charac-
terized by different physics implementations (e.g., rigid vs soft-body dynamics); (4) they are
publicly available under open-source or academic-oriented licenses, hence customizable.

BeamNG(2022) is a framework specialized in autonomous driving developedbyBeamNG
GmbH. The framework is released under an academic-oriented license, and it has been
downloaded 5.5k times as of January 2023. From a technical standpoint, BeamNG features
a soft-body dynamics simulation based on a spring-mass model. Such a model is composed
of nodes (mass points) that are connected by beams (springs), i.e., weightless elements that
allow accurate vehicle deformation and other aerodynamic properties Gambi et al. (2019).

Udacity (2017) is developed with Unity3d (2021), a popular cross-platform game engine.
The project has been publicly released in 2016 by the for-profit educational organization
Udacity, to allow people from all over the world to access some of their technology and
to contribute to an open-source self-driving car project. As of January 2023, the simulator
has 3.7k stars on GitHub. From a technical standpoint, Udacity is based on the Nvidia
PhysX engine (Nvidia PhysX 2022), featuring discrete and continuous collision detection,
ray-casting, and rigid-body dynamics simulation.

4.1.3 Digital Twin (DT)

We use the Donkey Car™ open-source framework (Donkey Car 2021) as digital twin for
our study. This platform has been used for AV testing research with physical self-driving
cars in physical environments (Stocco et al. 2022; Viitala et al. 2020; Zhou et al. 2021). The
framework includes open hardware to build 1:16 scale radio-controlled cars with self-driving
capabilities, a Python framework for training and testing DNN models with lane-keeping
functionalities using supervised or reinforcement learning, and a simulator in which the real-
world Donkey Car is faithfully modeled. This was assessed by a recent work (Stocco et al.
2022) reporting that, for three lane-keeping models, the steering angle distribution of the
AV model driving in the real-world environment is statistically indistinguishable from the
steering angle distribution of the AV model driving in the digital twin.

In the rest of the section, we refer to BeamNG as DS1, Udacity as DS2, the combined
digital siblings as DSS, and DonkeyCar as DT.

4.2 Procedure

4.2.1 CycleGANModels

Data Collection We collected 15k simulated images, 5k for DS1 and DS2 by running the
autopilots on a set of randomly generated roads. Moreover, we collected 5k real-world
images (Stocco et al. 2022) by manually driving the physical twin of the DT on a physi-
cal road track in our lab.

123

 72 Page 16 of 33 Empirical Software Engineering (2024) 29:72

Training We trained three CycleGAN models, one for each simulator, with the obtained
training sets (5k virtual images and 5k real-world images). Each model was trained for
60 epochs using the default hyper-parameters of the original paper (Zhu et al. 2017). We
saved a checkpoint model every 5 epochs, and we ultimately chose the one that achieved
the best neural translations (in terms of visual quality) using a test set of ≈8k simulated
images for each simulator, representing a test road driven from beginning to the end (Stocco
et al. 2022). While a quantitative assessment of the output of CycleGAN is still a major
challenge (Borji 2019; Lambertenghi and Stocco 2024) and out of the scope of this paper, the
driving capability of the lane-keepingmodel, as the experimental evaluation shows, represents
an implicit validation of the CycleGANmodel’s ability to retain all essential features needed
for an accurate steering angle prediction.

4.2.2 Driving Models

Data Collection For all simulators (i.e., DS1, DS2 and DT), we collected a training set
by running the autopilots on a set of randomly generated roads (this set is different from
the one used to train the CycleGAN). To ensure having non-trivial driving scenarios and
appropriate labels for challenging curves, the maximum angle of a curve was set to be less
than or equal to 270◦. In particular, for our training set, we generated 25 roads with 8 control
points (Zohdinasab et al. 2021). To collect a balanced dataset where left and right curves
are equally represented, each road was driven by the autopilot in both directions, i.e., from
the start point to the end point and from the end point to the start point. The autopilot drove
successfully the totality of the roads on all simulators; our training set comprises ≈70k
images, equally distributed across the simulators.

Training For each self-driving architecture we trained two models, one by using the
plain simulated images (MS) and the other by translating the images of each simulator into
pseudo-real images (MR) using the respective CycleGAN generator.

We followed the guidelines by Bojarski et al. Bojarski et al. (2016) to train AV autopi-
lots. We used custom hyperparameters for each self-driving architecture, and the Adam
optimizer (Kingma and Ba 2014) to minimize the mean squared error (MSE) between the
predicted steering angles and the ground truth value. For all models, we set a learning rate
of 10−4 and a batch size of 128. We used 50 epochs for Dave-2 and Chauffeur (only for the
MR model) and 500 epochs for Epoch and the MS model of Chauffeur. We used an early
stopping of 10 epochs for the models where the number of training epochs was 50 and an
early stopping of 20 epochs otherwise.

We evaluated the performance of the trained lane-keeping models on DT, as it is the target
simulator wewant to approximate using the digital siblings.We collected a labeled dataset by
running the autopilot on DT on 25 randomly generated roads each with 8 control points and

Table 1 Offline and online performance on the test set of the lane-keeping models on DT

MS MR
MSE Success rate MSE Success rate

Dave-2 Bojarski et al. (2016) 0.08 0.84 0.07 0.96

Chauffeur (2016) 0.07 0.72 0.07 0.92

Epoch (2016) 0.09 0.52 0.07 0.96

Avg 0.08 0.69 0.07 0.95

123

Empirical Software Engineering (2024) 29:72 Page 17 of 33 72

a maximum angle of 270◦, i.e., the same road parameters as the training set. We computed
the mean squared error (MSE) between the steering angle prediction of the model on each
image and the steering angle of the autopilot. Table 1 shows theMSE of all models on the first
and third columns; on average, the MSE is low for both the models trained using simulated
images (i.e., MS), and the models trained using real images (i.e., MR). We also measured the
success rate of each model by driving it on the 25 randomly generated roads, and counting
the number of times the model was able to arrive at the end of the road without going out
of bound. Overall, each model is able to successfully complete the majority of the generated
roads. Most notably, MR models are able to complete more than 90% of the test set roads.

4.2.3 Offline Evaluation

We collected a labeled dataset for offline evaluation by generating 20 roads (i.e., 10 roads
driven in both directions) with the same parameters as the training set. The images collected
for the offline evaluation dataset amount to ≈26k, considering all simulators.

4.2.4 Test Generation

After training MS and MR for each self-driving architecture, we executed DeepHyperion
twice to generate tests using the two digital siblings DS1 and DS2.We chose a population size
of 20 individuals and a number of search iterations respectively equal to 150 for MS and 100
for MR , as we observed from preliminary experiments that this choice of hyperparameters
allows an extensive coverage of the feature maps. For both MS and MR and each digital
sibling in each self-driving architecture, we repeated test generation five times to diversify
the exploration of the search space and to collect multiple test cases for each cell in the feature
maps. Overall, across all runs and driving models, DeepHyperion generated 10,260 tests for
both siblings.

Concerning the simulations, for all simulators, we set the maximum speed for the vehicle
to 30 km/h (Zohdinasab et al. 2021). When testing MR in a given simulator, we engineered
the testing pipeline to load the appropriate sim2real CycleGAN generator to translate the
simulated image generated by BeamNG/Udacity into pseudo-real images in real-time during
driving. For each executed test case, we collected the lateral position of the vehicle for each
simulation step as well as its lateral distance. The former determines the quality of driving
of the model (Jahangirova et al. 2021), while the latter is the fitness of the test case.

4.2.5 Migration and Union

For the initial (FMDS1 , FMDS2) and for the union (FMU1 , FMU2) featuremaps, we compute
the failure probability as the number of tests with a negative fitness divided by the total
number of tests in the respective cell. To evaluate the quality of driving, we adopted the
maximum lateral position (i.e., the distance between the center of the vehicle and the center
of the lane (Stocco and Tonella 2020)) experienced during the test case execution. Previous
work showed that such metric is effective at characterizing the degradation in the quality
of autonomous driving (Jahangirova et al. 2021), since the lower the value of such metric,
the higher is the quality of driving (thus, it actually measures lack of quality of driving).
When considering the quality of driving, the value of each cell in a feature map represents
the average of the maximum lateral positions of each test case in that cell. Furthermore, we
normalized the maximum lateral position values in the interval [0, 1] before taking the union.

123

 72 Page 18 of 33 Empirical Software Engineering (2024) 29:72

4.2.6 Merge

Merging themaps of the two digital siblings requires a different treatment for failure probabil-
ity and quality of driving. Regarding the failure probability, the merge operator that ensures
a conservative aggregation of two values is the product. Regarding the lack of quality of
driving, the conservative merge operator is the minimum, since the quantities to merge are
not probabilities. In fact, by taking the minimum we get a high lack of driving quality only
when both simulators exhibit high values for such a metric.

4.3 Metrics

4.3.1 RQ1 (Offline Evaluation)

We computed the prediction errors given by the difference between the predictions of the
model (MR) on images of the offline evaluation dataset (see Section 4.2), and the correspond-
ing ground truth labels given by the autopilot. We binned the prediction errors of the model
on each simulator and built the respective probability density (i.e., the number of errors in
each bin is divided by the total number of prediction errors) such that different distributions
could be compared.

Then, we computed the distance between each digital sibling distribution, as well as
their combination, and the DT using the Wasserstein distance (Arjovsky et al. 2017) (also
known as the earth mover’s distance). Given two one-dimensional distributions A and B, the
Wasserstein distance W (A, B) is defined by the following formula (Ramdas et al. 2017):

W (A, B) =
∫

R

|CDFA(x) − CDFB(x)|dx (3)

where CDF is the cumulative distribution function of a distribution. In other words, the
Wasserstein distance between two distributions is defined as the difference between the area
formed by their cumulative distribution functions.

We assess whether the difference between two distributions is statistically significant
using the Wilcoxon test (Conover 1999) applied to the density functions of the two error
distributions to compute the p-value (with threshold α ≤ 0.05). We also perform power
analysis (with statistical power β ≥ 0.8) on the prediction errors to check whether a non-
significant p-value is due to a low data sample size or to the difference being statistically
insignificant.

4.3.2 RQ2 (Failure Probability) and RQ3 (Quality of Driving)

For RQ2, we computed the pairwise Pearson correlation between maps along with the corre-
sponding p-value. In particular, correlations are computed between each union feature map
of each digital sibling (FMU1 , FMU2) and the feature map of the DT (FMDT), and between
FMDSS and FMDT . For RQ3, the setting is equivalent to that of the failure probability but
considering quality of driving maps, comparing DS1, DS2 and DSS against the ground truth
DT.

To evaluate the capabilities of the digital siblings (individually or jointly) to predict failures
on DT, we computed the area under the curve Precision-Recall (AUC-PRC) at increasing
thresholds, for both RQ2 and RQ3. This requires the discretization of failure probabilities
into binary values (failure vs non-failure) for the ground truth (i.e., DT): we consider a cell

123

Empirical Software Engineering (2024) 29:72 Page 19 of 33 72

in the DT feature map to be a failure cell if the associated failure probability is > 0.0. AUC-
PRC is more informative than the AUC-ROC metric (i.e., the area under of the curve of the
Receiver Operating Characteristics) when dealing with imbalanced (Saito and Rehmsmeier
2015) datasets, which is the case of our study (the number of failures in the feature maps is
lower than the number of non-failures with an average 10 to 20% ratio).

4.4 Results

4.4.1 Offline Evaluation (RQ1)

Table 2 reports the results for our first research question. The first column shows the simu-
lators being compared. Columns 2–5 report the Wasserstein distance between the prediction
error densities of the corresponding simulators, and the p-value concerning the statistical
significance of the differences between the two densities, for MS and MR .

ForMS (Columns 3–4), our results show that, forDave-2, the distance between the steering
angle errors obtained for the combined digital siblings DSS and the errors obtained for DT
is lower than the distance of DS1 (0.03776 vs 0.046) and higher than the distance of DS2
(0.02648). The distribution of the steering angle errors of DS2 is statistically different from
the errors of DT (i.e., p-value 0.02< 0.05), while the distribution of the steering angle errors
of DSS is statistically indistinguishable from the errors of DT (i.e., p-value 0.053 > 0.05
and power > 0.8). This behavior is also consistent for Epoch, with the exception that the
distribution of the prediction errors for DS2 is statistically indistinguishable from that of DT.
However, the distance between DSS and DT is lower than the distance of DS1 from DT, with
a statistically indistinguishable distribution of prediction errors w.r.t. DT. For Chauffeur, the
combined digital siblings DSS have the only distribution of errors that is equivalent to that
of DT, and its distance to it is the lowest considering the individual digital siblings.

Regarding MR (Columns 5–6), our results show that, for Dave-2, the distance between the
steering angle errors obtained for the combineddigital siblingsDSSand the errors obtained for
DT is 2.8 times lower than the distance of each simulator taken individually (as a percentage,

Table 2 Results for RQ1

Offline evaluation (RQ1)
MS MR
distance p-value distance p-value

Dave-2 Bojarski et al. (2016) DS1 vs DT 0.04669 0.101 0.03250 0.011

DS2 vs DT 0.02648 0.020 0.02187 0.078

DSS vs DT 0.03776 0.053† 0.00951 0.088†

Chauffeur (2016) DS1 vs DT 0.03989 0.023 0.04625 0.011

DS2 vs DT 0.02641 0.047 0.02145 0.078†

DSS vs DT 0.01208 0.394† 0.01843 0.334†

Epoch (2016) DS1 vs DT 0.06030 0.011 0.03374 0.016

DS2 vs DT 0.01634 0.078† 0.02318 0.078†

DSS vs DT 0.02726 0.053† 0.00989 0.256†

† power > 0.8
Bold-faced values indicate the best approach

123

 72 Page 20 of 33 Empirical Software Engineering (2024) 29:72

Fig. 5 Distributions of prediction errors of Dave-2 MR in the two digital siblings, i.e., DS1 and DS2, their
combination (DSS) and DT. Best viewed in color

the distance of DSS is respectively 70% and 56% smaller than the distance of the two
individual siblings, DS1, DS2). The statistical test confirms that the error distributions of
DSS and DT are statistically indistinguishable (p-value > 0.05 and power > 0.8), which is
not the case for the error distributions of DS1 (p-value < 0.05). Likewise, for all the other
self-driving architectures, the digital siblings DSS have the lowest distance to DT w.r.t. the
individual siblings and their distribution is always statistically indistinguishable from that of
DT.

Figure 5 offers a visual explanation of these scores for the Dave-2 model.1 The subplots
compare the steering angle error distributions, respectively, of DS1, DS2 and DSS (shown in
light red) with that of DT (shown in light blue). The x-axis of each subplot represents the
magnitude of the prediction errors of the model MR w.r.t. the predictions of the autopilot,
while the y-axis indicates their percentage for each bin.

From the plots we can see that, overall, at the model-level, MR makes prediction errors
with small magnitudes on DS1, DS2 and DSS (i.e., most of the errors are between 0.0 and
0.3). On the digital sibling DS1 (i.e., BeamNG), MR has a high agreement with the autopilot,
as most errors have a low magnitude. It has numerous small errors (< 0.2), while it has
only a negligible portion of the distribution being above 0.2. The agreement with DT is low
as MR under-approximates the true error distribution on DT: MR on DT has fewer errors
with low magnitude and has a longer tail of errors greater than 0.2 (even greater than 0.3 in
some cases). Differently, on the digital sibling DS2 (i.e., Udacity), the error distribution has
a longer tail than that on DT. Indeed, MR executed on DS2 over-approximates the errors it
would have on DT, as the errors observed on DS2 have higher magnitude than those observed
on DT.

The error distribution of the model on DSS shows why it is appropriate to combine
the outcome of two simulators. At the model-level, DSS better approximates the true error

1 We report the plots for the other lane-keepingmodels in our replication package Replication package (2023).

123

Empirical Software Engineering (2024) 29:72 Page 21 of 33 72

distribution of the model on DT, by providing an intermediate error between DS1 and DS2
for both MS and MR .

RQ1: Overall, at the model-level, the digital siblings produce a steering angle error
distribution that is statistically indistinguishable from the true steering angle error
distribution of the model on the digital twin. Considering all the models, in 5 out of
6 cases, the digital siblings are better at approximating the distribution of prediction
errors of the digital twin than each individual sibling.

4.4.2 Failure Probability (RQ2)

Table 3 shows the Pearson correlation (r), the p-value, and the AUC-PRC for the comparison
between DS1, DS2, DSS and DT, respectively. The analysis is reported separately for MS

(Columns 3–5) and MR (Columns 6–8).
Concerning MS—i.e., the model driving with simulated driving scenes— the failure prob-

abilities for Dave-2 have a high positive correlation with the true failure probability of DT
((Column 3). All such correlations are statistically significant for DSS, as well as for each
individual sibling DS1 and DS2 (p-values < 0.05, see Column 4). Likewise, the correla-
tions are high and statistically significant for the other lane-keeping models (Epoch features
slightly lower correlations).

However, for Dave-2 the correlation of DSS is 9% higher than the best individual corre-
lation (i.e., DS1) and 21% higher than the worst individual correlation (i.e., DS2). In terms
of failure prediction, DSS have the highest AUC-PRC value, 4% higher than DS1 and 33%
higher than DS2.

This also happens with Epoch, where the correlation of DSS is slightly higher than that
of the best sibling DS1 (i.e., 0.571 vs 0.561) and 33% higher than that of the worst sibling
DS2. Regarding failure prediction on DT, DSS are 3% better than the best sibling. In the case
of Chauffeur, DS1 has the best results both in terms of correlation and failure prediction.

Table 3 Results for RQ2

Failure probability (RQ2)
MS MR
r p-value AUC-PRC r p-value AUC-PRC

Dave-2 Bojarski et al. (2016) DS1 vs DT 0.650 10−11 0.654 0.391 10−4 0.403

DS2 vs DT 0.583 10−8 0.512 0.377 10−4 0.306

DSS vs DT 0.710 10−13 0.684 0.457 10−5 0.398

Chauffeur (2016) DS1 vs DT 0.733 10−16 0.774 0.417 10−4 0.481

DS2 vs DT 0.588 10−10 0.715 0.337 10−3 0.300

DSS vs DT 0.700 10−14 0.742 0.422 10−4 0.496

Epoch (2016) DS1 vs DT 0.561 10−8 0.599 0.469 10−5 0.586

DS2 vs DT 0.428 10−5 0.604 0.521 10−7 0.565

DSS vs DT 0.571 10−8 0.622 0.450 10−5 0.641

Bold-faced values indicate the best approach

123

 72 Page 22 of 33 Empirical Software Engineering (2024) 29:72

Fig. 6 Feature maps representing the failure probability of Dave-2 MS on the two digital siblings, DS1 and
DS2, their combination (DSS) and on DT. Solid line cells represent a true failure predicted by DSS while
dashed line cells represent a false positive of DS2. Best viewed in color

However, DSS are better than the worst of the two siblings DS2 both in terms of correlation
and failure prediction.

Figure 6 shows the feature maps related to MS of Dave-2.2 The first three feature maps
represent the failure probability of DS1, DS2 and DSS, respectively. The last feature map
represents the ground truth failure probability of DT. The color of each cell ranges from green
(i.e., non-failure, or failure probability = 0) to red (i.e., failure probability = 1). Let us analyze
a false positive case. The test cases at coordinates (3, 0.25), whose corresponding cells are
highlighted with a dashed line, represent road tracks having three curves and a maximum
curvature of 0.25. In DT, this cell is green, i.e., all test cases for MS driving on DT succeed.
On the other hand, MS has contrasting behaviors when the same test cases are executed on
DS1 or DS2. These test cases did not exhibit any failure in DS1, whereas they did trigger
failures in DS2. This disagreement is canceled out when combining the two digital siblings
with the product operator and the cell is green in the DSS map. As such, digital siblings
are conservative w.r.t. failures, as a failure is reported only when both digital siblings are in
agreement. This can be noticed for test cases at coordinates (1, 0.23), which represent road
tracks having one curve with a maximum curvature of 0.23—an instance of a true positive
case (the corresponding cells in each map are highlighted with a solid line). Both DS1 and
DS2 have a failure probability of 1 and, as a consequence, the DSS map also does. On DT,
MS has also a high failure probability (0.5), which confirms the high effectiveness of the
DSS framework at approximating the true failure probability of DT.

2 We report the plots for the other lane-keepingmodels in our replication package Replication package (2023).

123

Empirical Software Engineering (2024) 29:72 Page 23 of 33 72

Concerning the failure probability for MR—i.e., the model driving with pseudo-real driv-
ing scenes, for Dave-2 and Chauffeur, DSS are better than each individual sibling in terms of
correlation with DT. For Dave-2, DS1 better predicts the failures of DT, while for Chauffeur,
the digital siblings are better than each individual sibling. Interestingly, for Epoch, DS2 better
correlates with DT but the AUC-PRC value of DSS is the higher than the individual siblings.

RQ2: At the system-level, in four cases out of six, the failure probability of the
digital siblings better correlates with the true failure probability of the digital twin
w.r.t. each individual sibling. In four cases out of six, the failures obtained on the
digital siblings are a better predictor of the ground truth failures experienced on the
digital twin.

4.4.3 Quality of Driving (RQ3)

Table 4 shows the Pearson correlation (r), the p-value, and the AUC-PRC for the compari-
son between DS1, DS2, DSS and DT, respectively. The comparison considers the correlation
between the quality of driving metric experienced in DS1, DS2, DSS and the failure prob-
ability of the model on DT, as well as the prediction of failures from the quality of driving
metric. The analysis is reported separately for both MS (Columns 3–5) and MR (Columns
6–8) models.

For MS , the correlation between DSS and DT is lower than the best individual correlation
for all the lane-keeping models (0.553 of DSS vs 0.621 of DS1 for Dave-2, 0.792 of DSS vs
0.798 of DS1 for Chauffeur, and 0.491 of DSS vs 0.511 of DS1 for Epoch). For Dave-2, the
DSS correlation is 22% higher than the worst individual correlation (0.553 of DSS vs 0.429
of DS2); percentages are similar for Chauffeur and Epoch. For AUC-PRC, DSS and DS1
have the same predictive power both for Dave-2 and Chauffeur (i.e., respectively 0.659 and
0.940), while for Epoch the DSS prediction is slightly better than that of DS1. Thus, DSS
mitigate the risk of relying on the testing results of a low-quality GPSim (i.e., DS2).

Concerning MR , we observed a similar trend, i.e., the correlation of DS1 with DT are
higher than the correlations of DSS with DT, although DSS always have a better correlation
than the worst of the two siblings, i.e., DS2, for all lane-keeping models. The digital siblings
DSS better predict the failures of DT for Dave-2 and are equivalent to DS1 for Chauffeur.
For Epoch, the best predictor of the failures of DT is DS2, although the digital siblings are
only 9% worse.

Figure 7 shows the four feature maps related to the quality of driving of the MR Dave-2
model on the two digital siblings and the failure probability of MR on DT.3 We can observe
that the featuremap of DS1 and the featuremap of DSS are similar. As a consequence, the two
correlations are similar (0.396 of DS1 vs 0.379 of DSS). On the other hand, the feature map
of DS2 is quite different from the failure probability map of DT, which causes the correlation
to be low (0.287). We can observe that all siblings are able to capture the failure of the DT at
coordinates (1, 0.23) (see the corresponding cells highlighted with a solid line). On the other
hand, the test cases at coordinates (4, 0.24) triggered failures only in DS2, and DSS correctly
predict that in DT such tests will not cause a failure.

3 We report the plots for the other lane-keepingmodels in our replication package Replication package (2023).

123

 72 Page 24 of 33 Empirical Software Engineering (2024) 29:72

Table 4 Results for RQ3

Quality of driving (RQ3)
MS MR
r p-value AUC-PRC r p-value AUC-PRC

Dave-2 Bojarski et al. (2016) DS1 vs DT 0.621 10−10 0.659 0.396 10−4 0.513

DS2 vs DT 0.429 10−5 0.496 0.287 10−3 0.351

DSS vs DT 0.553 10−8 0.659 0.379 10−4 0.626

Chauffeur (2016) DS1 vs DT 0.798 10−21 0.940 0.399 10−4 0.460

DS2 vs DT 0.625 10−11 0.791 0.260 0.025 0.359

DSS vs DT 0.792 10−21 0.940 0.382 10−4 0.460

Epoch (2016) DS1 vs DT 0.511 10−7 0.592 0.554 10−8 0.608

DS2 vs DT 0.355 10−4 0.541 0.389 10−3 0.715

DSS vs DT 0.491 10−6 0.594 0.529 10−7 0.651

Bold-faced values indicate the best approach

Fig. 7 Feature maps representing the quality of driving of Dave-2 MR (i.e., the maximum lateral position) on
the two digital siblings, DS1 and DS2, their combination (DSS) and the failure probability on DT. Solid line
cells represent a true failure predicted by DSS, while dashed line cells represent a false positive of DS2. Best
viewed in color

123

Empirical Software Engineering (2024) 29:72 Page 25 of 33 72

RQ3: At the system-level, for most lane-keeping models, the quality of driving of
the digital siblings correlates with the failure probability of the digital twin. This
correlation is either equivalent to that of the best digital sibling or falls within the
range of the two siblings. In five cases out of six, the quality of driving in the digital
siblings has a failure prediction capability w.r.t. the digital twin, which is equal or
higher than the best individual sibling. As a result, digital siblings reduce the risk
associated with relying on the least reliable simulator.

5 Discussion

GPSims Complementarity When choosing candidate GPSims, our approach requires that
the simulators exhibit some degree of complementarity (i.e., different physics engines), while
still supporting the same encoding of test inputs. Therefore, the selected GPSims must meet
the following conditions. Firstly, the simulators must be equipped with appropriate API
interfaces that allow the instantiation of analogous test cases. In our context, both Udacity
and BeamNG support a sequence of road points as input to instantiate the two-lane roads
where theAVdrives. Secondly, the simulators need to support communicationwith theDNN-
based systems under test. In the case of a DNN-based lane-keeping AV, the simulators should
be able to capture images from the vehicle’s on-board camera and execute throttle steering
commands to drive the vehicle. Finally, the selected simulators should implement different
physics engines. Specifically, Udacity implements soft-body dynamics, while BeamNG uses
a rigid-body dynamics engine.

The worst case occurs when the two siblings disagree and the over-approximating sibling
(e.g., predicting a failure) is not compensated by the under-approximating sibling (see Fig. 6).
In most cases, we empirically observed that by predicting a failure only when there is agree-
ment, the digital siblings are equivalent to the best of the two siblings (see RQ3). However, for
the Epochmodel, when considering the failure probabilities of the MR model, the correlation
of the digital siblings is slightly worse than the worst sibling, i.e., DS1 (specifically, 0.450 of
DSS vs 0.469 of DS2). Despite the lowest correlation, the digital siblings have the highest
capabilities of detecting the failures of DT.

Simulated and Pseudo-real Models We experimented with both simulated (MS) and
real-world models (MR) as such setting is representative of the current industrial testing
practices described by the NHTSA U.S. Department of Transportation (2018). From the
feature maps in Figs. 6 and 7, we can observe that the driving quality of MS is superior w.r.t.
MR (the failure probabilities in the feature map of DT are higher), presumably because it is
easier for a DNN to process plain artificial images from a simulator, rather than the images
collected by a real-world camera during driving.

5.1 Threats to Validity

5.1.1 Internal Validity

We compared all simulators under identical parameter settings. One threat to internal validity
concerns our custom implementation of DeepHyperion within the simulators. We miti-
gated this threat by faithfully replicating the code available in the replication package of

123

 72 Page 26 of 33 Empirical Software Engineering (2024) 29:72

the paper (DeepHyperion 2022). Another threat may be due to our own data collection phase
and training of the lane-keeping models, which may exhibit many misbehaviors if trained
inadequately. We mitigated this threat by training and fine-tuning a model which was able to
drive on the majority of the training set roads consistently on all simulators.

5.1.2 External Validity

We considered only a limited number of DNN models and simulators, which poses a threat
in terms of the generalizability of our results. We tried to mitigate this threat by choosing
three popular real-world DNN models, which achieved competitive scores in the Udacity
challenge (2020). Their diversity in terms of both size and architectural structure determines
different driving behaviors and increases the generalizability of our results. We considered
two open-source GPSims, and we chose DonkeyCar as DT, as it was used as a proxy for full
size self-driving cars also in previous studies (Stocco et al. 2022, 2023; Verma et al. 2021;
Viitala et al. 2020; Zhou et al. 2021). Generalizability to other GPSims or DTs would require
further studies.

Our proposal focuses on testing the DNN-based lane-keeping component of an AV, by
generating a large set of road scenarios. Although there are works in the literature that
modify other environment objects such as weather conditions, pedestrian and other vehicles’
dynamics (BenAbdessalemet al. 2018;Haq2022;Borg et al. 2021),we chose to generate road
scenarios to test the lane-keeping behavior of the DNN in isolation, avoiding the interference
of other tasks, such as obstacle and pedestrian avoidance. Further studies are needed to assess
the generalizability of our multi-simulator approach to driving tasks different from lane-
keeping. On this regard, feature maps are a flexible tool to encode different characteristics of
a test case (e.g., the intensity of the rain or the number of vehicles in the driving scenario),
by adding new dimensions for each new desired feature.

5.1.3 Construct Validity

Threats to construct validity may come from selecting inappropriate metrics to measure the
agreement of the siblings with DT. To address this threat we assessed such agreement from
two points of view, i.e., at the model-level (RQ1), by measuring the distance between the two
distributions under analysis and testing the statistical significance of the difference, and at
the system-level, by measuring failure probability and quality of driving. Overall, our results
show that the digital siblings are better at predicting the behavior of the lane-keeping model
under test on DT.

6 RelatedWork

6.1 Digital Twins for AV Testing

Digital twins are used by researchers to reproduce real-world conditions within a simulation
environment for testing purposes (Barosan et al. 2020; Yun and Park 2021; Kapteyn et al.
2020; San 2021; Almeaibed et al. 2021).

Yun and Park (2021) test an object recognition system using the GTA videogame. In
particular, they exploit the realism of the game engine to collect data for training an object
recognition system for both collision avoidance and lane-departure prevention. Barosan et al.

123

Empirical Software Engineering (2024) 29:72 Page 27 of 33 72

(2020) describe a digital twin for testing an autonomous truck. No testing was performed
using the digital twin to assess the faithfulness of the simulator at reproducing real-world
failures. Almeaibed et al. (2021), analyze the safety and security of digital twins and propose a
general framework to address such issues during development. Kapteyn et al. (2020), propose
a probabilistic graphical model to link the digital twin with its physical replica. The formal
definition ensures that the calibration of the digital twin and its update with real-world data is
principled and scalable. Similarly, San (2021) rely on the samemathematical tool to formalize
the update of the digital twin with the goal of using it throughout the whole lifecycle of its
physical replica, i.e., from the design to the operation phase. Veledar et al. (2019) propose a
multi-metrics approach for security and safety validation for the design of a digital twin for
autonomous driving.

Such works mostly focus on the design of the digital twin and its update during the devel-
opment of the physical replica. Differently, in our paper we investigate testing transferability
between digital siblings, i.e., a multi-simulator approach considering both simulated and
pseudo-real images as input to the DNN.

6.2 Empirical Studies

Simulation platforms are often decoupled from the realworld complexities (Afzal et al. 2021),
which confirmed the need for real-world testing of cyber-physical systems. Our work is the
first to propose the usage of a multi-simulator approach, called digital siblings, to mitigate
the fidelity gap in the field of autonomous driving testing.

Concerning comparative studies across simulators, to the best of our knowledge, the only
study that empirically compares the same AV on different simulation platforms is by Borg
et al. (2021). The authors investigate the use of multiple GPSim for testing a pedestrian vision
detection system. The study compares a large set of test scenarios on both PreScan Software
(2022) and Pro-SiVIC Group (2021) and reports low agreement between testing results
across the two simulation platforms. No assessment is performed of their correlation with a
digital twin or a physical vehicle. In our paper, we take a step ahead, and we show how the
(dis)agreements can be leveraged to mitigate the fidelity gap: by combining the predictions
of two general-purpose simulators we successfully covered the gap with a DT for a scaled
physical vehicle. In another work, (Amini et al. 2023) evaluates the degree of flakiness
affecting two widely-used open-source AV simulators and five diverse test setups, showing
that test flakiness in AV is a common issue and can significantly impact the test results
obtained by randomized algorithms.

Other studies compare model-level vs system-level testing metrics within a simulation
environment (Haq et al. 2021). In our empirical work, we focused on the difference between
general-purpose and digital twin driving simulators. We use offline and online testing to
measure the gap between single- and multi-simulator approaches at approximating a digital
twin, a previously unexplored topic. Our proposition is also meant to prevent the flakiness
occurring within a single simulation platform, by relying on an ensemble of simulators.

6.3 AV Testing Approaches

Most approaches use model-level testing (i.e., offline testing of single image predictions) to
test DNN autopilots under corrupted images (Tian et al. 2018; Kong et al. 2020) or GAN-
generated driving scenarios (Zhang et al. 2018), without however testing the self-driving
software in its operational domain. In our work, we assess the effectiveness of our digital sib-

123

 72 Page 28 of 33 Empirical Software Engineering (2024) 29:72

lings with model-level testing in terms of prediction error distributions, but we also consider
online testing at the system-level.

Another model-level testing approach is by Talwar et al. (2020). Their focus is to test the
generalizability on real-world data of multiple object detection models trained on simulated
images.On theother hand,weuse an Image-to-Image translation architectureZhuet al. (2017)
to translate simulated images into real-world images both to evaluate the lane-keeping model
offline and to test it online at the system-level.

Concerning system-level testing for AVs, researchers proposed techniques to generate
scenarios that cause AVs to misbehave Stocco et al. (2020); Gambi et al. (2019); Stocco and
Tonella (2021); Stocco et al. (2022); Moghadam et al. (2022); Zhang et al. (2018); Grewal
et al. (2024); Kim et al. (2022); Zhong et al. (2021); Li et al. (2020); Jha et al. (2019); Cheng
et al. (2023). Among the existing test generators, in this work we adopted DeepHyperion
by Zohdinasab et al. (2021), a tool that uses illumination search to extensively cover a map
of structural input features, which allowed us to easily group identical or equivalent failure
conditions occurring in the same feature map cell. Haq (2022) useML regressors as surrogate
models to mimic the simulator’s outcome.

These works only consider single-simulator approaches to testing. Their generalizability
to a multi-simulator approach, such as the digital siblings proposed in this paper, or to cross-
simulator testing, is overlooked in the existing literature.

7 Conclusions and FutureWork

In this paper, we propose a multi-simulator approach named digital siblings, to improve
simulation-based testing of the lane-keeping component of an autonomous vehicle. In our
approach, we test the autonomous driving software by generating road scenarios in two
general-purpose simulators, to better approximate the behavior of the lane-keeping model
on a digital twin. We combine the testing outputs of the model on the two simulators in a
conservative way, giving priority to the agreements on possible failures, where it is more
likely to observe the same failing behavior on the digital twin.

At the model level, our results show that the digital siblings approximate the model
predictions on the digital twin better than each individual simulator. At the system-level, the
digital siblings are able to predict the failures of the model on the digital twin better than
each single simulator.

In our future work we plan to extend our case study to more than two general-purpose
simulators, and to study different ways to combine them based on the characteristics of each
simulator and those of the digital twin.

Acknowledgements We thank BeamNG GmbH for providing us the license for the driving simulator.

Funding Open access funding provided by Università della Svizzera italiana. This work was partially sup-
ported by the H2020 project PRECRIME, funded under the ERC Advanced Grant 2017 Program (ERC Grant
Agreement n. 787703).

Data Availability The software artifacts and our results are publicly available Replication package (2023).

Declarations

Conflicts of interests/Competing interests The authors declared that they have no conflict of interest.

123

Empirical Software Engineering (2024) 29:72 Page 29 of 33 72

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Afzal A, Katz DS, Le Goues C, Timperley CS (2021) Simulation for robotics test automation: Developer
perspectives. In: 2021 14th IEEE conference on software testing, verification and validation (ICST).
IEEE, pp 263–274

Almeaibed S, Al-Rubaye S, Tsourdos A, Avdelidis NP (2021) Digital twin analysis to promote safety
and security in autonomous vehicles. IEEE Commun Stand Mag 5(1):40–46. https://doi.org/10.1109/
MCOMSTD.011.2100004

Amini MH, Naseri S, Nejati S (2023) Evaluating the impact of flaky simulators on testing autonomous driving
systems

Arjovsky M, Chintala S, Bottou L (2017) Wasserstein generative adversarial networks. In: International con-
ference on machine learning. PMLR, pp. 214–223

Barosan I, Basmenj AA, Chouhan SGR, Manrique D (2020) Development of a virtual simulation environment
and a digital twin of an autonomous driving truck for a distribution center. Software architecture. Springer,
Cham, pp 542–557

Barry PJ, GoldmanRN (1988)A recursive evaluation algorithm for a class of catmull-rom splines. SIGGRAPH
Comput, Graph

BeamNG.research (2022) BeamNG GmbH. https://www.beamng.gmbh/research
Ben Abdessalem R, Nejati SC, Briand L, Stifter T (2018) Testing vision-based control systems using learnable

evolutionary algorithms. In: 2018 IEEE/ACM 40th International Conference on Software Engineering
(ICSE)

Bewley A, Rigley J, Liu Y, Hawke J, Shen R, Lam VD, Kendall A (2019) Learning to drive from simulation
without real world labels. In: 2019 International conference on robotics and automation (ICRA). IEEE,
pp 4818–4824

BGR Media L (2018) Waymo’s self-driving cars hit 10 million miles. https://techcrunch.com/2018/10/10/
waymos-self-driving-cars-hit-10-million-miles

Biagiola M, Klikovits S, Peltomaki J, Riccio V (2023) Sbft tool competition 2023-cyber-physical systems
track. In: 16th IEEE/ACM international workshop on Search-Based And Fuzz Testing, SBFT

BojarskiM, Del Testa D, Dworakowski D, Firner B, Flepp B, Goyal P, Jackel LD,MonfortM,Muller U, Zhang
J, Zhang X, Zhao J, Zieba K (2016) End to end learning for self-driving cars. CoRR abs/1604.07316

Borg M, Abdessalem RB, Nejati S, Jegeden FX, Shin D (2021) Digital twins are not monozygotic–cross-
replicating adas testing in two industry-grade automotive simulators. In: ICST ’21. IEEE

Borji A (2019) Pros and cons of gan evaluation measures. Comput Vision Image Understand 179:41–65
Bottou L, Bousquet O (2007) The tradeoffs of large scale learning. In: Proceedings of NIPS ’07
Boutan E (2020) Autonomous driving market overview. https://medium.com/swlh/autonomous-driving-

market-overview-b8c71d81c072
Cerf VG (2018) A comprehensive self-driving car test. Commun ACM 61(2)
Cheng M, Zhou Y, Xie X (2023) Behavexplor: Behavior diversity guided testing for autonomous driving

systems. In: Proceedings of the 32nd ACM SIGSOFT International Symposium on Software Testing and
Analysis, pp 488–500.Association for ComputingMachinery. https://doi.org/10.1145/3597926.3598072

Conover WJ (1999) Practical nonparametric statistics, vol. 350. John Wiley & Sons
DeepHyperion (2022) Replication package. https://github.com/testingautomated-usi/DeepHyperion
U.S. Department of Transportation NHTSA (2007) Pre-crash scenario typology for crash avoidance research
U.S. Department of Transportation UD (2018) A framework for automated driving system testable cases and

scenarios. https://rosap.ntl.bts.gov/view/dot/38824/dot_38824_DS1.pdf
Donkey Car (2021). https://www.donkeycar.com/
FaragW (2020) Complex trajectory tracking using pid control for autonomous driving. Int J Intell Transp Syst

Res 18(2):356–366
Fraser G, Arcuri A (2012) Whole test suite generation. IEEE Trans Softw Eng 39(2):276–291

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/MCOMSTD.011.2100004
https://doi.org/10.1109/MCOMSTD.011.2100004
https://www.beamng.gmbh/research
https://techcrunch.com/2018/10/10/waymos-self-driving-cars-hit-10-million-miles
https://techcrunch.com/2018/10/10/waymos-self-driving-cars-hit-10-million-miles
https://medium.com/swlh/autonomous-driving-market-overview-b8c71d81c072
https://medium.com/swlh/autonomous-driving-market-overview-b8c71d81c072
https://doi.org/10.1145/3597926.3598072
https://github.com/testingautomated-usi/DeepHyperion
https://rosap.ntl.bts.gov/view/dot/38824/dot_38824_DS1.pdf
https://www.donkeycar.com/

 72 Page 30 of 33 Empirical Software Engineering (2024) 29:72

Gambi A, Jahangirova G, Riccio V, Zampetti F (2022) SBST tool competition 2022. In: 2022 IEEE/ACM 15th
international workshop on Search-Based Software Testing (SBST). IEEE, pp 25–32

Gambi A, Maul P, Mueller M, Stamatogiannakis L, Fischer T, Panichella S (2019) Soft-body simulation and
procedural generation for the development and testing of cyber-physical systems. Tech. rep, BeamNG

Gambi A, Mueller M, Fraser G (2019) Automatically testing self-driving cars with search-based procedural
content generation. In: Proceedings of ISSTA ’19

García S, Strüber D, Brugali D, Berger T, Pelliccione P (2020) Robotics software engineering: A perspective
from the service robotics domain. In: Proceedings of ESEC/FSE ’20. pp 593–604

Grewal R, Tonella P, Stocco A (2024) Predicting safety misbehaviours in autonomous driving systems using
uncertainty quantification p 12

Grigorescu S, Trasnea B, Cocias T, Macesanu G (2020) A survey of deep learning techniques for autonomous
driving. J Field Robot 37(3):362–386

Group E (2021) Esi prosivic. https://myesi.esi-group.com/downloads/software-downloads/pro-sivic-2021.0
Haq FU, Shin D, Briand LC (2022) Efficient online testing for dnn-enabled systems using surrogate-assisted

and many-objective optimization. In: 44th IEEE/ACM 44th International Conference on Software Engi-
neering, ICSE 2022. ACM, Pittsburgh, PA, USA,May 25-27, 2022, pp 811–822. https://doi.org/10.1145/
3510003.3510188

Haq FU, Shin D, Nejati S, Briand L (2021) Can offline testing of deep neural networks replace their online
testing? Empir Softw Eng

Hu X, Li S, Huang T, Tang B, Chen L (2023) Sim2real and digital twins in autonomous driving: A survey
Jahangirova G, Stocco A, Tonella P (2021) Quality metrics and oracles for autonomous vehicles testing. In:

Proceedings of 14th IEEE International conference on software testing, verification and validation, ICST
’21. IEEE

Jha S, Banerjee SS, Tsai T, Hari SKS, Sullivan MB, Kalbarczyk ZT, Keckler SW, Iyer RK (2019) Ml-
based fault injection for autonomous vehicles: A case for bayesian fault injection. In: 2019 49th annual
IEEE/IFIP international conference on dependable systems and networks (DSN), pp. 112–124. https://
api.semanticscholar.org/CorpusID:195776612

Kapteyn MG, Pretorius JVR, Willcox KE (2020) A probabilistic graphical model foundation for enabling
predictive digital twins at scale. CoRR abs/2012.05841

Kaur P, Taghavi S, Tian Z, Shi W (2021) A survey on simulators for testing self-driving cars. CoRR
abs/2101.05337. arXiv:2101.05337

KimS, LiuM, Rhee JJ, JeonY, KwonY, KimCH (2022) Drivefuzz. In: Proceedings of the 2022ACMSIGSAC
Conference on Computer and Communications Security. ACM. https://doi.org/10.11452F3548606.
3560558

Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv:1412.6980
Kong Z, Guo J, Li A, Liu C (2020) Physgan: Generating physical-world-resilient adversarial examples for

autonomous driving. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recog-
nition. pp 14,254–14,263

Koopman P, Wagner M (2016) Challenges in autonomous vehicle testing and validation. SAE Int J Transp
Safety

Kothlow C (2021) The power of a multi-purpose digital twin. https://blogs.sw.siemens.com/simcenter/the-
power-of-a-multi-purpose-digital-twin/

Lambertenghi SC, Stocco A (2024) Assessing quality metrics for neural reality gap input mitigation in
autonomous driving testing p 12

Li G, Li Y, Jha S, Tsai T, Sullivan M, Hari SKS, Kalbarczyk Z, Iyer R (2020) Av-fuzzer: Finding safety
violations in autonomous driving systems. In: 2020 IEEE 31st international symposium on software
reliability engineering (ISSRE), pp. 25–36. https://doi.org/10.1109/ISSRE5003.2020.00012

Lukasczyk S, Kroiß F, Fraser G (2020) Automated unit test generation for python. In: International symposium
on search based software engineering. Springer, pp 9–24

Luke S (2013) Essentials of metaheuristics, vol. 2. Lulu Raleigh
May C (2019) Why automotive companies outsource software development services. https://medium.

datadriveninvestor.com/why-automotive-companies-outsource-software-development-services-
54a806458b4?gi=9d9b4f45e9ba

MoghadamMH, BorgM, SaadatmandM,Mousavirad SJ, BohlinM, Lisper B (2022)Machine learning testing
in an adas case study using simulation-integrated bio-inspired search-based testing

Mouret JB, Clune J (2015) Illuminating search spaces by mapping elites. arXiv:1504.04909
Nvidia PhysX (2022) https://developer.nvidia.com/physx-sdk
Panichella A, Kifetew FM, Tonella P (2017) Automated test case generation as a many-objective optimisation

problem with dynamic selection of the targets. IEEE Trans Softw Eng 44(2):122–158

123

https://myesi.esi-group.com/downloads/software-downloads/pro-sivic-2021.0
https://doi.org/10.1145/3510003.3510188
https://doi.org/10.1145/3510003.3510188
https://api.semanticscholar.org/CorpusID:195776612
https://api.semanticscholar.org/CorpusID:195776612
http://arxiv.org/abs/2101.05337
https://doi.org/10.11452F3548606.3560558
https://doi.org/10.11452F3548606.3560558
http://arxiv.org/abs/1412.6980
https://blogs.sw.siemens.com/simcenter/the-power-of-a-multi-purpose-digital-twin/
https://blogs.sw.siemens.com/simcenter/the-power-of-a-multi-purpose-digital-twin/
https://doi.org/10.1109/ISSRE5003.2020.00012
https://medium.datadriveninvestor.com/why-automotive-companies-outsource-software-development-services-54a806458b4?gi=9d9b4f45e9ba
https://medium.datadriveninvestor.com/why-automotive-companies-outsource-software-development-services-54a806458b4?gi=9d9b4f45e9ba
https://medium.datadriveninvestor.com/why-automotive-companies-outsource-software-development-services-54a806458b4?gi=9d9b4f45e9ba
http://arxiv.org/abs/1504.04909
https://developer.nvidia.com/physx-sdk

Empirical Software Engineering (2024) 29:72 Page 31 of 33 72

Panichella S, Gambi A, Zampetti F, Riccio V (2021) SBST tool competition 2021. In: 2021 IEEE/ACM 14th
international workshop on Search-Based Software Testing (SBST). IEEE, pp 20–27

Ramdas A, García Trillos N, Cuturi M (2017) On wasserstein two-sample testing and related families of
nonparametric tests. Entropy 19(2):47

Replication package (2023) https://github.com/testingautomated-usi/maxitwo
Riccio V, Tonella P (2020) Model-based exploration of the frontier of behaviours for deep learning system

testing. In: Proceedings of ESEC/FSE
Rosique F, Navarro PJ, Fernández C, Padilla A (2019) A systematic review of perception system and simulators

for autonomous vehicles research. Sensors 19(3). https://doi.org/10.3390/s19030648
Saad D (1998) Online algorithms and stochastic approximations. Online Learn
Saito T, Rehmsmeier M (2015) The precision-recall plot is more informative than the roc plot when evaluating

binary classifiers on imbalanced datasets. PloS one 10(3):e0118,432
San O (2021) The digital twin revolution. Nat Comput Sci 1(5):307–308
Software SDI (2022) Simcenter prescan. https://www.plm.automation.siemens.com/global/en/products/

simcenter/prescan.html
Stocco A, Nunes PJ, d’Amorim M, Tonella P (2022) Thirdeye: Attention maps for safe autonomous driving

systems. In: Proceedings of 37th IEEE/ACMinternational conference on automated software engineering,
ASE ’22. IEEE/ACM

Stocco A, Pulfer B, Tonella P (2022) Mind the gap! A study on the transferability of virtual vs physical-world
testing of autonomous driving systems. IEEE Trans Softw Eng. https://ieeexplore.ieee.org/document/
9869302

Stocco A, Pulfer B, Tonella P (2023) Model vs system level testing of autonomous driving systems: A repli-
cation and extension study. Empir Softw Eng

Stocco A, Tonella P (2020) Towards anomaly detectors that learn continuously. In: Proceedings of 31st Inter-
national Symposium on Software Reliability Engineering Workshops, ISSREW 2020. IEEE

Stocco A, Tonella P (2021) Confidence-driven weighted retraining for predicting safety-critical failures in
autonomous driving systems. J Softw: Evol Process. https://doi.org/10.1002/smr.2386

Stocco A, Weiss M, Calzana M, Tonella P (2020) Misbehaviour prediction for autonomous driving systems.
In: Proceedings of 42nd International Conference on Software Engineering, ICSE ’20. ACM

Talwar D, Guruswamy S, Ravipati N, Eirinaki M (2020) Evaluating validity of synthetic data in perception
tasks for autonomous vehicles. In: 2020 IEEE international conference on Artificial Intelligence Testing
(AITest). IEEE, pp 73–80

Tang S, Zhang Z, Zhang Y, Zhou J, Guo Y, Liu S, Guo S, Li Y, Ma L, Xue Y, Liu Y (2022) A survey on
automated driving system testing: Landscapes and trends. arXiv:2206.05961, https://doi.org/10.48550/
arXiv.2206.05961

Tawn Kramer ME contributors (2022) Donkeycar. https://www.donkeycar.com/
Team Chauffeur (2016) “Steering angle model: Chauffeur.”. https://github.com/udacity/self-driving-car/tree/

master/steering-models/community-models/chauffeur
Team Epoch (2016) “Steering angle model: Epoch.”. https://github.com/udacity/self-driving-car/tree/master/

steering-models/community-models/cg23
Team U (2019) Udacity’s self-driving car simulator. https://github.com/tsigalko18/self-driving-car-sim
Team U (2020) Udacity self-driving car challenge. https://github.com/udacity/self-driving-car/
Tian Y, Pei K, Jana S, Ray B (2018) Deeptest: Automated testing of deep-neural-network-driven autonomous

cars. In: Proceedings of ICSE ’18. ACM
Udacity (2017) A self-driving car simulator built with Unity. https://github.com/udacity/self-driving-car-sim.

Online; accessed 18 August 2019
Unity3d (2021) https://unity.com
van Dinter R, Tekinerdogan B, Catal C (2022) Predictive maintenance using digital twins: A systematic

literature review. Inf Softw Technol
Veledar O, Damjanovic-Behrendt V, Macher G (2019) Digital twins for dependability improvement of

autonomous driving. In: Systems, software and services process improvement: 26th European Con-
ference, EuroSPI 2019, Edinburgh, UK, September 18–20, 2019, Proceedings 26. Springer, pp 415–426

Verma A, Bagkar S, Allam NVS, Raman A, Schmid M, Krovi VN (2021) Implementation and Validation of
Behavior Cloning Using Scaled Vehicles. In: SAE WCX digital summit. SAE international. https://doi.
org/10.4271/2021-01-0248

Viitala A, Boney R, Kannala J (2020) Learning to drive small scale cars from scratch. CoRR abs/2008.00715.
arXiv:2008.00715

Waabi World (2022) https://waabi.ai/waabi-world/
Waymo Simulation City (2021) https://waymo.com/blog/2021/06/SimulationCity.html

123

https://github.com/testingautomated-usi/maxitwo
https://doi.org/10.3390/s19030648
https://www.plm.automation.siemens.com/global/en/products/simcenter/prescan.html
https://www.plm.automation.siemens.com/global/en/products/simcenter/prescan.html
https://ieeexplore.ieee.org/document/9869302
https://ieeexplore.ieee.org/document/9869302
https://doi.org/10.1002/smr.2386
http://arxiv.org/abs/2206.05961
https://doi.org/10.48550/arXiv.2206.05961
https://doi.org/10.48550/arXiv.2206.05961
https://www.donkeycar.com/
https://github.com/udacity/self-driving-car/tree/master/steering-models/community-models/chauffeur
https://github.com/udacity/self-driving-car/tree/master/steering-models/community-models/chauffeur
https://github.com/udacity/self-driving-car/tree/master/steering-models/community-models/cg23
https://github.com/udacity/self-driving-car/tree/master/steering-models/community-models/cg23
https://github.com/tsigalko18/self-driving-car-sim
https://github.com/udacity/self-driving-car/
https://github.com/udacity/self-driving-car-sim
https://unity.com
https://doi.org/10.4271/2021-01-0248
https://doi.org/10.4271/2021-01-0248
http://arxiv.org/abs/2008.00715
https://waabi.ai/waabi-world/
https://waymo.com/blog/2021/06/SimulationCity.html

 72 Page 32 of 33 Empirical Software Engineering (2024) 29:72

Wayve (2022) Introducing wayve infinity simulator. https://wayve.ai/blog/introducing-wayve-infinity-
simulator/

Yun H, Park D (2021) Simulation of self-driving system by implementing digital twin with gta5. In: 2021
International Conference on Electronics, Information, and Communication (ICEIC). pp 1–2. https://doi.
org/10.1109/ICEIC51217.2021.9369807

Yurtsever E, Lambert J, Carballo A, Takeda K (2020) A survey of autonomous driving: Common practices
and emerging technologies. IEEE Access 8:58443–58469

Zhang M, Zhang Y, Zhang L, Liu C, Khurshid S (2018) Deeproad: Gan-based metamorphic testing and input
validation framework for autonomous driving systems. In: Proceedings of ASE ’18

Zhong Z, Kaiser G, Ray B (2021) Neural network guided evolutionary fuzzing for finding traffic violations of
autonomous vehicles

ZhouH,ChenX,ZhangG,ZhouW(2021)Deep reinforcement learning for autonomous driving by transferring
visual features. In: 2020 25th International Conference on Pattern Recognition (ICPR). https://doi.org/
10.1109/ICPR48806.2021.9412011

Zhu JY, Park T, Isola P, Efros AA (2017) Unpaired image-to-image translation using cycle-consistent adver-
sarial networks. In: Computer vision (ICCV), 2017 IEEE international conference on

Zohdinasab T, Riccio V, Gambi A, Tonella P (2021) Deephyperion: exploring the feature space of deep
learning-based systems through illumination search. In: Proceedings of ISSTA ’21

Zohdinasab T, Riccio V, Gambi A, Tonella P (2022) Efficient and effective feature space exploration for testing
deep learning systems. ACM Trans Softw Eng Methodol

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Matteo Biagiola Matteo Biagiola is a Postdoctoral Researcher at
the Software Institute of Universitá della Svizzera italiana (USI) in
Lugano, Switzerland. He obtained his Ph.D degree in 2020 from Uni-
versitá degli Studi di Genova, Genova, Italy, in a joint collaboration
with Fondazione Bruno Kessler, Trento, Italy. Software testing is his
main research interest, with a particular focus on test generation for
Web applications and learning-based systems. He serves as a reviewer
for Software Engineering conferences (e.g., ICSME 2024, ICST 2024,
ESEM 2024) and journals (e.g., TOSEM, TSE and EMSE).

Andrea Stocco Andrea Stocco is an Assistant Professor at the Tech-
nical University of Munich at the Chair of Software Engineering for
Data-intensive Applications of the School of Computation, Informa-
tion and Technology. He is also the head of the Automated Software
Testing unit at fortiss. His research interests include software test-
ing and empirical software engineering, with particular emphasis on
misbehavior prediction for machine learning-based systems, and auto-
mated repair, robustness and maintainability of test suites for web
applications. He is the recipient of the Paper Award at the 16th Inter-
national Conference on the Quality of Information and Communica-
tions Technology (QUATIC 2023) and the Best Student Paper Award
at the 16th International Conference on Web Engineering (ICWE
2016). He serves on the program committees of top-tier software
engineering conferences such as ICSE, FSE and ICST, and reviews
for numerous software engineering journals including TSE, EMSE,
TOSEM, JSS, and IST.

123

https://wayve.ai/blog/introducing-wayve-infinity-simulator/
https://wayve.ai/blog/introducing-wayve-infinity-simulator/
https://doi.org/10.1109/ICEIC51217.2021.9369807
https://doi.org/10.1109/ICEIC51217.2021.9369807
https://doi.org/10.1109/ICPR48806.2021.9412011
https://doi.org/10.1109/ICPR48806.2021.9412011

Empirical Software Engineering (2024) 29:72 Page 33 of 33 72

Vincenzo Riccio Vincenzo Riccio is an Assistant Professor at Uni-
versity of Udine, Italy. Previously, he was a Postdoctoral Researcher
with the Software Institute of Universitá della Svizzera Italiana (USI)
in Lugano, Switzerland. He obtained his Ph.D degree from Univer-
sità degli Studi di Napoli “Federico II”, Italy. His current research is
focused on test automation for machine learning-based applications.
He serves as a reviewer for Software Engineering conferences (e.g.,
ESEM 2024, FSE 2024, ISSTA 2024) and journals (e.g., TOSEM and
TSE). He is part of the organizing committee of workshops (DeepTest
and SBFT) and conferences (SANER and SSBSE). He is Guest Editor
of the EMSE journal’s special issue on Innovations in Software Sys-
tem Testing with Deep Learning.

Paolo Tonella Paolo Tonella is Full Professor at the Faculty of Infor-
matics and at the Software Institute of Universitá della Svizzera ital-
iana (USI) in Lugano, Switzerland. He is Honorary Professor at Uni-
versity College London, UK. Paolo Tonella holds an ERC Advanced
grant as Principal Investigator of the project PRECRIME. He has writ-
ten over 150 peer reviewed conference papers and over 50 journal
papers. In 2011 he was awarded the ICSE 2001 MIP (Most Influential
Paper) award, for his paper: "Analysis and Testing of Web Applica-
tions". His H-index (according to Google scholar) is 66. He is/was
in the editorial board of TOSEM, TSE and EMSE. He is Program
Co-Chair of ESEC/FSE 2023. His current research interests are in
software testing, in particular approaches to ensure the dependability
of machine learning based systems, automated testing of cyber phys-
ical systems, and test oracle inference and improvement.

123

	Two is better than one: digital siblings to improve autonomous driving testing
	Abstract
	1 Introduction
	2 Motivation and Background
	2.1 Motivation
	2.2 Background
	2.2.1 Lane-keeping
	2.2.2 Evolutionary Search

	3 Multi-simulator AV Testing with Digital Siblings
	3.1 Test Scenarios
	3.1.1 Representation
	3.1.2 Implementation
	3.1.3 Validity and Oracle

	3.2 Creating/Fine-Tuning the Driving Model
	3.2.1 Data Collection
	3.2.2 Model Fine-Tuning via Hybrid Training

	3.3 Test Generation
	3.4 Migration and Union
	3.5 Merge
	3.6 Evaluation Scenario

	4 Case Study
	4.1 Test Object and Simulators
	4.1.1 Study Object
	4.1.2 Digital Siblings (DSS)
	4.1.3 Digital Twin (DT)

	4.2 Procedure
	4.2.1 CycleGAN Models
	4.2.2 Driving Models
	4.2.3 Offline Evaluation
	4.2.4 Test Generation
	4.2.5 Migration and Union
	4.2.6 Merge

	4.3 Metrics
	4.3.1 RQ1 (Offline Evaluation)
	4.3.2 RQ2 (Failure Probability) and RQ3 (Quality of Driving)

	4.4 Results
	4.4.1 Offline Evaluation (RQ1)
	4.4.2 Failure Probability (RQ2)
	4.4.3 Quality of Driving (RQ3)

	5 Discussion
	5.1 Threats to Validity
	5.1.1 Internal Validity
	5.1.2 External Validity
	5.1.3 Construct Validity

	6 Related Work
	6.1 Digital Twins for AV Testing
	6.2 Empirical Studies
	6.3 AV Testing Approaches

	7 Conclusions and Future Work
	Acknowledgements
	References

