
Empirical Software Engineering (2024) 29:71
https://doi.org/10.1007/s10664-024-10451-x

Toward granular search-based automatic unit test case
generation

Fabiano Pecorelli1 · Giovanni Grano2 · Fabio Palomba1 · Harald C. Gall3 ·
Andrea De Lucia1

Accepted: 23 January 2024
© The Author(s) 2024

Abstract
Unit testing verifies the presence of faults in individual software components. Previous
research has been targeting the automatic generation of unit tests through the adoption of ran-
dom or search-based algorithms. Despite their effectiveness, these approaches aim at creating
tests by solely optimizingmetrics like code coverage, without ensuring that the resulting tests
have granularities that would allow them to verify both the behavior of individual production
methods and the interaction between methods of the class under test. To address this limita-
tion, we propose a two-step systematic approach to the generation of unit tests: we first force
search-based algorithms to create tests that cover individual methods of the production code,
hence implementing the so-called intra-method tests; then, we relax the constraints to enable
the creation of intra-class tests that target the interactions among production code methods.
The assessment of our approach is conducted through a mixed-method research design that
combines statistical analyses with a user study. The key results report that our approach is
able to keep the same level of code and mutation coverage while providing test suites that are
more structured, more understandable and aligned to the design principles of unit testing.

Keywords Search-based Software Testing · Test Code Quality · Automatic Test Case
Generation

1 Introduction

Software testing is the process adopted to verify the presence of faults in production code
(Myers et al. 2011). The first step of this process consists of assessing the quality of individual
production code units (Ammann andOffutt 2016), e.g., classes of anObject-Oriented project.
Previous studies (Erdogmus et al. 2005; Williams et al. 2009) have shown that unit testing

Communicated by: Jin Guo, Raula Kula

This article belongs to the Topical Collection: Special Issue on Registered Reports.

B Fabiano Pecorelli
fpecorelli@unisa.it

Extended author information available on the last page of the article

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-024-10451-x&domain=pdf
http://orcid.org/0000-0003-2446-4291

 71 Page 2 of 49 Empirical Software Engineering (2024) 29:71

alone may identify up to 20% of a project’s defects and reduce up to 30% the costs connected
with development time. Despite the undoubted advantages given by unit testing, things are
worse in reality: most developers do not actually practice testing and tend to over-estimate
the time spent in writing, maintaining, and evolving unit tests, especially when it comes to
regression testing (Beller et al. 2017).

To support developers during unit testing activities, the research community has been
developing automated mechanisms—relying on various methodologies like random or
search-based software testing (Anand et al. 2013)—that aim at generating regression test
suites targeting individual units of production code. For instance, Fraser and Arcuri Fraser
andArcuri (2013) proposed a search-based technique, implemented in theEvosuite toolkit,1

able to optimize whole test suites based on the coverage achievable on production code by
tests belonging to the suite. Later on, Panichella et al. Panichella et al. (2015a) built on top of
Evosuite to represent the search process in a multi-objective, dynamic fashion that allowed
them to outperform the state-of-the-art approaches. Further techniques in literature proposed
to (1) optimize code coverage along with other secondary objectives (i.e., performance (Fer-
rer et al. 2012; Grano et al. 2019a; Pinto and Vergilio 2010), code metrics (Oster and Saglietti
2006; Palomba et al. 2016), and others (Lakhotia et al. 2007)) or (2) empower the underly-
ing search-based algorithms by working on their configuration (Arcuri 2019; Knowles and
Corne 2000; Zamani and Hemmati 2020). Yet, these approaches often fail to generate tests
that are well-designed, easily understandable, and maintainable (Fraser and Arcuri 2013). In
addition, existing approaches do not explicitly follow well-established methodologies that
suggest taking test case granularity into account (Pezzè andYoung 2008). In particular, when
developing unit test suites, two levels of granularity should be preserved (Harrold et al. 1992;
Orso and Silva 1998; Pezzè and Young 2008): first, the creation of tests covering single meth-
ods of the production code should be pursued, i.e., intra-method (Pezzè and Young 2008) or
basic-unit testing (Orso and Silva 1998); afterwards, tests exercising the interaction between
methods of the class should be developed in order to verify additional execution paths of
the production code that would not be covered otherwise, i.e., intra-class (Pezzè and Young
2008) or unit testing (Orso and Silva 1998).

In this paper, we target the problem of granularity in automatic test case generation,
advancing the state of the art by pursuing the first steps toward the integration of a systematic
strategy within the inner-working of automatic test case generation approaches that might
possibly support the production of more effective and understandable test suites. We build on
top of Mosa (Panichella et al. 2015a) to devise an improved technique, coined Granular-
Mosa (G- Mosa hereafter), that implements the concepts of intra-method and intra-class
testing. Our technique splits the overall search budget in two. In the first half, G- Mosa
forces the search-based algorithm to generate intra-method tests by limiting the number of
production calls to one. In the second half, the standardMosa implementation is executed so
that the generation can cover an arbitrary number of production methods, hence producing
intra-class test cases that exercise the interaction among methods.

We envision the proposed approach to be useful in multiple scenarios. On the one hand,
intra-method testing allows the isolation of issues, supporting regression testing of individual
components. There are two specific use caseswhere this testing strategywould be particularly
useful. First, the regression testing of changes targeting the evolution of individual methods:
intra-method testing would indeed help developers in the detection of defects, logic errors,
and exceptions that may be present within a single method. By testing a method in isolation,
a developer may pinpoint issues without the complexity introduced by the interactions with

1 http://www.evosuite.org

123

Empirical Software Engineering (2024) 29:71 Page 3 of 49 71

other methods or classes, favoring a quick resolution of these issues. Second, intra-method
testing would be essential when refactoring operations are applied at the level of individual
methods, e.g., an InlineMethod refactoring that aims atmerging together the code of two orig-
inal methods (Fowler and Beck 1999): in such a use case, developers would aim at improving
the design of the code without altering its functional behavior. Having a comprehensive suite
of intra-method tests would provide a safety net that would support developers in ensuring
that no regressions are introduced during the refactoring process, hence verifying that the
refactoring process worked as expected. On the other hand, intra-class testing focuses on the
interactions between methods within the same class. In the first place, it helps identify issues
that arise when methods collaborate to achieve a higher-level functionality, thus targeting
more complex behaviors than those considered with intra-method testing. Additionally, it is
worth considering that some defects can only be detected by looking at the way methods of a
class interact with each other, i.e., some defects are complex enough not to be spotted when
verifying individual methods. As a consequence, intra-class tests are essential for catching
such issues, ensuring that the class functions as intended. Last but not least, this category of
test cases might also be relevant when verifying the outcome of refactoring operations affect-
ing classes, e.g., a Move Method operation that moves a method from a class to another,
affecting the way the methods in both original and target classes communicate with each
other (Fowler and Beck 1999). In this condition, the proper application of refactoring can
only be tested through intra-class test cases, as the refactoring operation itself is not limited
to individual methods but may affect the behavior of entire classes.

On the basis of the considerations above, we see the definition of an automated approach
able to include both types of tests within automatically generated tests as instrumental to
enlarge the conceptual scope of test case generators and potentially lead to their higher
adoption in practice. In the first place, current approaches do not provide developers with
test cases that can explicitly support the use casesmentioned above. In this sense, our approach
may increase the confidence that developers have in automatically generated test cases by
letting them experiment with tests that can cover multiple situations occurring when evolving
a software system. In the second place, forcing the automated test case generators to design
intra-method and intra-class tests may have implications for usability and readability: we
indeed hypothesize that the test suite resulting from the adoption of a method that explicitly
consider the two types of test cases may be more readable and understandable for developers,
making these test cases more useful from their own perspective.

We evaluateG- Mosa in the context of an empirical study featuring both statistical analy-
ses and a user study, in an effort of assessing its effectiveness under multiple parameters such
as (1) branch and mutation coverage, (2) test suite size, (3) complexity and coupling of the
generated suites, (4) number of test smells, and (5) developers’ understandability.We conduct
our empirical investigation on a dataset of 100 non-trivial classes which has been previously
employed in similar studies. In doing so, we also compare G- Mosa against Mosa, so that
we may have a measure of the effect size of our results.

Our key findings show that the defined systematic strategy actually allows G- Mosa to
create intra-method and intra-class test cases. More importantly, the resulting suites have
a lower size per test case, a lower presence of test smells, and a higher understandability
than those generated by Mosa, yet having a statistically similar level of code and mutation
coverage. In other terms, G- Mosa can advance the state of the art by providing developers
with an automated strategy able to ensure similar coverage levels than previous approaches
while improving the overall degree of maintainability and understandability of the generated
test suites.

To sum up, our paper provides four main contributions:

123

 71 Page 4 of 49 Empirical Software Engineering (2024) 29:71

1. The definition and implementation of a novel, granular approach for automatic test case
generation;

2. An empirical assessment of the approach as well as its comparison with a baseline
technique;

3. A user study that evaluates the understandability of the generated test suites compared
to the selected baseline.

4. A publicly available appendix (Anonymous 2021) including both the implementation
of G- Mosa and the data/scripts used to assess it, that might be used by researchers to
replicate our study and/or build on top of our findings.

Structure of the paper. Section 2 provides background required to properly understand
our research. In Section 3 we present the algorithmic details of G- Mosa, while Section 4
overviews the research questions that we will address. In Section 5 we report on the experi-
mental details of the evaluation of our technique. Section 6 reports and discusses the results
achieved over our experimentation while Section 7 discusses the possible threats to validity
of our study. Finally, Section 8 outlines our next steps.

2 Background and RelatedWork

This section reports the basic concepts on automated tools to generate unit test suites as well
as a discussion on related work.

2.1 Automatic Unit Test Case Generation

The problem of automatically generating test data has been largely investigated in the last
decade (McMinn 2004). Search-based heuristics—genetic algorithms (Goldberg 1989)) in
particular—have been successfully applied to solve such a problem (McMinn 2004) with
the goal to generate tests with high code coverage. Single-target approaches have been the
first techniques proposed in the context of white-box testing (Scalabrino et al. 2016). These
approaches divide the search budget among all the targets (typically branches) and attempt
to cover each of them at a time. To overcome the limitation of single-target approaches,
Fraser and Arcuri Fraser and Arcuri (2013) proposed a multi-target approach, called whole
suite test generation (WS), that tackles all the coverage targets at the same time. Building on
such idea, Panichella et al. Panichella et al. (2015a) proposed a many-objective algorithm
called MOSA. While WS is guided by an aggregate suite-level fitness function, MOSA
evaluates the overall fitness of a test suite based on a vector of n objectives, one for each
branch to cover. The basic working of MOSA can be summarized as follows. At first, an
initial population of randomly generated tests is initialized. Such a population is then evolved
through consecutive generations: new offsprings are generated by selecting two parents in the
current population and then both crossover and mutation operators are applied (Panichella
et al. 2015a). MOSA introduced a novel preference-sorting algorithm to focus the search
toward uncovered branches. This heuristic solves the problem of selecting non-dominated
solutions that typically occurs in many-objective algorithms (von Lücken et al. 2014).
Random Test Case Generation. To provide the reader with the necessary context, we intro-
duce the basics of the mechanism used by EvoSuite Fraser and Arcuri (2011) to randomly
initialize the first generation of tests. More details can be found in the paper by Fraser and
Arcuri Fraser and Arcuri (2013). A tests case is represented in EvoSuite by a sequence of
statements T = {s1, s2, ..., sl} where |T | = l. Each si has a particular value v(si) of type

123

Empirical Software Engineering (2024) 29:71 Page 5 of 49 71

Algorithm 1: Random Generation of the Initial Population of Tests.
Input: M = {m1,m2, ...,mi }: methods of the CUT we want to cover

Maximum attempts A
Maximum size L

Result: T {s1, s2, ..., sn }: test case with with n statements
1 begin
2 T ← ∅
3 r ← RANDOM-NUMBER(1, L)
4 while not(max attempts reached) AND (|T | ≤ L) do
5 p ← RANDOM-NUMBER(0, 1)
6 if p ≤ INSERTION-UUT then
7 INSERT-CALL-ON-CUT(T)
8 else
9 v ← SELECT-VALUE(T)

10 INSERT-CALL-ON-VALUE(T , v)

11 return T

τ . The pseudo-code for the random test cases generation is showed in Algorithm 1. At first,
EvoSuite chooses a random r ∈ (1, L) where L is the test maximum length (i.e., number of
statements) (line 3 of Algorithm 1). Thus, EvoSuite initializes an empty test and tries to add
new statements to it. Such a logic is implemented in the RandomLengthTestFactory
class. EvoSuite defines five different kinds of statements (Fraser and Arcuri 2013): (i) primi-
tive statements (Sp), e.g., creating an Integer or a String variable, (ii) constructor statements
(Sc), that instantiate an object of a given type, (iii) field statements (S f) that access public
member variables, (iv) method statements (Sm), i.e., method invocations on objects (or static
method calls), and (v) assignment statements (Sa) that assign a value to a defined variable.
The value v and the type τ of each statement depend on the generated statement itself, e.g., the
value and type of method statement will depend on the return value of the invoked method. In
the preprocessing phase, a test cluster (Wappler and Lammermann 2005) analyzes the entire
SUT (system under test) and identifies all the available classes �. ∀c ∈ �, the test cluster
defines a set of {C,M,F}, where C is the set of constructors,M if the set of instance method
and F is the set of instance fields available for a class c, respectively.

EvoSuite tries to repetitively generate new statements (the loop from line 4 to line 10 in
Algorithm 1) and add them to a test. The process continues until the test hits the maximum
random length or the maximum number of attempts (a parameter in EvoSuite set to 1,000 by
default) is reached (line 4 in Algorithm 1). EvoSuite can insert two main kinds of statements.
With a probability lower than INSERTION- UUT (a property defined as 0.5 by default),
EvoSuite generates a random call of either a constructor of the class under test (CUT) or
a member class, i.e., instance field of method (lines 6-7 in Algorithm 1). Alternatively, the
tool can generate a method call to a value v(s j) where j ∈ (0, i] and i is the position on
which the statements will be added (lines 9-10 in Algorithm 1). In other words, EvoSuite
invokes a method on a value of a statement already inserted into the test. Such a value is
randomly selected among all the values from the statements from the position 0 to the actual
position (line 9 in Algorithm 1) EvoSuite also takes care of the parameters or the callee
objects needed to generate a given statement. For example, a call to an instance method of
the CUT requires (i) the generation of a statement instantiating the CUT itself and (ii) the
generation of a statement defining values needed as argument for the method call. The values
for such parameters can either (i) be selected among the sets of values already in the test, (ii)
set to null, or (iii) generated randomly.

123

 71 Page 6 of 49 Empirical Software Engineering (2024) 29:71

StringReader stringReader0 = new
StringReader("#<z-K~+* O4@s^W");

char[] charArray0 = new char [1];
stringReader0.read(charArray0);
JavaCharStream javaCharStream0 =

new JavaCharStream(stringReader0 , (-1273), 1, 77);
JavaParserTokenManager javaParserTokenManager0 =

new JavaParserTokenManager(javaCharStream0);
Token token0 = javaParserTokenManager0 .getNextToken ();

Listing 1 Example of a test generated by Evosuite

To better understand the generation process, let consider the test case in Listing 1, which
has been generated for the classJavaParserTokenManager. To create this test, Evosuite
works as follows. Starting from an empty test, it decides with a certain random proba-
bility to insert a statement invoking an instance method of the CUT: in our example, the
getNextToken()method (line 6 of Listing 1). However, Evosuite needs first to generate
two other statements, i.e., line 5 and 6 of Listing 1, respectively: a statements returning a
value of type JavaParserTokenManager (i.e., the callee of the method) and a statement
returning a value of type JavaCharStream (i.e., the parameter of the method). In turn
the constructor of JavaCharStream will need a value of type StringReader (line 1
of Listing 1). Line 3 of Listing 1 is instead the result of the other kind of possible insertion,
i.e., a method call to a value already present in the test: the stringReader0 object in this
case. Similarly, the tool will generate the primitive statement at line 2 of Listing 1 to provide
the parameter needed by such a call.

2.2 RelatedWork

During the last decades, researchers have been working on the definition of search-based
solutions that automate the generation of test data (Ali et al. 2009). Most of the proposed
approaches target branch coverage as primary goal to achieve (McMinn 2004), but more
recent investigations have attempted to consider additional goals that would be desirable for
making automatic test case generation more practical and aligned to what testers would like
to have: in this direction, techniques have been proposed to complement code coverage with
memory consumption (Lakhotia et al. 2007), oracle cost (Ferrer et al. 2012), execution time
(Pinto and Vergilio 2010; Grano et al. 2019a), total amount of number of test cases (Oster
and Saglietti 2006), and code quality (Palomba et al. 2016). Rojas et al. Rojas et al. (2015a)
also proposed to combine multiple code coverage criteria during the generation process.

A more recent trend is represented by the adoption of natural language models to increase
the overall readability of the generated tests (Afshan et al. 2013). As an example, Daka et al.
Daka et al. (2015) proposed a post-processing method that optimizes the readability of test
cases by mutating them through a domain-specific model of unit test readability based on
human judgment. Further strategies include the optimization of assert statements relying
on mutation analysis (Fraser and Arcuri 2013).

Our paper builds upon the research conducted so far and proposes the introduction of a
systematic approach to the generation of test cases. In this sense, the technique proposed
can be applied on top of all the approaches mentioned above. In the context of our research,
we selected Mosa as baseline since this represents a state of the art technique that has been
shown to overcome other approaches reported in literature (Panichella et al. 2018a); yet, the

123

Empirical Software Engineering (2024) 29:71 Page 7 of 49 71

Algorithm 2: G- Mosa Algorithm
Input: B = {τ1, ..., τm }: set of coverage targets of a program

Population size M
Result: A test suite T

1 begin
2 T ← ∅
3 α ← intra-method-testing(M)
4 γ ← MOSA(M)
5 Tα, Bα ← GENERATE-TESTS(α, B) /* half search budget */
6 if Bα == ∅ then
7 return Tα

8 T ← T
⋃

Tα

9 Tγ , Bγ ← GENERATE-TESTS(γ, Bγ) /* half search budget */
10 T ← T

⋃
Tγ

11 return T

underlying idea of building intra-method tests first is general and can be complemented by
the optimization of any primary/secondary objective.

It is alsoworth tomention themany empirical studies conducted on test cases automatically
generated (Ali et al. 2009). Researchers have indeed empirically compared the performance
of multiple approaches to the generation (Wang and Offutt 2009), other than investigating on
a large-scale the performance of those tools (Fraser and Arcuri 2014, 2015a), the usability
of testing tools in practice (Ceccato et al. 2015; Fraser et al. 2015; Rojas et al. 2015b), and
their quality characteristics (Grano et al. 2019b, 2018; Papadakis et al. 2018).

The empirical study discussed in this paper clearly has a different connotation, as it
aims to assess the capabilities of the proposed technique. Yet, it contributes to the body of
knowledge since we also evaluated how test code maintainability can be improved by means
of the systematic strategy implemented within our approach.

3 G-MOSA: A Two-Step Automatic Test Case Generation Approach

G- Mosa is defined as a two-step methodology that combines intra-method and intra-class
unit testing (Orso and Silva 1998; Pezzè and Young 2008). The pseudo-code of G- Mosa is
outlined in Algorithm 2. The first step of the methodology generates tests that exercise the
behavior of production methods in isolation: we indeed only allowed by design to generate
intra-method tests (details in Section 3.1). The second step is based on the standard MOSA
implementation (Panichella et al. 2015a) that performs intra-class unit testing by exercising a
class trough a sequence of method call invocations. In the following, we detail each of these
two steps.

3.1 Step I - Intra-Method Tests Generation

The intra-method testing process is the first step to be initialized (line 3 of Algorithm 2). Like
any other test-case generation technique, a set of coverage targets B is given as input, namely
the set of branches within the production class under test that the prospective test cases aim
at covering. The intra-method process starts (line 5 of Algorithm 2) with B as target of the
search and sets its search budget to the half of the overall budget available: in other words,
if G- Mosa is given 180 seconds as budget, the intra-method testing process will run for 90
seconds. At the end of its search, the first step returns (i) Tα , the set of generated tests cases,

123

 71 Page 8 of 49 Empirical Software Engineering (2024) 29:71

Algorithm 3: Insert Random Call
Input: T {s1, s2, ..., sn }: test case with with n statements

S = {s1, s2, ..., s j }: setters of the CUT
Result: T : test case with with n + 1 statements

1 begin
2 o ← GET-RANDOM-TEST-CALL
3 if (o is a method) then
4 if RANDOM-NUMBER(0, 1) ≤ INSERTION-SET then
5 T ← T

⋃
ADD-METHOD(s j ∈ S)

6 return T

7 T ← T
⋃

ADD-METHOD(o)
8 Tc ← true
9 else

10 T ← T
⋃

(ADD-COSTRUCTOR(o) OR T
⋃

ADD-FIELD(o))

11 return T

and (ii) Bα , the set of uncovered targets. Tα and Bα will be used then as input for the second
phase (see Section 3.2).
Intra-Method Code-Generation Engine G- Mosa is a variant of Mosa that applies first
an intra-method testing methodology (Orso and Silva 1998): each generated test exercises
a single production method of the CUT. To enable intra-method testing, we modified the
code-generation engine used by EvoSuite to randomly generate new tests. In Section 2 we
described such a mechanism: in a nutshell, EvoSuite inserts randomly generated statements
(e.g., calls to a class constructor or invocation of instance methods) in a test until a maximum
number of statements is reached. This approach does not guarantee—nor has been designed to
do it—any control on the number of instance method invocations of a test. As a consequence,
tests might end up containing a sequence of method calls for the CUT and thus, perform
intra-class unit testing.

To enable intra-method testing, we modified the algorithm described in Algorithm 1.With
the current formulation, the insertion loop (from line 4 to line 10 in Algorithm 1) has two
stopping conditions: either a maximum number of attempts or the maximum length L of the
test is reached. We defined a third stopping criterion: as soon as a statement si representing a
method invocation on a CUT object is inserted, we considered the test as complete. To store
this information, in our implementation each test T has a property Tc, initially set to false,
that indicateswhether such a statement si has been inserted in T . Therefore, we added not(Tc)
as additional stopping criterion for the insertion loop at line 4 of Algorithm 1. It is worth
remarking that insertions of CUT instance methods are managed by the INSERT-CALL-
ON-CUT procedure (line 7 of Algorithm 1). Thus, we re-implemented such a procedure to
handle the newly defined stopping criterion.

Algorithm 3 shows our ad-hoc implementation of the INSERT-CALL-ON-CUT pro-
cedure. The algorithm takes as input a test T with 1 ≤ n < L statements and a set
S ⊆ 〈MCUT ∪FCUT 〉 of setters for the CUT. For a class c, S is composed of all its instance
fieldsF and of a subset of its instancemethodsM.Wedefined the following heuristic to detect
the instance method ∈ S for the CUT. We considered as setter every m ∈ M whose method
name has the 〈prefix〉〈keyword〉〈suffix〉 structure, with keyword ∈ {set, get, put}, if and only
if ∃ m′ ∈ M | 〈keyword〉′ == get and 〈prefix〉′ == 〈prefix〉 & 〈suffix〉′ == 〈suffix〉.
It is worth noting that the 〈pre f i x〉 part of the method name is optional. For instance,
let consider the class SimpleNode of the jmca project: this has two instance methods

123

Empirical Software Engineering (2024) 29:71 Page 9 of 49 71

named jjtSetParent and jjtGetParent. According to our heuristic, the method
jjtSetParent is considered as a setter method of the class SimpleNode.

The first step for generating a random call on the CUT is to extract a random call o in
the set {C,M,F}. This is done by the GET-RANDOM-TEST-CALL procedure (line 2 of
Algorithm 3). If o ∈ {C ∪F}, a new statement si including a call to o is inserted into the test
(as described in Section 2). In case o ∈ M—with a certain probability (set as property to 0.3
by default)—a new statement with a randomly selected setter is generated and inserted into
T ; therefore, the test is returned (lines from 4 to 6 in Algorithm 3). In the opposite case, o is
added to the test T and its property Tc is set to true (lines 7 and 8 of Algorithm 3). As a
consequence, the code-generation engine stops attempting new insertions: Tc is now true
and the condition not(Tc) is not met anymore. Our implementation of GET-RANDOM-
TEST-CALL enables intra-method testing since it allows by design the invocation of a single
instance method of the CUT. Note that our formulation does not consider setters as units
under test since they are needed only to set the state of the CUT object required to properly
exercise the method under test.

3.2 Step II - Intra-Class Tests Generation

The procedure described so far generate intra-method test cases, each of them targeting
individual methods of the class under test. To better understand the following, intra-class test
generation step, let us reason on the outcome of the intra-method testing and the implications
it has.

A production method may have one or multiple branches, with each predicate of a branch
being either true or false. In the case a production method has a single branch and this is fully
covered during the intra-method testing procedure, this means that G- Mosa has been able to
generate two unit tests that were able to verify both true and false predicates of the branch. In
this situation, coverage testing would indicate the branch as covered, hence suggesting that
no further test cases are required. As our approach exploits the concepts of coverage testing,
methods in this category would not be considered further in the intra-class testing generation
phase.

On the contrary, if a productionmethod has branches that were not covered yet or branches
not fully covered in the intra-method testing phase, this means that G- Mosa was unable to
generate an appropriate number of test cases for the method: this might be either caused by
(i) the inability of our approach to cover a branch or a predicate thereof or (ii) the necessity
to generate more complex test cases that let the methods of the production class interact. As
such, any branches that remained uncovered following the intra-method testing process were
subsequently given as input for the second phase of the generation (i.e., intra-class testing),
where we let the baseline MOSA work without any constraint on the amount of method calls
that the test should contain. This step allows our approach to keep generating test cases for
the production methods of the class under test in an effort to further increase the overall
branch coverage obtained and generate tests that may be able to identify defects caused by
the interaction of multiple method calls.

From an algorithmic standpoint, the GENERATE-TESTS procedure returns a set of gen-
erated tests (Tα) and a set of uncovered targets Bα ⊆ B, where (i) Tα represents the set of
intra-method test cases generated at the first step and (ii) Bα represents the production code
branches that were not successfully covered within the first part of the generation process.

If Bα == ∅, the intra-method testing process achieved full coverage on the CUT and
Tα is returned (lines 6-7 of Algorithm 2). In the opposite case, Tα is added to T (line 8 of

123

 71 Page 10 of 49 Empirical Software Engineering (2024) 29:71

Algorithm 2). In the second step, Mosa is selected as algorithm for the search. This time,
Bα is given as set of target to Mosa (line 9 of Algorithm 2). In other words, Mosa will
attempt to cover only the targets that have not been covered in the first step. At the end of
the GENERATE-TESTS procedure, the resulting Tγ is added to T and the final test suite
T is returned (lines 9-10 of Algorithm 2). T is formed by two different kinds of tests: Tα

generated by the intra-method process, that tests single production methods in isolation and
Tγ generated by Mosa, that exercise a class by constructing sequences of method calls.

4 Research Questions and Objectives

The primary goal of the proposed approach is that of improving the structure and quality
of the automatically generated test cases. As such, the ultimate goal of the empirical study
is to analyze the quality implications of G- Mosa in terms of size, maintainability, and
understandability, with the purpose of understanding how our approach can generate higher-
quality unit test cases when compared to a state of the art automatic test case generation
technique like Mosa. To address our goal, we set up three research questions (RQs).

Before assessing the quality implications of G- Mosa, we target one of the risks associated
with the mechanisms implemented within our approach that might have impacted its actual
usefulness. By design,G- Mosa forces the generation of intra-method tests, possibly limiting
its scope and lowering the number of tangentially covered branches. As a consequence, both
code and mutation coverage might have been impacted. Should this be the case, our approach
might be considered poorly useful in practice, as the improvement of test quality would be
accompanied by a decrease of effectiveness. As such, we first assess the level of code and
mutation coverage achieved and, only after verifying that our approach does not compromise
them, we proceed with the analysis of additional perspectives. Our first RQ can therefore
be seen as preliminary and instrumental to the quality analysis: it aims at comparing the
effectiveness of test suites generated by G- Mosa and Mosa (Panichella et al. 2015a). We
consider Mosa as baseline because (1) previous techniques aimed at improving the quality
of generated tests were compared to Mosa as well (e.g., (Palomba et al. 2016)) and (2) we
built G- Mosa on top of Mosa, making the comparison required. We define the following
research question:

RQ1 - Effectiveness. How does G- Mosa compare to MOSA in terms of branch and
mutation coverage?

Once assessed the implications of G- Mosa for the effectiveness of test cases, we inves-
tigate the potential benefits given by our technique. We take into account the size of the
generated test cases: according to previous research in the field (Panichella et al. 2015a;
Fraser and Arcuri 2013; Grano et al. 2020), this is an indicator that has been often used
to estimate the effort that developers would spend to comprehend and interact with the
tests, indeed, a number of previously proposed search-based automatic test case generation
approaches used it as a metric to optimize (Panichella et al. 2015b; Oster and Saglietti 2006;
Pinto and Vergilio 2010). Also in this case, we compare the size of test cases generated by
G- Mosa and Mosa, addressing the following RQ:

RQ2 - Size. How does G- Mosa compare to MOSA in terms of test case size?

123

Empirical Software Engineering (2024) 29:71 Page 11 of 49 71

While the size assessment could already provide insights into the comprehensibility of the
generated test cases, in the context of our research we provide additional analyses to assess
their potential usefulness from a maintainability perspective. In particular, once generated,
test cases not only need to be manually validated by testers to verify assertions (Afshan et al.
2013; Barr et al. 2015), but also maintained to keep them updated as a consequence of the
changes to the production code (Palomba et al. 2016). Hence, it is reasonable to assess the
capabilities of our approach in this respect. We compare G- Mosa andMosa in terms of the
metrics that have been previously designed to describe the quality and maintainability of test
cases and that we have surveyed in our previous work (Pecorelli et al. 2021). These pertain to
(1) code complexity, asmeasured by theweightedmethod count of a test suite (Subramanyam
andKrishnan 2003); (2) fan-out (Henry andKafura 1981); and (3) test smells, i.e., suboptimal
design or implementation choices applied when developing test cases (Garousi and Küçük
2018)). This lead to our third research question:

RQ3 - Maintainability. How does G- Mosa compare to MOSA in terms of maintain-
ability of test cases?

On theonehand, the quantitativemeasurements computed so far canprovide amultifaceted
view of how the proposed approach compares to state of the art in terms of performance. On
the other hand, these analyses cannot quantify the actual gain given by G- Mosa in practice.
For this reason, the last step of our methodology includes a user study where we inquiry
developers on the understandability of the test cases output by G- Mosa when compared to
those of Mosa. This leads to the formulation of our last research question:

RQ4 - Understandability. How does G- Mosa compare to MOSA in terms of under-
standability of test cases?

5 Study Design

To answer our research questions, we aim to perform an empirical study on Java classes
comparing G- Mosa to MOSA (Panichella et al. 2015a). This section reports details about
the experimental procedure planned to address our RQs.

5.1 Experimental Environment

We run G- Mosa and Mosa against a dataset of Java classes, collecting the generated tests
and the corresponding code coverage indicators. In particular, we consider around 100 classes
pertaining to the SF110 corpus (Fraser and Arcuri 2014). This benchmark2 contains a set
of Java classes extracted from 110 projects of the SourceForge repository. We select it
since this is typically used in automatic test case generation research (Fraser and Arcuri
2014; Panichella et al. 2015a; Grano et al. 2019b; Fraser and Arcuri 2013) and, therefore,
can allow us to experiment our technique on a “standard” benchmark that would enable other
researchers to build upon our findings and compare other techniques. As part of our online
appendix (Anonymous 2021), we provide a table reporting the name of the classes considered

2 http://www.evosuite.org/experimental-data/sf110/

123

http://www.evosuite.org/experimental-data/sf110/

 71 Page 12 of 49 Empirical Software Engineering (2024) 29:71

in our study—for the sake of readability, we could not report it in the paper. These classes
are associated with a unique identifier (column “ID”) that we use when reporting the results.
In this stage, nine of those classes led the approaches to crash because of an internal error
produced by Evosuite (Panichella et al. 2018a) and, for this reason, we had to exclude them
from our analysis resulting in a final set of 91 classes.

To account for the intrinsic non-deterministic nature of genetic algorithms, we run each
approach on each class in the dataset for 30 times, as recommended by Campos et al. Campos
et al. (2017). We use the time criterion as search budget, allowing 180 seconds for the
search (Campos et al. 2017). In G- Mosa, this time is equally distributed amongst the two
steps of the approach, i.e., we reserve 90 seconds for intra-method and 90 for intra-class
testing. Mosa could instead rely on the entire search budget to generate tests, as it does not
have multiple steps.

To run the experimented approaches, we rely on the default parameter configuration given
by Evosuite. As shown by Arcuri and Fraser Arcuri and Fraser (2013), the parameter tuning
process is long and expensive, other than not necessarily paying off in the end.

5.2 Collecting PerformanceMetrics

In the context of RQ1, we rely on code and mutation coverage. We select branch coverage
to measure the proportion of a program’s source code branches that is executed when a
specific set of test cases is run. More specifically, a branch is defined as a code instruction,
e.g., an if statement, that may cause a program to begin executing a different sequence of
instructions based on the verification of a certain condition. The branch coverage is instead
computed by dividing the number of branches executed by the code included within a test
suite over the total number of branches available in the production code under test. As for
mutation coverage, this is a metric that estimates the effectiveness of test suites in detecting
the so-called mutants, namely artificial defects purposely introduced into the production
code through small modifications (i.e., mutations) aiming at altering its original behavior.
The metric is computed by dividing the number of mutants detected by the test suite over
the total number of mutants within the production code under test. To compute these two
metrics, we rely on the code and mutation coverage analysis engine of Evosuite (Fraser and
Arcuri 2015b). We let the tool collect the branch coverage of each test in each of the 30 runs.
Additionally, the tool also collects information on the mutation score: despite the existence
of other tools able to perform mutation analysis (e.g., PiTest3), we rely on the one made by
Evosuite since it can effectively represent real defects (Fraser and Arcuri 2015b) and has
been used in a series of recent studies on automatic test case generation (Grano et al. 2019a;
Panichella et al. 2018a, b). We perform the mutation analysis at the end of the search, once
the unit tests have been generated for all the approaches. To obtain meaningful results we
give an extra-budget of 5 minutes to the mutation analysis—this step is required to generate
more mutants and to verify the ability of tests to capture them (Fraser and Arcuri 2015b).

As for RQ2, we start from the set of test suites output by the search process for the two
experimented approaches and first compute their overall size, i.e., the lines of code of the
generated test classes. As shown by previous work in the field (Fraser and Arcuri 2013;
Panichella et al. 2018a), this metric represents an indicator of the usability of the test suites
given by the tools. While recognizing the value of this perspective, we also know that such
a validation could be excessively unfair in our case. By design, G- Mosa aims at creating
a larger amount of test cases with respect to Mosa, with a first set of many small tests

3 The Pitest analyzer: https://pitest.org.

123

https://pitest.org

Empirical Software Engineering (2024) 29:71 Page 13 of 49 71

implementing the concept of intra-method testing and a second set composed of larger tests
that implement the concept of intra-class testing. On the contrary,Mosa does not explicitly
target the creation of maintainable test cases, hence possibly generating a fewer amount of
tests that account for a lower overall test suite size while reaching high branch coverage.
As a consequence, the assessment of the overall test suite size could be too simplistic, other
than providing coarse-grained considerations on the usefulness of test suites, i.e., in practice,
developers rarely look at the entire test suite while fixing defects (Ceccato et al. 2015).
Hence, we aim to complement the overall test suite size assessment with an analysis of the
properties of the individual test cases: we compute the mean size per test case, namely the
average amount of lines of code of the automatically generated test cases within a test suite.
Such a measurement can allow us to verify whether our approach could provide developers
with smaller units that might better align to the actual effort required by a developer to deal
with the tests generated by G- Mosa when compared to our baseline Mosa (Ceccato et al.
2015).

To answer our third research question (RQ3), we compute three metrics which have been
previously associated with maintainability and that might affect the way developers interact
with test cases (Spadini et al. 2018; Pecorelli et al. 2021;Grano et al. 2020;Gren andAntinyan
2017).WeightedMethod Count of a Test Suite (TWMC) (Subramanyam and Krishnan 2003)
represents a complexity metric whose computation implies the sum of the complexity values
of the individual test methods of a test class. The metric provides an estimation of how
complex a test class would be to understand for a developer (Elish and Rine 2006; Gren
and Antinyan 2017). We compute TWMC as the sum of the cyclomatic complexity of all
test cases in a test suite.. In the second place, we compute the fan-out metric (Henry and
Kafura 1981), which provides an estimation of outgoing dependencies of the test cases in
a test suite. It quantifies the number of dependencies that exist between a module/class and
other modules/classes. Keeping coupling under control is a key concern when writing test
cases, as an excessive dependence among tests might potentially lead to some sort of flakiness
(Habchi et al. 2021). Finally, we detect the number of test smells per test suite: these smells
have been often associated to the decrease of maintainability and effectiveness of test suites
(Spadini et al. 2018; Grano et al. 2019b) and likely represent themost suitablemaintainability
aspect to verify within the test code. In this respect, it is worth remarking that automatically
generated test code is by design affected by certain test smells: for instance, the generated
tests come without assertion messages and, therefore, are naturally affected by the smell
known as Assertion Roulette (Garousi and Küçük 2018)), which arises when a test has no
documented assertions. At the same time, automatic tests might not suffer from other types
of smells. For example, external resources are mocked by the Evosuite framework, making
the emergence of a test smell likeMystery Guest (Garousi and Küçük 2018))—which has to
do with the use of external resources—not possible. As such, comparing the experimented
approaches based on the presence of these smells would not make sense. Hence, we only
consider the test smells whose presence can be actually measured. Specifically we computed
the following test smells:

– Eager Test: occurs when a test case tries to cover multiple scenarios or test multiple
functionalities in one go instead of being focused on a specific behavior or functionality
of the system under test.

– General Fixture: occurs when a test case relies on a common setup or configuration for
multiple test scenarios, making it difficult to isolate and identify specific issues in the
system.

123

 71 Page 14 of 49 Empirical Software Engineering (2024) 29:71

– Lazy Test: occurs when a test case does not adequately cover all possible scenarios
or behaviors of the system under test, leading to potential gaps in test coverage and
inadequate identification of issues or bugs.

– Sensitive Equality: occurs when a test case compares two values using direct equality
checks, such as equals(), without considering the possible tolerance for slight variations
in values.

– Indirect Testing: occurs when a test case indirectly tests the functionality of the system
under test by relying on the behavior of other components or dependencies.

In more practical terms, we employ the tool by Spinellis Spinellis (2005) to compute
TWMC and EC metrics. As for test smells, we rely on TsDetect (Peruma et al. 2020),
which is a tool able to identify more than 25 different types of test smells—in this case,
however, we limit the detection to the test smells that might actually arise in automatically
generated tests.

5.3 Collecting Understandability Metrics

The last step of our experimentation concerns with the assessment of the actual gain provided
byG- Mosa in practice.We therefore conducted an online experiment where we (1) involved
developers in tasks connected to the understandability of the test cases generated by our
approach and (2) compared our approach with the baseline Mosa.

Experimental setting.We designed a user study that allowed participants to first provide
demographics information and then provide indications about the level of understandability
of the test classes generated by the two approaches compared, i.e., G- Mosa and Mosa. To
run the experiment, we used an online platform we have recently developed, which allows
external participants to (1) navigate and interact with source code elements and (2) answer
closed and open questions.

More specifically, the participants were first asked to answer demographic questions that
will serve to address their background and level of expertise in software development and
testing. We also inquired them about the type of development they use to do, e.g., whether
they consider themselves as industrial or open-source developers. In addition, we asked to
report how frequently the participants are involved in unit testing tasks with respect to other
types of testing activities: in this way, we could assess the suitability of participants with
the goal of our study, which was to assess the maintainability/understandability of unit test
classes.

In the second place, participants were asked to perform the same task twice. They were
provided with the source code of two Java test classes aiming at exercising the same pro-
duction class. One of them generated by G- Mosa and the other one by Mosa. In each
task, after reading each of the two test classes participants were asked to (1) rate the overall
understandability of the class with a 5-points Likert scale (from 1, which indicates poorly
understandable code, to 5, which indicates fully understandable code); (2) explain the reasons
for the rating provided; (3) write the assertion and corresponding assertion message for two
methods randomly selected from the test class under consideration. While the responses to
the first two questions were used to assess the perceived understandability of test cases, the
responses to the last question were used to verify the validity of the assertions produced by
developers.

123

Empirical Software Engineering (2024) 29:71 Page 15 of 49 71

Table 1 User study configurations. The class ID refers to the table with all the considered classes reported in
our online apppendix (Anonymous 2021)

Configuration ID 1st Treatment 2nd Treatment Class ID

Configuration 1 Mosa G- Mosa Class #5

Configuration 2 G- Mosa Mosa Class #9

Configuration 3 Mosa G- Mosa Class #2

Configuration 4 G- Mosa Mosa Class #34

The pairs of test classes were randomly selected from the dataset employed to address
the previous research questions. We selected 4 pairs of test classes and prepared 4 different
configurations of the study (one for each class). This was done to avoid biased interpretations
of the results due to specific characteristics of a selected class.We had to limit the scope of the
study to few classes in order to preserve the compromise between having enough information
to address RQ4 and design a short-enough user study that allowed the participation of a
large amount of developers—and that, therefore, would have allowed us to draw statistically
significant conclusions. It is worth remarking that the choice of selecting four pairs of test
classes for the user study was not random, but driven by the results of a pilot study, which
revealed that this amount of test classes was the optimal choice for the kind of assessment
participants should have done. More details on the pilot study and the results obtained are
discussed in Section 7.4.

As for the order of the test classes, half of the participants first engaged with a test class
generated byMosa and then with the one generated by G- Mosa. Conversely, the other half
of the participants read the two test classes in the reverse order. Through the experiment,
we assessed the extent to which developers can understand and deal with the information
provided by the test cases generated by the two approaches. Table 1 reports an overview of
the four resulting user study configurations.

Participant’s recruitment. We recruited developers using various channels. In the first
place, we invited the original open-source developers of the classes considered in the study.
This has been done via e-mail. Of course, we only approached the developers who have
publicly released their e-mail address on GitHub. In a complementary manner, we recruited
participants through Prolific4 by carefully considering the guidelines recently proposed by
Reid et al. Reid et al. (2022). This is a research-oriented web-based platform that enables
researchers to find participants for user studies: in particular, it allowed to pre-set the desired
number of responses (in our case, 140) and automatically closes the survey once this target is
met—because of these characteristics, it would not be accurate to report a response rate. One
of the features of Prolific is the specification of constraints over participants, which in our
case enabled to limit the participation to software developers that are knowledgeable about
Java development and unit testing. It is important to point out that Prolific implements
an opt-in strategy (Hunt et al. 2013), meaning that participants get voluntarily involved.
This might potentially lead to self-selection or voluntary response bias (Heckman 1990).
To mitigate this risk, we introduced an incentive of 2 pounds per valid respondent. Once
we received the answers, we filtered out the answers coming from participants who did not
take the task seriously—this was done by manually validating the answers received, looking
for cases where participants clearly replied to questions in a shallow manner or just for the

4 Prolific website: https://www.prolific.co/.

123

https://www.prolific.co/

 71 Page 16 of 49 Empirical Software Engineering (2024) 29:71

sake of getting the experiment done within the lowest amount of time possible. Overall, we
discarded 20 responses out of the 140 received.

We could rely on a total of 120 valid responses. Unfortunately, we did not receive any
reply from the original developers (response rate=0%)—this was likely due to a reflection of
the issues raising when involving developers from GitHub, who are typically overwhelmed
by requests coming from researchers and which, because of that, are less and less prone to be
involved (Baltes and Diehl 2016). On the contrary, we could get a notable amount of answers
from developers contributing to Prolific. Figure 1 reports the background of the respon-
dents, as self-assessed by themselves when filling the survey out. As shown, they indicated a
programming experience between 1 and 35 years and an experience with unit testing ranging
between 1 and 24 years. Perhaps more importantly, 70% of the participants reported that they
often or frequently conduct unit testing activities, hence being qualified enough to take part
of our study. In addition, most of the participants were industrial developers (40%).

From the analysis of the background information reported by our participants, we could
conclude that our sample was mainly composed of industrial developers with a solid knowl-
edge of unit testing and that perform such an activity quite often during their daily work
activities. As such, we deemed the sample valid for the goals of our study.

5.4 Data Analysis

After collecting the metrics, we ran statistical tests to verify whether the differences observed
between G- Mosa and Mosa are statistically significant. More specifically, we employed
the non-parametric Wilcoxon Rank Sum Test (Conover 1999) (with α == 0.05) on the
distributions of (1) code coverage, (2) mutation coverage, (3) size per test case, (4) weighted
method count of a test suite, (5) fan-out, (6) number of test smells, and (7) understandability
scores assigned by developers in the user study. In this respect, we formulated the following
null hypotheses:

Fig. 1 Background of survey respondents

123

Empirical Software Engineering (2024) 29:71 Page 17 of 49 71

Hn 1. There is no significant difference in terms of branch coverage achieved by G- Mosa
and MOSA.

Hn 2. There is no significant difference in terms ofmutation coverage achieved byG- Mosa
and Mosa.

Hn 3. There is no significant difference in terms of size per unit achieved by G- Mosa and
Mosa.

Hn 4. There is no significant difference in terms of weighted method count of a test suite
achieved by G- Mosa and Mosa.

Hn 5. There is no significant difference in terms of fan-out achieved byG- Mosa andMosa.
Hn 6. There is no significant difference in terms of the number of test smells achieved by

G- Mosa and Mosa.
Hn 7. There is no significant difference in terms of the understandability scores achieved by

G- Mosa and Mosa.

From a statistical perspective, we have to take into account the fact that, if one of the null
hypothesis is rejected, then one between G- Mosa and Mosa is statistically better than the
other. Hence, we defined a set of alternative hypotheses such as the following:

An 1. The branch coverage achieved by G- Mosa and MOSA is statistically different.
An 2. The mutation coverage achieved by G- Mosa and Mosa is statistically different.
An 3. The size per unit of the unit test suites generated byG- Mosa andMosa is statistically

different.
An 4. Theweighted method count of a test suite of the unit test suites generated byG- Mosa

and Mosa is statistically different.
An 5. The fan-out of the unit test suites generated by G- Mosa and Mosa is statistically

different.
An 6. The number of test smells of the unit test suites generated by G- Mosa and Mosa is

statistically different.
An 7. The understandability scores of the unit test suites generated by G- Mosa and Mosa

is statistically different.

We reject the null hypotheses if Hni ⇐⇒ p < 0.05. In addition to the Wilcoxon Rank
Sum Test, we rely on the Vargha-Delaney (Â12) (Van Deursen et al. 2001) statistical test to
measure themagnitude of the differences in the distributions of the consideredmetrics. Based
on the direction given by Â12, we can make a practical sense to the alternative hypotheses.
Should the Â12 values be lower than 0.5, this would denote that the test suites generated by
G- Mosa would be better than those provided by Mosa. For instance, a Â12 < 0.50 in the
distribution of code coverage would indicate that the code coverage achieved by G- Mosa is
higher than the one reached by the baseline. Similarly, a Â12 > 0.50 indicates the opposite,
while Â12 == 0.50 points out that the results are identical.

Besides the statistical analysis of the distributions collected in our empirical study, we
also proceeded with the verification of the assertions and assertion messages written by the
user study participants. The first two authors of the paper acted as inspectors and assessed
whether the reported assertions were in line with the actual behavior of the test cases. The
two inspectors jointly performed the task in an effort of having two expert opinions on
the validity of the assertions analyzed and immediately discuss and solve possible cases
of disagreements. In the verification process, the inspectors exploited two main pieces of
information: (1) the assertion message left by participants, which explained the rationale
behind the assertion and the condition that the assertion was aimed at addressing; and (2) the
path covered by the test, as indicated by JaCoCo, i.e., a code coverage analysis tool, which

123

 71 Page 18 of 49 Empirical Software Engineering (2024) 29:71

public void testX() throws Throwable {
Configuration configuration0 =

Configuration.getSystemConfiguration(true);
ConnectionConsumer <String > connectionConsumer0 = new

ConnectionConsumer <String >(configuration0 ,
"summa.configuration");

connectionConsumer0 .releaseConnection ();
.....

}

Listing 2 A test method, for which participants have provided both valid and not valid assertions.

helped assess the match between the assertion, the assertion message, and the goals of the test
case. Through these pieces of information, the inspectors marked an assertion as “valid” if
it correctly captured the condition verified by the test case, “not valid” otherwise. t To better
understand this criteria, let’s examine the test method presented in Listing 2. This was one
of the test methods utilized in our survey to solicit assertions from participants. For this test
case, a participant reported the following assertion: “assertNull(‘The connection should be
null after calling releaseConnection’, connectionConsumer0.getConnection());”. This case
was considered “valid” because the assertion effectively verifies the intended outcome in this
specific test case.

In contrast, another survey respondent provided the following assertion: “assertNot-
Null(configuration0);”. Since “configuration0” is merely a variable used in the test case
to instantiate the connection consumer and the goal of the test is not to determine whether
this variable is null or not, this case wasmarked as “not valid.” In addition, wemade use of the
free answers provided by participants when explaining the reasons for the understandability
score (question #2 of the task) to identify the reasons for the correct/wrong assertion defi-
nitions. We finally provided an overview of the (dis)advantages of each test case generation
tool with respect to the understandability of the resulting test cases.

5.5 Publication of generated data

G- Mosa source code, as well as all the other data generated from our study are publicly
available in our online appendix (Anonymous 2021).

We also released the scripts to automatically generate the test suites, other than the data
collected and used for the statistical and content analysis that we present in the paper.

6 Analysis of the Results

This section discusses the results achieved while addressing our three research questions.

6.1 RQ1 - Effectiveness

We addressed RQ1 by comparing G- Mosa and Mosa effectiveness in terms of branch and
mutation coverage. As for the former, Table 2 reports the average branch coverage achieved
by the two experimented techniques over 30 independent runs as well as the results of

123

Empirical Software Engineering (2024) 29:71 Page 19 of 49 71

Ta
bl
e
2

B
ra
nc
h
co
ve
ra
ge

ac
hi
ev
ed

by
M
o
sa

an
d
G
-
M
o
sa

,w
ith

p-
va
lu
es

re
su
lti
ng

fr
om

th
e
W
ilc

ox
on

te
st
an
d
V
ar
gh

a-
D
el
an
ey

A
1
2
ef
fe
ct
si
ze
.W

e
us
e
N
,S

,M
,a
nd

L
to
in
di
ca
te

ne
gl
ig
ib
le
,s
m
al
l,
m
ed
iu
m

an
d
la
rg
e
ef
fe
ct
si
ze

re
sp
ec
tiv

el
y.
Si
gn
ifi
ca
nt

p-
va
lu
es

ar
e
re
po
rt
ed

in
bo
ld
-f
ac
e

B
ra
nc
h
C
ov
er
ag
e

A
ve
ra
ge

M
o
sa

vs
.G

-
M
o
sa

A
ve
ra
ge

M
o
sa

vs
.G

-
M
o
sa

ID
M
os
a

G
-M

os
a

p-
va
lu
e

Â
12

ID
M
os
a

G
-M

os
a

p-
va
lu
e

Â
12

1
0.
08

0.
08

1.
00

0.
48

(N
)

24
0.
96

0.
96

0.
49

0.
47

(N
)

2
0.
37

0.
17

<
0.
01

0.
80

(L
)

25
0.
98

0.
95

0.
03

0.
65

(S
)

3
0.
86

0.
84

0.
08

0.
62

(S
)

26
1.
00

1.
00

0.
49

0.
50

(N
)

4
0.
23

0.
24

0.
09

0.
40

(S
)

27
0.
87

0.
84

0.
01

0.
69

(M
)

5
0.
88

0.
89

<
0.
01

0.
33

(M
)

28
0.
21

0.
22

0.
64

0.
47

(N
)

6
0.
03

0.
03

1.
00

0.
52

(N
)

29
0.
03

0.
03

0.
49

0.
47

(N
)

7
0.
88

0.
85

0.
14

0.
60

(S
)

30
1.
00

1.
00

1.
00

0.
53

(N
)

8
1.
00

1.
00

1.
00

0.
52

(N
)

31
0.
97

0.
97

0.
49

0.
50

(N
)

9
1.
00

0.
97

<
0.
01

0.
77

(L
)

32
0.
78

0.
77

0.
05

0.
62

(S
)

10
0.
93

0.
91

0.
15

0.
60

(S
)

33
0.
23

0.
25

0.
19

0.
47

(N
)

11
0.
61

0.
61

0.
48

0.
58

(S
)

34
0.
01

0.
02

0.
04

0.
37

(S
)

12
0.
22

0.
22

0.
46

0.
55

(N
)

35
0.
76

0.
78

0.
08

0.
46

(N
)

13
0.
12

0.
11

0.
69

0.
55

(N
)

36
0.
98

0.
98

0.
46

0.
54

(N
)

14
0.
52

0.
52

0.
19

0.
58

(S
)

37
0.
96

0.
97

0.
49

0.
47

(N
)

15
0.
98

0.
94

<
0.
01

0.
86

(L
)

38
0.
02

0.
03

0.
58

0.
45

(N
)

16
0.
32

0.
35

<
0.
01

0.
20

(L
)

39
0.
70

0.
74

0.
12

0.
37

(S
)

17
0.
95

0.
97

<
0.
01

0.
31

(M
)

40
0.
83

0.
85

0.
03

0.
34

(S
)

18
0.
76

0.
73

0.
04

0.
63

(S
)

41
0.
04

0.
04

<
0.
01

0.
62

(S
)

19
0.
69

0.
72

0.
50

0.
47

(N
)

42
0.
17

0.
17

1.
00

0.
50

(N
)

20
0.
05

0.
05

1.
00

0.
50

(N
)

43
0.
35

0.
36

0.
96

0.
52

(N
)

21
0.
09

0.
09

1.
00

0.
48

(N
)

44
0.
77

0.
77

0.
49

0.
50

(N
)

22
1.
00

1.
00

1.
00

0.
50

(N
)

45
0.
91

0.
87

0.
02

0.
69

(M
)

23
0.
22

0.
22

0.
76

0.
54

(N
)

46
0.
39

0.
39

1.
00

0.
50

(N
)

123

 71 Page 20 of 49 Empirical Software Engineering (2024) 29:71

Ta
bl
e
2

co
nt
in
ue
d

B
ra
nc
h
C
ov
er
ag
e

A
ve
ra
ge

M
o
sa

vs
.G

-
M
o
sa

A
ve
ra
ge

M
o
sa

vs
.G

-
M
o
sa

ID
M
os
a

G
-M

os
a

p-
va
lu
e

Â
12

ID
M
os
a

G
-M

os
a

p-
va
lu
e

Â
12

47
0.
95

0.
91

0.
01

0.
67

(M
)

70
0.
78

0.
77

0.
76

0.
56

(N
)

48
0.
70

0.
56

0.
14

0.
61

(S
)

71
0.
14

0.
14

1.
00

0.
52

(N
)

49
0.
94

0.
94

0.
71

0.
53

(N
)

72
0.
92

0.
93

0.
68

0.
49

(N
)

50
0.
91

0.
91

1.
00

0.
52

(N
)

73
0.
01

0.
01

1.
00

0.
50

(N
)

51
0.
43

0.
42

0.
11

0.
53

(N
)

74
0.
76

0.
76

1.
00

0.
50

(N
)

52
0.
92

0.
90

0.
13

0.
63

(S
)

75
0.
68

0.
65

<
0.
01

0.
65

(S
)

53
0.
07

0.
07

1.
00

0.
52

(N
)

76
1.
00

1.
00

1.
00

0.
47

(N
)

54
0.
97

0.
96

0.
13

0.
60

(S
)

77
1.
00

1.
00

1.
00

0.
53

(N
)

55
0.
87

0.
84

0.
08

0.
60

(S
)

78
1.
00

0.
93

0.
02

0.
66

(S
)

56
0.
47

0.
46

0.
58

0.
54

(N
)

79
0.
91

0.
88

0.
01

0.
64

(S
)

57
0.
77

0.
68

<
0.
01

0.
87

(L
)

80
1.
00

1.
00

1.
00

0.
48

(N
)

58
0.
83

0.
83

1.
00

0.
53

(N
)

81
0.
18

0.
17

0.
06

0.
66

(M
)

59
0.
93

0.
93

0.
52

0.
56

(N
)

82
0.
02

0.
02

1.
00

0.
50

(N
)

60
0.
93

0.
93

0.
41

0.
58

(S
)

83
0.
10

0.
10

1.
00

0.
50

(N
)

61
1.
00

1.
00

1.
00

0.
52

(N
)

84
0.
14

0.
14

0.
89

0.
54

(N
)

62
0.
83

0.
79

0.
06

0.
63

(S
)

85
0.
68

0.
62

<
0.
01

0.
78

(L
)

63
1.
00

1.
00

1.
00

0.
52

(N
)

86
0.
00

0.
00

1.
00

0.
50

(N
)

64
0.
73

0.
68

0.
04

0.
63

(S
)

87
0.
66

0.
63

0.
16

0.
53

(N
)

65
0.
08

0.
08

1.
00

0.
50

(N
)

88
0.
92

0.
92

0.
78

0.
43

(N
)

66
0.
17

0.
17

1.
00

0.
52

(N
)

89
0.
36

0.
36

1.
00

0.
47

(N
)

67
0.
09

0.
08

<
0.
01

0.
75

(L
)

90
0.
74

0.
74

1.
00

0.
50

(N
)

68
0.
51

0.
50

0.
07

0.
63

(S
)

91
0.
60

0.
58

<
0.
01

0.
74

(M
)

69
0.
44

0.
43

0.
01

0.
65

(S
)

123

Empirical Software Engineering (2024) 29:71 Page 21 of 49 71

Ta
bl
e
3

M
ut
at
io
n
sc
or
e
ac
hi
ev
ed

by
M
o
sa

an
d
G
-
M
o
sa

,w
ith

p-
va
lu
es

re
su
lti
ng

fr
om

th
e
W
ilc

ox
on

te
st
an
d
V
ar
gh

a-
D
el
an
ey

A
1
2
ef
fe
ct
si
ze
.W

e
us
e
N
,S

,M
,a
nd

L
to

in
di
ca
te

ne
gl
ig
ib
le
,s
m
al
l,
m
ed
iu
m

an
d
la
rg
e
ef
fe
ct
si
ze

re
sp
ec
tiv

el
y.
Si
gn
ifi
ca
nt

p-
va
lu
es

ar
e
re
po
rt
ed

in
bo
ld
-f
ac
e

M
ut
at
io
n
Sc
or
e

A
ve
ra
ge

M
o
sa

vs
.G

-
M
o
sa

A
ve
ra
ge

M
o
sa

vs
.G

-
M
o
sa

ID
M
o
sa

G
-
M
o
sa

p-
va
lu
e

A
12

ID
M
o
sa

G
-
M
o
sa

p-
va
lu
e

A
12

1
0.
00

0.
00

1.
00

0.
48

(N
)

24
0.
63

0.
63

0.
21

0.
41

(S
)

2
0.
01

0.
00

1.
00

0.
50

(N
)

25
0.
20

0.
20

1.
00

0.
50

(N
)

3
0.
37

0.
31

0.
91

0.
51

(N
)

26
0.
15

0.
18

<
0.
01

0.
23

(L
)

4
0.
01

0.
01

0.
19

0.
40

(S
)

27
0.
25

0.
24

0.
03

0.
67

(M
)

5
0.
46

0.
47

0.
64

0.
47

(N
)

28
0.
01

0.
00

1.
00

0.
52

(N
)

6
0.
00

0.
00

1.
00

0.
52

(N
)

29
0.
05

0.
05

0.
73

0.
47

(N
)

7
0.
48

0.
41

0.
28

0.
58

(S
)

30
0.
70

0.
70

0.
98

0.
53

(N
)

8
0.
74

0.
74

1.
00

0.
52

(N
)

31
0.
70

0.
74

<
0.
01

0.
30

(M
)

9
0.
24

0.
23

0.
30

0.
59

(S
)

32
0.
53

0.
53

1.
00

0.
50

(N
)

10
0.
74

0.
74

0.
61

0.
54

(N
)

33
0.
00

0.
00

1.
00

0.
52

(N
)

11
0.
19

0.
18

0.
53

0.
58

(S
)

34
0.
00

0.
00

1.
00

0.
50

(N
)

12
0.
07

0.
07

0.
92

0.
51

(N
)

35
0.
08

0.
08

<
0.
01

0.
23

(L
)

13
0.
03

0.
04

0.
34

0.
45

(N
)

36
0.
49

0.
50

0.
48

0.
43

(N
)

14
0.
78

0.
78

1.
00

0.
52

(N
)

37
0.
71

0.
74

<
0.
01

0.
10

(L
)

15
0.
71

0.
74

0.
62

0.
54

(N
)

38
0.
00

0.
00

1.
00

0.
50

(N
)

16
0.
05

0.
05

0.
86

0.
51

(N
)

39
0.
37

0.
39

0.
15

0.
38

(S
)

17
0.
52

0.
54

0.
50

0.
43

(N
)

40
0.
57

0.
58

0.
12

0.
37

(S
)

18
0.
28

0.
28

0.
43

0.
44

(N
)

41
0.
00

0.
00

0.
04

0.
54

(N
)

19
0.
97

1.
00

0.
49

0.
50

(N
)

42
0.
00

0.
00

1.
00

0.
50

(N
)

20
0.
00

0.
00

1.
00

0.
50

(N
)

43
0.
00

0.
00

1.
00

0.
52

(N
)

21
0.
00

0.
00

1.
00

0.
48

(N
44

0.
46

0.
46

0.
70

0.
48

(N
)

22
0.
53

0.
53

1.
00

0.
50

(N
)

45
0.
38

0.
37

0.
80

0.
54

(N
)

23
0.
08

0.
11

<
0.
01

0.
33

(M
)

46
0.
01

0.
00

0.
01

0.
68

(M
)

123

 71 Page 22 of 49 Empirical Software Engineering (2024) 29:71

Ta
bl
e
3

co
nt
in
ue
d

M
ut
at
io
n
Sc
or
e

A
ve
ra
ge

M
o
sa

vs
.G

-
M
o
sa

A
ve
ra
ge

M
o
sa

vs
.G

-
M
o
sa

ID
M
o
sa

G
-
M
o
sa

p-
va
lu
e

A
12

ID
M
o
sa

G
-
M
o
sa

p-
va
lu
e

A
12

47
0.
13

0.
14

<
0.
01

0.
35

(S
)

70
0.
30

0.
33

<
0.
01

0.
12

(L
)

48
0.
47

0.
26

0.
06

0.
64

(S
)

71
0.
00

0.
00

1.
00

0.
52

(N
)

49
0.
53

0.
54

0.
26

0.
41

(S
)

72
0.
37

0.
38

0.
19

0.
45

(N
)

50
0.
00

0.
00

1.
00

0.
52

(N
)

73
0.
00

0.
00

1.
00

0.
50

(N
)

51
0.
57

0.
55

0.
18

0.
43

(N
)

74
0.
02

0.
02

1.
00

0.
50

(N
)

52
0.
61

0.
61

0.
43

0.
58

(S
)

75
0.
33

0.
33

0.
02

0.
57

(N
)

53
0.
00

0.
00

1.
00

0.
52

(N
)

76
0.
73

0.
74

0.
07

0.
36

(S
)

54
0.
17

0.
15

0.
43

0.
56

(N
)

77
0.
31

0.
36

<
0.
01

0.
26

(L
)

55
0.
32

0.
32

0.
17

0.
57

(N
)

78
0.
48

0.
54

0.
26

0.
48

(N
)

56
0.
05

0.
05

1.
00

0.
50

(N
)

79
0.
66

0.
62

0.
30

0.
57

(N
)

57
0.
44

0.
44

0.
51

0.
45

(N
)

80
0.
21

0.
25

0.
04

0.
38

(S
)

58
0.
55

0.
50

<
0.
01

0.
79

(L
)

81
0.
09

0.
08

0.
50

0.
58

(S
)

59
0.
48

0.
48

0.
70

0.
55

(N
)

82
0.
00

0.
00

1.
00

0.
50

(N
)

60
0.
66

0.
67

0.
89

0.
53

(N
)

83
0.
00

0.
00

1.
00

0.
50

(N
)

61
0.
51

0.
53

0.
21

0.
45

(N
)

84
0.
00

0.
00

1.
00

0.
55

(N
)

62
0.
64

0.
65

0.
42

0.
45

(N
)

85
0.
11

0.
10

<
0.
01

0.
79

(L
)

63
0.
28

0.
28

1.
00

0.
52

(N
)

86
0.
00

0.
00

1.
00

0.
50

(N
)

64
0.
42

0.
39

0.
05

0.
63

(S
)

87
0.
32

0.
41

<
0.
01

0.
19

(L
)

65
0.
00

0.
00

1.
00

0.
50

(N
)

88
0.
67

0.
66

0.
94

0.
46

(N
)

66
0.
06

0.
06

1.
00

0.
52

(N
)

89
0.
20

0.
20

0.
59

0.
52

(N
)

67
0.
04

0.
03

<
0.
01

0.
78

(L
)

90
0.
28

0.
28

0.
78

0.
47

(N
)

68
0.
27

0.
27

0.
63

0.
54

(N
)

91
0.
36

0.
37

0.
15

0.
39

(S
)

69
0.
37

0.
37

0.
33

0.
58

(S
)

123

Empirical Software Engineering (2024) 29:71 Page 23 of 49 71

the Wilcoxon and the Vargha-Delaney tests. Just looking at the average, the results seem
to indicate that G- Mosa and Mosa achieve very similar performance in terms of branch
coverage. Indeed, the great majority of rows show Â12 values around 0.5, reinforcing the
observation above. Only in 23 out of 91 cases, (≈ 25%) there is a statistically significant
difference in the performance achieved, while in the remaining 75% of cases there is no
statistical difference between the branch coverage achieved by the two approaches. Based on
these results, we cannot reject the null hypothesis Hn 1. Therefore, we can claim that there
is no statistically significant difference in terms of branch coverage achieved by G- Mosa
and Mosa.

Table 3 reports the average mutation score achieved byG- Mosa andMosa together with
the results of Wilcoxon and Vargha-Delaney statistical tests. The first interesting observation
is that in 67 out of 91 cases (≈ 74%), both approaches achieve low performance, i.e., average
mutation score < 0.5. While this represents a scientifically relevant result, we could not
provide a detailed explanation behind the poor mutation capabilities of the experimented
approaches. In particular, the mutation analysis is performed as part of the inner-working
of EvoSuite, i.e., the framework G- Mosa and Mosa build upon, and is based on the
application of multiple mutation operators (e.g., statement deletion) which are individually
used tomodify the production code under test and assess the extent towhich the corresponding
test case is able to detect the artificial defect introduced. Such amutation analysis is performed
multiple times for each test case considered and for each of the 30 runs of both G- Mosa and
Mosa. Also, the algorithms behind the test case generators are inherently non-deterministic,
whichmeans that for each of their executions theremight have been a different reason leading
to miss mutants. These reasons make the mutation analysis step hardly explainable - at least
until an explainable model able to work under these conditions would not be available.

Hence, we could limit ourselves to the observation of the overall mutation score obtained
by the approaches, interpreting the conceptual causes of this result and the tangible implica-
tions that such a low mutation score may have.

In terms of conceptual causes, it is worth remarking that both G- Mosa and Mosa have
branch coverage as main target, while they are not designed to optimize the mutation score.
This may possibly explain why the good level of branch coverage is not accompanied by
adequate mutation coverage. As for the implications of the low mutation coverage achieved
by the approaches, our findings suggest that the automated test case generation approaches
are still unable to satisfactorily detect artificial defects. This seems to be a common limitation
and, in this sense, our work outlines a limitation that further research may want to address.

As for the comparison, similarly to what happened for branch coverage, there were only
a few cases highlighting a clear statistical difference in the distributions of G- Mosa and
Mosa. Specifically, this happened only for 17 out of 91 classes (≈ 19%), 14 (≈ 15%) if
we exclude those with negligible or small effect size. Of these 14, 8 indicated G- Mosa as
the best performing technique (Â12 < 0.5), whileMosa achieved higher performance in the
remaining 6 cases (Â12 > 0.5). These results do not allow to reject the null hypothesis Hn
2. thus indicating that there is no statistically significant difference in the mutation coverage
achieved by G- Mosa and Mosa.

Besides the statistical analysis, we aimed at collecting qualitative insights that could
better delineate strengths and weaknesses of the devised technique. For this reason, we dived
into the quantitative results and manually analyzed the classes for which the performance
indicators computed revealed a significant difference, either in favor of G- Mosa or Mosa.
This qualitative investigation was mainly conducted by the first author of this paper, who
acted as a code inspector: the task was that of performing a code review of the selected
classes aiming at understanding themain code quality aspects influencing the branch coverage

123

 71 Page 24 of 49 Empirical Software Engineering (2024) 29:71

achieved by the corresponding test cases and the differences observed in the way the two
approaches generated test cases. In doing so, the inspector could rely on the metric values
computed on the production classes, which supported the analysis of the code. During the
review task, the inspector took notes reporting the main insights and observations coming
from the analysis. These notes were later used as a basis for a larger discussion which was
opened with the second and third authors of the article. More particularly, the three authors
jointly navigated the source code of the classes considered and discussed on the notes of
the first author, deriving insights that can be well summarized through the following three
qualitative examples.

As a first discussion point, let consider the classes
org.gudy.azureus2.ui.console.commands.Show (id. 16) and
de.progra.charting.render.PieChartRenderer (id. 2). The former is
characterized by a total number of 356 branches, thus being very complex (McCabe 1976):
when generating tests for such a class, G- Mosa achieved a significantly better branch
coverage with a large effect size. The latter is characterized by 12 branches: unlike the
previous case, Mosa performed significantly better with a large effect size. These two
examples indicate that, while in most cases the two techniques perform similarly in terms
of branch coverage, G- Mosa can act better when testing more complex classes. This
observation could be attributed to the fact that the granular nature of G- Mosa can lead to
simplifying the testing of complex classes. In the first step, all the tests that cover more
fine-grained cases are generated. Therefore, in the second step, the remaining search budget
is spent solely on those branches that are more difficult to cover, thus resulting in higher
coverage. In other words, half of the total search budget—the one relative to step 2—is
completely dedicated to covering hard targets. This trend was also confirmed when looking
at other test suites of the dataset, hence potentially indicating additional capabilities of our
approach. We plan to investigate this aspect further as part of our future research agenda,
especially by conducting larger qualitative investigations into the peculiarities of G- Mosa.

Similar conclusions could be drawn when considering the mutation score. As an example,
on the class portlet.shopping.model.ShoppingCategoryWrapper (id. 26),
G- Mosa had a significantly higher mutation score with a large effect size. This class is
characterized by 53 methods and 2,384 lines, being one of the largest in our dataset. Differ-
ently, when considering smaller classes,Mosa achieved better performance. This is the case
of the class weka.core.tokenizers.AlphabeticTokenizer (id. 58) that only
contains 7 lines of code. As such, it seems that our approach cannot only produce better
results on large classes in terms of code coverage, but also in terms of mutation score.

� Summing Up: There is no statistically significant difference in terms of branch and mutation coverage
achieved byG- Mosa andMosa.G- Mosa seems to performbetterwhen generating tests formore complex
classes. On the contrary, Mosa achieves better coverage when testing simpler classes.

6.2 RQ2 - Size

We addressed RQ2 by first computing the overall size of the test classes generated by the
experimented approaches. Tables 4 and 5 report the average values and the comparison
between the two approaches in terms of lines of code (LOCs) and number of methods respec-
tively. As expected, G- Mosa produced test classes having a statistically higher size than
Mosa when considering lines of code and number of test methods. Specifically, for ≈73%
of the classes under test, G- Mosa generates significantly larger test classes than Mosa. A

123

Empirical Software Engineering (2024) 29:71 Page 25 of 49 71

Ta
bl
e
4

L
in
es

of
co
de

in
te
st
cl
as
se
s
ge
ne
ra
te
d
by

M
o
sa

an
d
G
-
M
o
sa

,w
ith

p-
va
lu
es

re
su
lti
ng

fr
om

th
e
W
ilc

ox
on

te
st
an
d
V
ar
gh

a-
D
el
an
ey

A
1
2
ef
fe
ct

si
ze
.W

e
us
e
N
,S

,M
,

an
d
L
to

in
di
ca
te
ne
gl
ig
ib
le
,s
m
al
l,
m
ed
iu
m

an
d
la
rg
e
ef
fe
ct
si
ze

re
sp
ec
tiv

el
y.
Si
gn
ifi
ca
nt

p-
va
lu
es

ar
e
re
po
rt
ed

in
bo
ld
-f
ac
e

L
in
es

of
co
de

A
ve
ra
ge

M
o
sa

vs
.G

-
M
o
sa

A
ve
ra
ge

M
o
sa

vs
.G

-
M
o
sa

ID
M
o
sa

G
-
M
o
sa

p-
va
lu
e

Â
12

ID
M
o
sa

G
-
M
o
sa

p-
va
lu
e

Â
12

1
9.
70

13
.0
0

<
0.
01

0.
32

(M
)

24
24

8.
00

37
1.
92

<
0.
01

0.
03

(L
)

2
36

1.
48

66
0.
79

<
0.
01

0.
00

(L
)

25
75

4.
21

10
78

.3
8

<
0.
01

0.
05

(L
)

3
50

.4
3

59
.0
3

<
0.
01

0.
19

(L
)

26
22

4.
75

14
5.
38

<
0.
01

0.
95

(L
)

4
23

5.
71

33
0.
27

<
0.
01

0.
00

(L
)

27
31

2.
33

32
2.
76

0.
53

0.
45

(N
)

5
19

1.
27

19
4.
69

0.
36

0.
58

(S
)

28
44

8.
90

34
4.
47

<
0.
01

1.
00

(L
)

6
17

8.
37

17
4.
93

0.
62

0.
54

(N
)

29
11

.7
2

12
.6
9

0.
09

0.
45

(N
)

7
66

.3
1

74
.2
2

<
0.
01

0.
20

(L
)

30
84

.7
0

10
7.
97

<
0.
01

0.
06

(L
)

8
39

4.
86

57
8.
60

<
0.
01

0.
00

(L
)

31
90

.7
7

79
.8
3

<
0.
01

0.
84

(L
)

9
66

.5
5

93
.7
7

<
0.
01

0.
15

(L
)

32
41

.4
3

52
.5
7

<
0.
01

0.
05

(L
)

10
52

1.
97

73
1.
90

<
0.
01

0.
00

(L
)

33
90

.7
7

13
2.
37

<
0.
01

0.
00

(L
)

11
22

8.
07

24
8.
50

<
0.
01

0.
28

(M
)

34
76

4.
00

82
1.
93

0.
15

0.
39

(S
)

12
26

3.
20

32
1.
67

<
0.
01

0.
13

(L
)

35
44

.8
6

41
.1
0

<
0.
01

0.
83

(L
)

13
45

.3
7

56
.5
7

<
0.
01

0.
01

(L
)

36
21

.0
0

20
.0
0

<
0.
01

1.
00

(L
)

14
14

4.
14

17
3.
43

<
0.
01

0.
01

(L
)

37
24

6.
40

12
9.
78

0.
01

0.
73

(M
)

15
57

.5
3

10
3.
77

<
0.
01

0.
00

(L
)

38
42

0.
55

82
1.
53

<
0.
01

0.
00

(L
)

16
23

4.
10

31
1.
27

<
0.
01

0.
01

(L
)

39
19

5.
47

24
6.
80

<
0.
01

0.
15

(L
)

17
12

.0
0

20
.1
0

<
0.
01

0.
12

(L
)

40
73

3.
38

13
44

.7
0

<
0.
01

0.
00

(L
)

18
58

.8
9

61
.4
0

0.
14

0.
39

(S
)

41
11

3.
45

13
9.
77

<
0.
01

0.
02

(L
)

19
37

.1
3

41
.3
3

0.
06

0.
36

(S
)

42
74

.3
3

65
.5
5

<
0.
01

0.
80

(L
)

20
4.
00

22
.0
0

<
0.
01

0.
00

(L
)

43
5.
10

8.
93

0.
01

0.
35

(S
)

21
60

.8
1

99
.5
3

<
0.
01

0.
05

(L
)

44
4.
00

75
.1
0

0.
02

0.
42

(S
)

22
45

6.
55

53
4.
80

<
0.
01

0.
21

(L
)

45
5.
40

7.
17

0.
13

0.
41

(S
)

23
11

4.
90

13
5.
17

<
0.
01

0.
04

(L
)

46
11

.7
3

21
.3
1

<
0.
01

0.
03

(L
)

123

 71 Page 26 of 49 Empirical Software Engineering (2024) 29:71

Ta
bl
e
4

co
nt
in
ue
d

L
in
es

of
co
de

A
ve
ra
ge

M
o
sa

vs
.G

-
M
o
sa

A
ve
ra
ge

M
o
sa

vs
.G

-
M
o
sa

ID
M
o
sa

G
-
M
o
sa

p-
va
lu
e

Â
12

ID
M
o
sa

G
-
M
o
sa

p-
va
lu
e

Â
12

47
12

.0
0

11
.0
0

<
0.
01

1.
00

(L
)

70
17

5.
17

31
6.
97

<
0.
01

0.
00

(L
)

48
18

3.
07

22
0.
97

<
0.
01

0.
01

(L
)

71
6.
00

58
3.
60

<
0.
01

0.
00

(L
)

49
12

4.
10

18
1.
24

<
0.
01

0.
01

(L
)

72
70

2.
73

82
6.
37

<
0.
01

0.
04

(L
)

50
12

.0
0

13
.1
0

0.
08

0.
45

(N
)

73
21

2.
28

33
4.
70

<
0.
01

0.
00

(L
)

51
11

8.
72

15
2.
07

<
0.
01

0.
00

(L
)

74
12

17
.4
3

23
25

.0
0

<
0.
01

0.
00

(L
)

52
61

2.
73

92
2.
50

<
0.
01

0.
00

(L
)

75
31

0.
14

42
1.
34

<
0.
01

0.
00

(L
)

53
16

4.
64

17
6.
17

0.
12

0.
38

(S
)

76
25

2.
62

16
6.
20

<
0.
01

0.
97

(L
)

54
11

8.
53

12
7.
37

0.
03

0.
34

(S
)

77
24

3.
31

27
4.
33

<
0.
01

0.
09

(L
)

55
82

4.
63

10
36

.6
7

<
0.
01

0.
00

(L
)

78
46

.4
7

69
.3
7

<
0.
01

0.
02

(L
)

56
34

.0
0

37
.8
0

<
0.
01

0.
03

(L
)

79
51

.1
4

77
.8
3

0.
07

0.
36

(S
)

57
18

7.
00

17
7.
13

<
0.
01

0.
80

(L
)

80
61

.9
3

10
1.
20

<
0.
01

0.
00

(L
)

58
76

5.
33

89
7.
93

<
0.
01

0.
01

(L
)

81
19

.0
0

17
.0
0

<
0.
01

1.
00

(L
)

59
58

5.
67

11
17

.1
7

<
0.
01

0.
00

(L
)

82
14

.0
0

14
.0
0

1
0.
50

(N
)

60
35

.4
1

46
.0
0

<
0.
01

0.
00

(L
)

83
92

.8
7

11
1.
40

<
0.
01

0.
02

(L
)

61
71

.9
0

10
5.
93

<
0.
01

0.
00

(L
)

84
35

1.
83

23
8.
63

<
0.
01

0.
72

(M
)

62
20

9.
00

24
0.
72

<
0.
01

0.
16

(L
)

85
21

26
.7
0

22
10

.7
3

<
0.
01

0.
15

(L
)

63
58

6.
33

68
0.
17

<
0.
01

0.
12

(L
)

86
76

3.
21

97
3.
23

<
0.
01

0.
03

(L
)

64
23

2.
26

31
8.
64

<
0.
01

0.
00

(L
)

87
14

3.
07

16
2.
18

<
0.
01

0.
16

(L
)

65
65

.6
0

10
7.
83

<
0.
01

0.
00

(L
)

88
45

17
.4
8

34
94

.4
1

<
0.
01

0.
26

(L
)

66
17

1.
10

17
4.
10

0.
03

0.
34

(S
)

89
31

.8
7

33
.9
3

0.
74

0.
47

(N
)

67
11

17
.5
5

18
46

.2
7

<
0.
01

0.
00

(L
)

90
12

.0
0

14
.3
3

0.
01

0.
38

(S
)

68
11

7.
79

12
4.
77

0.
01

0.
31

(M
)

91
15

2.
04

19
4.
79

<
0.
01

0.
00

(L
)

69
57

2.
50

57
8.
90

0.
53

0.
45

(N
)

123

Empirical Software Engineering (2024) 29:71 Page 27 of 49 71

Ta
bl
e
5

N
um

be
r
of

m
et
ho
ds

in
te
st
cl
as
se
s
ge
ne
ra
te
d
by

M
o
sa

an
d
G
-
M
o
sa

,w
ith

p-
va
lu
es

re
su
lti
ng

fr
om

th
e
W
ilc

ox
on

te
st
an
d
V
ar
gh

a-
D
el
an
ey

A
1
2
ef
fe
ct
si
ze
.W

e
us
e
N
,S

,
M
,a
nd

L
to

in
di
ca
te
ne
gl
ig
ib
le
,s
m
al
l,
m
ed
iu
m

an
d
la
rg
e
ef
fe
ct
si
ze

re
sp
ec
tiv

el
y.
Si
gn
ifi
ca
nt

p-
va
lu
es

ar
e
re
po
rt
ed

in
bo
ld
-f
ac
e

N
um

be
r
of

m
et
ho

ds
A
ve
ra
ge

M
o
sa

vs
.G

-
M
o
sa

A
ve
ra
ge

M
o
sa

vs
.G

-
M
o
sa

ID
M
o
sa

G
-
M
o
sa

p-
va
lu
e

Â
12

ID
M
o
sa

G
-
M
o
sa

p-
va
lu
e

Â
12

1
1.
00

1.
00

N
aN

0.
50

(N
)

24
27

.8
3

32
.0
0

<
0.
01

0.
19

(L
)

2
38

.4
5

65
.5
0

<
0.
01

0.
00

(L
)

25
60

.1
7

80
.1
2

<
0.
01

0.
02

(L
)

3
7.
97

10
.1
4

<
0.
01

0.
09

(L
)

26
21

.9
6

14
.6
2

<
0.
01

0.
96

(L
)

4
24

.5
0

30
.6
7

<
0.
01

0.
00

(L
)

27
26

.8
0

31
.1
7

<
0.
01

0.
18

(L
)

5
12

.8
0

13
.5
6

0.
24

0.
40

(S
)

28
45

.7
0

48
.0
7

<
0.
01

0.
20

(L
)

6
24

.7
7

28
.2
0

<
0.
01

0.
15

(L
)

29
1.
00

1.
07

0.
16

0.
47

(N
)

7
4.
83

5.
33

0.
01

0.
29

(M
)

30
9.
77

10
.3
3

<
0.
01

0.
30

(M
)

8
42

.7
9

59
.8
3

<
0.
01

0.
00

(L
)

31
15

.3
0

14
.2
7

<
0.
01

0.
73

(M
)

9
3.
83

5.
69

<
0.
01

0.
07

(L
)

32
3.
80

4.
63

<
0.
01

0.
15

(L
)

10
80

.4
3

78
.2
8

0.
01

0.
69

(M
)

33
12

.5
3

19
.3
0

<
0.
01

0.
00

(L
)

11
33

.2
3

35
.7
0

<
0.
01

0.
19

(L
)

34
44

.5
7

40
.9
3

0.
05

0.
65

(S
)

12
38

.1
3

46
.5
0

<
0.
01

0.
06

(L
)

35
8.
59

10
.0
3

<
0.
01

0.
19

(L
)

13
4.
00

4.
97

<
0.
01

0.
02

(L
)

36
2.
00

2.
00

N
aN

0.
50

(N
)

14
14

.5
9

17
.8
3

<
0.
01

0.
01

(L
)

37
10

.3
0

14
.7
2

<
0.
01

0.
08

(L
)

15
5.
80

9.
07

<
0.
01

0.
01

(L
)

38
52

.1
4

81
.6
3

<
0.
01

0.
00

(L
)

16
20

.6
0

27
.9
3

<
0.
01

0.
00

(L
)

39
21

.7
3

29
.0
7

<
0.
01

0.
07

(L
)

17
1.
00

1.
73

<
0.
01

0.
13

(L
)

40
69

.0
3

11
8.
33

<
0.
01

0.
00

(L
)

18
5.
86

7.
00

<
0.
01

0.
17

(L
)

41
14

.7
9

19
.3
3

<
0.
01

0.
00

(L
)

19
3.
80

4.
53

<
0.
01

0.
28

(M
)

42
10

.7
3

10
.1
7

0.
14

0.
60

(S
)

20
1.
00

2.
00

<
0.
01

0.
00

(L
)

43
1.
00

1.
03

0.
33

0.
48

(N
)

21
6.
37

9.
60

<
0.
01

0.
03

(L
)

44
1.
00

8.
27

0.
02

0.
42

(S
)

22
58

.3
1

71
.3
3

<
0.
01

0.
04

(L
)

45
1.
00

1.
03

0.
33

0.
48

(N
)

23
12

.0
7

14
.9
3

<
0.
01

0.
03

(L
)

46
1.
00

1.
93

<
0.
01

0.
03

(L
)

123

 71 Page 28 of 49 Empirical Software Engineering (2024) 29:71

Ta
bl
e
5

co
nt
in
ue
d

N
um

be
r
of

m
et
ho

ds
A
ve
ra
ge

M
o
sa

vs
.G

-
M
o
sa

A
ve
ra
ge

M
o
sa

vs
.G

-
M
o
sa

ID
M
o
sa

G
-
M
o
sa

p-
va
lu
e

Â
12

ID
M
o
sa

G
-
M
o
sa

p-
va
lu
e

Â
12

47
1.
00

1.
00

N
aN

0.
50

(N
)

70
16

.7
3

26
.9
0

<
0.
01

0.
00

(L
)

48
19

.0
7

23
.8
3

<
0.
01

0.
01

(L
)

71
1.
00

62
.2
3

<
0.
01

0.
02

(L
)

49
15

.2
0

21
.0
3

<
0.
01

0.
00

(L
)

72
10

1.
07

10
8.
70

<
0.
01

0.
16

(L
)

50
1.
00

1.
10

0.
08

0.
45

(N
)

73
25

.5
9

32
.4
7

<
0.
01

0.
01

(L
)

51
19

.2
8

25
.4
3

<
0.
01

0.
00

(L
)

74
10

8.
40

17
9.
00

<
0.
01

0.
00

(L
)

52
65

.7
7

92
.0
3

<
0.
01

0.
00

(L
)

75
33

.0
3

44
.0
0

<
0.
01

0.
00

(L
)

53
22

.3
2

27
.1
0

<
0.
01

0.
12

(L
)

76
33

.3
1

25
.1
7

<
0.
01

0.
99

(L
)

54
22

.4
3

28
.0
0

<
0.
01

0.
00

(L
)

77
31

.1
7

38
.3
0

<
0.
01

0.
02

(L
)

55
10

4.
93

12
2.
37

<
0.
01

0.
02

(L
)

78
6.
53

7.
37

<
0.
01

0.
28

(M
)

56
3.
90

4.
00

0.
33

0.
48

(N
)

79
5.
17

6.
70

0.
02

0.
33

(M
)

57
32

.3
7

38
.0
3

<
0.
01

0.
03

(L
)

80
6.
93

9.
73

<
0.
01

0.
01

(L
)

58
11

1.
80

10
6.
59

<
0.
01

0.
86

(L
)

81
2.
00

2.
00

N
aN

0.
50

(N
)

59
39

.0
0

62
.6
7

<
0.
01

0.
00

(L
)

82
1.
00

1.
00

1
0.
50

(N
)

60
7.
31

8.
83

<
0.
01

0.
04

(L
)

83
11

.4
0

14
.6
7

<
0.
01

0.
00

(L
)

61
8.
90

13
.8
0

<
0.
01

0.
00

(L
)

84
25

.5
0

35
.0
3

<
0.
01

0.
00

(L
)

62
27

.6
7

33
.8
3

<
0.
01

0.
00

(L
)

85
15

0.
37

14
5.
86

0.
06

0.
66

(S
)

63
70

.1
7

70
.9
3

0.
63

0.
46

(N
)

86
97

.2
4

11
4.
41

<
0.
01

0.
03

(L
)

64
27

.1
1

37
.5
7

<
0.
01

0.
00

(L
)

87
16

.3
9

20
.0
5

<
0.
01

0.
01

(L
)

65
7.
97

12
.7
2

<
0.
01

0.
00

(L
)

88
17

5.
24

16
8.
07

<
0.
01

0.
72

(M
)

66
22

.1
0

27
.0
3

<
0.
01

0.
00

(L
)

89
3.
33

3.
30

0.
88

0.
51

(N
)

67
15

7.
34

21
7.
67

<
0.
01

0.
00

(L
)

90
1.
00

1.
23

0.
01

0.
38

(S
)

68
15

.5
5

19
.4
0

<
0.
01

0.
01

(L
)

91
18

.0
4

22
.5
2

<
0.
01

0.
00

(L
)

69
78

.3
3

79
.8
3

0.
03

0.
34

(S
)

123

Empirical Software Engineering (2024) 29:71 Page 29 of 49 71

Ta
bl
e
6

M
ea
n
m
et
ho
ds

le
ng
th

ac
hi
ev
ed

by
M
o
sa

an
d
G
-
M
o
sa

,w
ith

p-
va
lu
es

re
su
lti
ng

fr
om

th
e
W
ilc

ox
on

te
st
an
d
V
ar
gh

a-
D
el
an
ey

A
1
2
ef
fe
ct
si
ze
.W

e
us
e
N
,S

,M
,a
nd

L
to

in
di
ca
te
ne
gl
ig
ib
le
,s
m
al
l,
m
ed
iu
m

an
d
la
rg
e
ef
fe
ct
si
ze

re
sp
ec
tiv

el
y.
Si
gn
ifi
ca
nt

p-
va
lu
es

ar
e
re
po
rt
ed

in
bo
ld
-f
ac
e

M
ea
n
Te
st
C
as
es

L
en
gt
h

A
ve
ra
ge

M
o
sa

vs
.G

-
M
o
sa

A
ve
ra
ge

M
o
sa

vs
.G

-
M
o
sa

ID
M
o
sa

G
-
M
o
sa

p-
va
lu
e

A
12

ID
M
o
sa

G
-
M
o
sa

p-
va
lu
e

A
12

1
1.
00

1.
20

0.
49

0.
47

(N
)

24
2.
67

2.
63

<
0.
01

0.
78

(L
)

2
4.
86

3.
59

<
0.
01

0.
80

(L
)

25
4.
77

4.
55

0.
01

0.
68

(M
)

3
3.
29

3.
31

0.
16

0.
39

(S
)

26
2.
88

2.
80

<
0.
01

0.
85

(L
)

4
4.
53

3.
41

<
0.
01

0.
97

(L
)

27
2.
53

2.
55

0.
77

0.
50

(N
)

5
2.
51

2.
21

<
0.
01

1.
00

(L
)

28
2.
87

2.
83

0.
14

0.
39

(S
)

6
1.
00

6.
94

<
0.
01

0.
03

(L
)

29
3.
67

3.
53

0.
01

0.
69

(M
)

7
3.
28

3.
02

<
0.
01

0.
92

(L
)

30
3.
13

3.
02

0.
28

0.
61

(S
)

8
1.
23

1.
30

<
0.
01

0.
08

(L
)

31
3.
14

2.
89

<
0.
01

0.
86

(L
)

9
4.
43

4.
27

<
0.
01

0.
87

(L
)

32
2.
27

2.
24

0.
27

0.
58

(S
)

10
4.
15

4.
00

<
0.
01

0.
79

(L
)

33
3.
86

3.
24

<
0.
01

0.
99

(L
)

11
3.
84

3.
31

<
0.
01

1.
00

(L
)

34
4.
00

4.
83

0.
96

0.
37

(S
)

12
3.
98

4.
14

0.
01

0.
31

(M
)

35
3.
31

3.
22

0.
07

0.
65

(S
)

13
4.
75

4.
70

0.
34

0.
59

(S
)

36
2.
78

2.
78

0.
84

0.
50

(N
)

14
2.
61

1.
59

<
0.
01

0.
97

(L
)

37
2.
99

2.
68

<
0.
01

1.
00

(L
)

15
8.
10

5.
61

<
0.
01

0.
81

(L
)

38
2.
00

2.
00

1.
00

0.
50

(N
)

16
3.
41

2.
36

0.
05

0.
66

(S
)

39
4.
16

3.
85

<
0.
01

0.
69

(M
)

17
3.
22

2.
91

<
0.
01

0.
80

(L
)

40
3.
10

2.
89

<
0.
01

0.
78

(L
)

18
3.
48

3.
25

0.
04

0.
65

(S
)

41
2.
47

7.
61

<
0.
01

0.
00

(L
)

19
2.
05

2.
07

0.
02

0.
35

(S
)

42
1.
84

1.
75

0.
03

0.
66

(S
)

20
2.
00

2.
00

1.
00

0.
50

(N
)

43
4.
22

4.
30

<
0.
01

0.
82

(L
)

21
1.
00

1.
00

1.
00

0.
48

(N
)

44
2.
51

2.
37

<
0.
01

0.
96

(L
)

22
3.
01

2.
90

<
0.
01

0.
87

(L
)

45
7.
54

7.
09

0.
02

0.
68

(M
)

23
4.
98

5.
26

0.
01

0.
33

(M
)

46
3.
16

2.
72

<
0.
01

0.
90

(L
)

123

 71 Page 30 of 49 Empirical Software Engineering (2024) 29:71

Ta
bl
e
6

co
nt
in
ue
d

M
ea
n
Te
st
C
as
es

L
en
gt
h

A
ve
ra
ge

M
o
sa

vs
.G

-
M
o
sa

A
ve
ra
ge

M
o
sa

vs
.G

-
M
o
sa

ID
M
o
sa

G
-
M
o
sa

p-
va
lu
e

A
12

ID
M
o
sa

G
-
M
o
sa

p-
va
lu
e

A
12

47
3.
68

3.
38

<
0.
01

0.
93

(L
)

70
3.
19

2.
88

<
0.
01

0.
97

(L
)

48
4.
68

3.
48

0.
03

0.
68

(M
)

71
2.
00

2.
00

1.
00

0.
52

(N
)

49
2.
24

2.
16

<
0.
01

0.
88

(L
)

72
2.
64

2.
49

<
0.
01

0.
95

(L
)

50
2.
44

2.
45

0.
97

0.
51

(N
)

73
1.
00

1.
00

1.
00

0.
50

(N
)

51
2.
53

2.
46

<
0.
01

0.
72

(M
)

74
3.
74

3.
42

<
0.
01

0.
78

(L
)

52
2.
38

2.
41

0.
02

0.
69

(M
)

75
3.
45

3.
21

<
0.
01

0.
83

(L
)

53
2.
63

2.
53

<
0.
01

0.
78

(L
)

76
3.
28

3.
10

<
0.
01

0.
97

(L
)

54
3.
24

3.
16

<
0.
01

0.
78

(L
)

77
4.
02

3.
65

<
0.
01

1.
00

(L
)

55
3.
25

2.
96

<
0.
01

0.
72

(M
)

78
4.
55

3.
94

0.
01

0.
74

(L
)

56
2.
71

2.
46

<
0.
01

0.
86

(L
)

79
5.
47

4.
73

<
0.
01

0.
90

(L
)

57
3.
77

3.
41

<
0.
01

0.
99

(L
)

80
5.
11

4.
90

<
0.
01

0.
77

(L
)

58
2.
83

2.
75

<
0.
01

0.
83

(L
)

81
6.
17

6.
28

0.
74

0.
51

(N
)

59
2.
81

2.
69

0.
97

0.
52

(N
)

82
1.
00

2.
25

0.
05

0.
42

(S
)

60
3.
20

2.
65

<
0.
01

0.
74

(L
)

83
1.
75

1.
89

<
0.
01

0.
00

(L
)

61
5.
15

5.
03

<
0.
01

0.
74

(M
)

84
6.
75

9.
00

<
0.
01

0.
10

(L
)

62
3.
22

2.
97

<
0.
01

0.
84

(L
)

85
3.
65

3.
09

<
0.
01

0.
89

(L
)

63
3.
04

2.
81

<
0.
01

0.
99

(L
)

86
1.
40

2.
10

0.
81

0.
30

(M
)

64
5.
54

4.
83

<
0.
01

0.
76

(L
)

87
11

.4
3

6.
41

<
0.
01

0.
80

(L
)

65
1.
00

1.
00

1.
00

0.
50

(N
)

88
3.
36

2.
72

0.
01

0.
64

(S
)

66
3.
00

2.
68

<
0.
01

0.
98

(L
)

89
5.
98

5.
72

<
0.
01

0.
84

(L
)

67
4.
16

4.
36

<
0.
01

0.
26

(L
)

90
2.
51

2.
48

0.
02

0.
66

(S
)

68
4.
07

3.
75

<
0.
01

0.
93

(L
)

91
3.
02

2.
83

<
0.
01

0.
91

(L
)

69
2.
54

2.
68

<
0.
01

0.
25

(L
)

123

Empirical Software Engineering (2024) 29:71 Page 31 of 49 71

similar results is achieved when considering the average number of test methods generated
by the two approaches. The results highlight a statistical significant difference in 82% of
cases, 77% in favor of Mosa and the remaining 5% in favor of G- Mosa. This is a clear
evidence that test classes generated byMosa are significantly smaller. Looking deeper at this
result, G- Mosa tends to generate larger test suites having both a higher count of methods
and increased total lines of code. This is due to the intrinsic design of the approach. The
larger method count can be readily understood by recognizing that G-MOSA places empha-
sis on producing a set of tests that covers individual branches of the production methods.
This step influences the quantity of intra-method test cases produced, since the approach
does not allow tests to tangentially cover multiple branches but require single tests to cover
single branches. As such, more tests are required to cover branches individually. This design
choice has an immediate impact on the higher volume of total lines of code: more test cases
naturally lead to have additional lines of code in the form of method signatures, variable
definitions/initializations, and single assertion statements.

However, to make amore fair comparison, we also computed the size per test case, namely
themean lines of code of each testmethod generated by the experimented approaches. Table 6
reports the results achieved for this analysis. Â12 > 0.5 indicates that test cases generated
by G- Mosa are, on average, smaller than those of Mosa. The results highlighted a clear
difference in the size of tests generated by the two approaches. In particular, for 68 out of 91
classes (≈ 75%) there is a statistically significant difference in the mean length of generated
test cases. Of these 68 classes, G- Mosa produced smaller tests than Mosa in 58 cases
(≈ 85%), 51 with large or medium effect size with an average size reduction raging between
≈ 1% and ≈ 44%. Such results led us to reject the null hypothesis Hn 3, thus accepting
the alternative hypothesis An 3 in favor of G- Mosa: it generates test methods having a size
significantly lower thanMosa. In spite of the statistical results, the average size per test case
of G- Mosa and Mosa looks similar if we consider the absolute number of lines of code of
the tests generated. This may potentially limit the relevance of our findings in practice, as
both the approaches tend to generate small test cases, with G-MOSA able to further minimize
the size. In this respect, it is worth remarking that the generation of statistically smaller test
cases may have implications on their overall maintainability and understandability. This is
what we aim at assessing in the context of RQ3 and RQ4, where our goal will be to evaluate
whether the difference in terms of size per test case, which may seem marginal at a first
glance, has serious implications in practice.

While G- Mosa produces test methods of smaller size than Mosa, it is worth remark-
ing that, in rare cases, the baseline outperformed our technique. This is the case of the
class azureus2.core3.disk.impl.resume.RDResumeHandler (id. 41), which
is characterized by 300 branches. When generating tests for such a class,Mosa was able to
significantly reduce the mean methods size of the generated test class (i.e., ≈ 67% of aver-
age size reduction over the 30 runs). By manually investigating the class, we observed that
the high cyclomatic complexity influenced G- Mosa - the McCabe cyclomatic complexity
measured 97 in this case, hence confirming the complexity of testing the class. By construc-
tion, our technique equally splits the search budget between the two steps: this may clearly
impact the intra-class testing process, namely the one responsible to exercise the target class
by employing multiple calls of the production code. In cases like the one of the example,
the excessive cyclomatic complexity did not allow G- Mosa to generate effective intra-class
tests, whileMosa could spend the entire search budget for the generation of those tests. This
example highlights a possible limitation of our approach: the configuration of the search
budget may have an influence on the results. While we plan to investigate how to best tune
the approach in our followup research on the matter, we could still conclude that this is not

123

 71 Page 32 of 49 Empirical Software Engineering (2024) 29:71

something arising frequently, hence making G- Mosa a valid alternative for automatic test
case generation.

� Summing Up: Mosa generates test classes that are significantly smaller than G- Mosa. However,
G- Mosa is able to generate tests that are significantly better in terms of size per method with respect to
Mosa. Moreover, we observed that the configuration of the search budget might influence the resulting
performance in some cases.

6.3 RQ3 - Maintainability

In the context of theRQ3 we compared the maintainability of test classes generated byMosa
and G- Mosa. To have a comprehensive view of test classes’ maintainability we relied on
three different metrics capturing different aspects of software maintainability, namely (i) the
Weighted Methods Count (WMC) to measure class complexity, (ii) the Fan-out to measure
class coupling, and (iii) the number of test smells contained in the generated test suites.

Table 7 reports the average WMC and the pairwise statistical analysis for the test classes
generated by the two approaches. The results clearly highlight that test classes generated
by Mosa have significantly lower complexity. Indeed, for 65 out of the 91 classes in our
dataset (i.e., ≈71%) Mosa achieves significantly better results than G- Mosa with large or
medium effect size. Therefore, we can reject the null hypothesis Hn 4, thus accepting the
alternative hypothesis An 4 in favor of Mosa. This result could immediately suggest that
Mosa generates more maintainable test suites. Therefore, a deeper discussion is deserved.
The metric we used for measuring code complexity is theWeighted Methods Count (WMC).
This metric sums the complexities of all test methods in a test class, therefore, the higher
the number of methods, the higher the overall complexity. In RQ2, we demonstrated that the
test classes generated by G- Mosa are larger in terms of total size and number of methods:
because of that, it is not really surprising to see that the statistical tests for this metric
are in favor of Mosa. Nonetheless, it is also worth remarking that RQ2 showed that our
approach tends to preserve the conciseness of individual test methods. As such, it might
still be possible that the individual tests generated by G- Mosa are more understandable
and maintainable. While the quantitative analysis made to answer RQ3 aims at addressing
this question in a systematic manner, a manual investigation of the test cases generated by
the two approaches already revealed some insights. More specifically, we can consider the
case of class com.lts.util.scheduler.NewScheduler (id. 87) as an example. As
reported in Table 7, G- Mosa generates more complex tests classes in this case. Manually
inspecting the source code we were able to confirm our above consideration. In particular,
we noticed that test classes generated byG- Mosa have a mean number of ≈15 test methods
per class while the average number of test methods per class is ≈7 for Mosa. As such,
analyzing this case allows us to confirm that the higher complexity could be associated to
the higher number of methods generated. Indeed, by checking the mean methods length for
this example class in Table 6, we observe a value of 6.41 for G- Mosa compared to 11.43
of Mosa. In this specific situation, it seems that the two approaches generate classes having
approximately the same overall size (class lines of code), however, the higher number of
methods negatively influences the overall class complexity.

When it turns to assess classes’ coupling, it seems that there is no a clearwinner between the
two approaches. According to the results reported in Table 8, conflicting considerations could
be drawn based on each specific class under consideration. Indeed, by simply looking at the
average values for the two approaches we could see that in≈48% of the casesMosa achieves

123

Empirical Software Engineering (2024) 29:71 Page 33 of 49 71

Ta
bl
e
7

W
ei
gh
te
d
M
et
ho
ds

C
ou
nt

(W
M
C
)o

ft
es
tc
la
ss
es

ge
ne
ra
te
d
by

M
o
sa

an
d
G
-
M
o
sa

,w
ith

p-
va
lu
es

re
su
lti
ng

fr
om

th
e
W
ilc

ox
on

te
st
an
d
V
ar
gh

a-
D
el
an
ey

A
1
2
ef
fe
ct
si
ze
.

W
e
us
e
N
,S

,M
,a
nd

L
to

in
di
ca
te
ne
gl
ig
ib
le
,s
m
al
l,
m
ed
iu
m

an
d
la
rg
e
ef
fe
ct
si
ze

re
sp
ec
tiv

el
y.
Si
gn
ifi
ca
nt

p-
va
lu
es

ar
e
re
po
rt
ed

in
bo
ld
-f
ac
e

W
ei
gh

te
d
M
et
ho

ds
C
ou

nt
(W

M
C
)

A
ve
ra
ge

M
o
sa

vs
.G

-
M
o
sa

A
ve
ra
ge

M
o
sa

vs
.G

-
M
o
sa

ID
M
o
sa

G
-
M
o
sa

p-
va
lu
e

Â
12

ID
M
o
sa

G
-
M
o
sa

p-
va
lu
e

Â
12

1
2.
90

4.
00

<
0.
01

0.
32

(M
)

24
94

.3
3

11
7.
12

<
0.
01

0.
09

(L
)

2
11

0.
03

20
4.
68

<
0.
01

0.
00

(L
)

25
15

2.
17

20
9.
62

<
0.
01

0.
00

(L
)

3
25

.3
0

24
.7
2

0.
34

0.
57

(N
)

26
65

.0
7

51
.7
2

<
0.
01

0.
82

(L
)

4
86

.5
7

12
1.
13

<
0.
01

0.
00

(L
)

27
88

.0
3

10
5.
97

<
0.
01

0.
15

(L
)

5
38

.7
7

44
.5
6

<
0.
01

0.
13

(L
)

28
98

.6
7

10
4.
57

<
0.
01

0.
14

(L
)

6
54

.3
7

61
.1
0

<
0.
01

0.
19

(L
)

29
3.
90

4.
28

0.
09

0.
45

(N
)

7
21

.2
4

24
.2
2

<
0.
01

0.
19

(L
)

30
23

.3
7

26
.8
3

<
0.
01

0.
12

(L
)

8
13

0.
86

19
3.
93

<
0.
01

0.
00

(L
)

31
36

.8
7

34
.5
7

<
0.
01

0.
73

(M
)

9
19

.0
0

23
.3
8

0.
18

0.
37

(S
)

32
11

.5
3

15
.4
7

<
0.
01

0.
00

(L
)

10
18

7.
60

21
0.
79

<
0.
01

0.
08

(L
)

33
28

.6
3

44
.0
3

<
0.
01

0.
00

(L
)

11
76

.6
7

78
.0
7

0.
71

0.
47

(N
)

34
11

3.
89

11
7.
37

0.
63

0.
46

(N
)

12
81

.9
3

10
5.
10

<
0.
01

0.
03

(L
)

35
23

.7
9

28
.7
0

<
0.
01

0.
09

(L
)

13
16

.0
0

19
.8
7

<
0.
01

0.
02

(L
)

36
8.
00

7.
00

<
0.
01

1.
00

(L
)

14
52

.2
1

55
.9
3

<
0.
01

0.
29

(M
)

37
28

.1
3

38
.7
2

<
0.
01

0.
12

(L
)

15
20

.2
7

34
.2
7

<
0.
01

0.
01

(L
)

38
15

4.
48

26
0.
97

<
0.
01

0.
00

(L
)

16
71

.9
0

10
0.
93

<
0.
01

0.
00

(L
)

39
64

.3
7

85
.2
0

<
0.
01

0.
13

(L
)

17
4.
00

6.
93

<
0.
01

0.
13

(L
)

40
22

5.
59

39
8.
17

<
0.
01

0.
00

(L
)

18
18

.7
1

18
.8
7

0.
83

0.
48

(N
)

41
36

.5
5

49
.0
0

<
0.
01

0.
00

(L
)

19
11

.6
0

11
.6
0

0.
67

0.
47

(N
)

42
23

.4
7

21
.8
6

0.
14

0.
60

(S
)

20
1.
00

8.
00

<
0.
01

0.
00

(L
)

43
1.
30

2.
30

0.
01

0.
35

(S
)

21
21

.5
9

30
.3
0

<
0.
01

0.
10

(L
)

44
1.
00

18
.6
7

0.
02

0.
42

(S
)

22
16

1.
66

19
7.
07

<
0.
01

0.
11

(L
)

45
1.
50

2.
13

0.
13

0.
41

(S
)

23
42

.1
4

43
.5
0

0.
78

0.
48

(N
)

46
3.
90

7.
72

<
0.
01

0.
03

(L
)

123

 71 Page 34 of 49 Empirical Software Engineering (2024) 29:71

Ta
bl
e
7

co
nt
in
ue
d

W
ei
gh

te
d
M
et
ho

ds
C
ou

nt
(W

M
C
)

A
ve
ra
ge

M
o
sa

vs
.G

-
M
o
sa

A
ve
ra
ge

M
o
sa

vs
.G

-
M
o
sa

ID
M
o
sa

G
-
M
o
sa

p-
va
lu
e

Â
12

ID
M
o
sa

G
-
M
o
sa

p-
va
lu
e

Â
12

47
4.
00

3.
00

<
0.
01

1.
00

(L
)

70
51

.4
0

10
1.
50

<
0.
01

0.
00

(L
)

48
47

.9
7

59
.2
0

<
0.
01

0.
01

(L
)

71
2.
00

19
0.
07

<
0.
01

0.
00

(L
)

49
40

.1
0

57
.7
2

<
0.
01

0.
00

(L
)

72
22

2.
37

24
8.
96

<
0.
01

0.
01

(L
)

50
4.
00

4.
40

0.
08

0.
45

(N
)

73
78

.7
9

11
1.
33

<
0.
01

0.
00

(L
)

51
50

.6
9

70
.9
0

<
0.
01

0.
00

(L
)

74
39

9.
93

65
5.
50

<
0.
01

0.
00

(L
)

52
16

9.
83

26
8.
93

<
0.
01

0.
00

(L
)

75
10

6.
48

14
4.
10

<
0.
01

0.
00

(L
)

53
60

.0
7

64
.6
3

0.
05

0.
35

(S
)

76
95

.5
2

72
.6
0

<
0.
01

0.
93

(L
)

54
44

.9
0

56
.0
3

<
0.
01

0.
00

(L
)

77
73

.9
3

96
.1
3

<
0.
01

0.
00

(L
)

55
25

3.
77

32
5.
13

<
0.
01

0.
00

(L
)

78
16

.5
7

21
.7
0

<
0.
01

0.
04

(L
)

56
13

.6
0

11
.9
7

<
0.
01

0.
97

(L
)

79
17

.1
4

24
.0
3

<
0.
01

0.
24

(L
)

57
64

.7
3

76
.2
3

<
0.
01

0.
03

(L
)

80
19

.5
3

31
.3
0

<
0.
01

0.
00

(L
)

58
28

3.
27

25
8.
52

<
0.
01

0.
98

(L
)

81
6.
00

5.
00

<
0.
01

1.
00

(L
)

59
15

4.
30

23
3.
40

<
0.
01

0.
00

(L
)

82
5.
00

5.
00

1
0.
50

(N
)

60
14

.6
2

17
.6
7

<
0.
01

0.
04

(L
)

83
32

.5
0

41
.3
7

<
0.
01

0.
00

(L
)

61
20

.7
3

33
.9
3

<
0.
01

0.
00

(L
)

84
63

.2
0

88
.5
7

<
0.
01

0.
00

(L
)

62
68

.4
0

84
.0
0

<
0.
01

0.
03

(L
)

85
33

4.
83

36
4.
36

<
0.
01

0.
26

(M
)

63
19

7.
40

22
0.
45

<
0.
01

0.
12

(L
)

86
26

4.
34

33
8.
00

<
0.
01

0.
00

(L
)

64
77

.7
8

11
1.
96

<
0.
01

0.
00

(L
)

87
46

.0
7

51
.9
2

<
0.
01

0.
12

(L
)

65
20

.6
3

34
.1
4

<
0.
01

0.
00

(L
)

88
39

0.
48

40
4.
72

0.
05

0.
35

(S
)

66
57

.3
3

65
.7
7

<
0.
01

0.
01

(L
)

89
9.
23

9.
07

0.
64

0.
53

(N
)

67
41

8.
62

61
6.
37

<
0.
01

0.
00

(L
)

90
4.
00

4.
93

0.
01

0.
38

(S
)

68
44

.9
0

48
.8
3

<
0.
01

0.
12

(L
)

91
60

.5
4

78
.4
5

<
0.
01

0.
00

(L
)

69
16

5.
13

17
3.
03

<
0.
01

0.
17

(L
)

123

Empirical Software Engineering (2024) 29:71 Page 35 of 49 71

Ta
bl
e
8

Fa
n-
ou
to

f
te
st
cl
as
se
s
ge
ne
ra
te
d
by

M
o
sa

an
d
G
-
M
o
sa

,w
ith

p-
va
lu
es

re
su
lti
ng

fr
om

th
e
W
ilc

ox
on

te
st
an
d
V
ar
gh

a-
D
el
an
ey

A
1
2
ef
fe
ct
si
ze
.W

e
us
e
N
,S

,M
,a
nd

L
to

in
di
ca
te
ne
gl
ig
ib
le
,s
m
al
l,
m
ed
iu
m

an
d
la
rg
e
ef
fe
ct
si
ze

re
sp
ec
tiv

el
y.
Si
gn
ifi
ca
nt

p-
va
lu
es

ar
e
re
po
rt
ed

in
bo
ld
-f
ac
e

Fa
n-
ou

t
A
ve
ra
ge

M
o
sa

vs
.G

-
M
o
sa

A
ve
ra
ge

M
o
sa

vs
.G

-
M
o
sa

ID
M
o
sa

G
-
M
o
sa

p-
va
lu
e

Â
12

ID
M
o
sa

G
-
M
o
sa

p-
va
lu
e

Â
12

1
1.
27

2.
00

<
0.
01

0.
32

(M
)

24
81

.9
7

12
9.
73

<
0.
01

0.
06

(L
)

2
12

2.
07

18
4.
89

<
0.
01

0.
00

(L
)

25
37

1.
55

44
9.
38

<
0.
01

0.
17

(L
)

3
18

.4
3

15
.8
6

<
0.
01

0.
86

(L
)

26
11

2.
54

52
.3
1

<
0.
01

0.
99

(L
)

4
93

.3
6

10
7.
97

<
0.
01

0.
07

(L
)

27
14

0.
67

96
.3
4

<
0.
01

0.
98

(L
)

5
11

7.
70

10
3.
25

<
0.
01

0.
92

(L
)

28
27

7.
67

11
9.
00

<
0.
01

1.
00

(L
)

6
10

5.
07

72
.3
7

<
0.
01

0.
98

(L
)

29
1.
93

2.
14

0.
09

0.
45

(N
)

7
34

.1
0

35
.7
8

0.
54

0.
43

(N
)

30
36

.1
7

33
.3
3

<
0.
01

0.
77

(L
)

8
99

.4
8

12
9.
33

<
0.
01

0.
00

(L
)

31
48

.0
0

22
.2
3

<
0.
01

1.
00

(L
)

9
34

.0
7

47
.4
6

<
0.
01

0.
14

(L
)

32
12

.4
7

14
.3
7

<
0.
01

0.
26

(L
)

10
23

3.
27

24
9.
86

<
0.
01

0.
28

(M
)

33
33

.5
3

36
.5
3

0.
07

0.
36

(S
)

11
10

9.
73

91
.2
0

<
0.
01

0.
91

(L
)

34
57

8.
71

51
3.
43

0.
05

0.
65

(S
)

12
12

6.
23

10
9.
27

<
0.
01

0.
80

(L
)

35
18

.9
0

11
.7
7

<
0.
01

0.
97

(L
)

13
9.
00

11
.1
0

<
0.
01

0.
02

(L
)

36
5.
00

4.
00

<
0.
01

1.
00

(L
)

14
52

.0
0

48
.6
3

<
0.
01

0.
78

(L
)

37
77

.0
7

36
.8
9

<
0.
01

0.
86

(L
)

15
14

.6
7

36
.0
7

<
0.
01

0.
00

(L
)

38
14

8.
76

22
5.
00

<
0.
01

0.
00

(L
)

16
50

.8
3

53
.7
0

0.
02

0.
33

(M
)

39
79

.6
7

75
.6
3

0.
20

0.
60

(S
)

17
2.
00

3.
47

<
0.
01

0.
13

(L
)

40
19

4.
69

29
5.
50

<
0.
01

0.
00

(L
)

18
18

.7
9

13
.8
3

<
0.
01

0.
91

(L
)

41
54

.6
2

55
.3
7

0.
30

0.
58

(S
)

19
13

.1
7

8.
77

<
0.
01

0.
91

(L
)

42
31

.6
7

20
.5
5

<
0.
01

0.
97

(L
)

20
0.
00

4.
00

<
0.
01

0.
00

(L
)

43
0.
20

0.
93

0.
01

0.
35

(S
)

21
17

.5
9

24
.3
0

<
0.
01

0.
16

(L
)

44
0.
00

20
.5
7

0.
02

0.
42

(S
)

22
17

1.
86

16
2.
90

0.
99

0.
50

(N
)

45
0.
40

0.
90

0.
13

0.
41

(S
)

23
41

.5
9

35
.9
0

<
0.
01

0.
84

(L
)

46
1.
93

3.
86

<
0.
01

0.
03

(L
)

123

 71 Page 36 of 49 Empirical Software Engineering (2024) 29:71

Ta
bl
e
8

co
nt
in
ue
d

Fa
n-
ou

t
A
ve
ra
ge

M
o
sa

vs
.G

-
M
o
sa

A
ve
ra
ge

M
o
sa

vs
.G

-
M
o
sa

ID
M
o
sa

G
-
M
o
sa

p-
va
lu
e

Â
12

ID
M
o
sa

G
-
M
o
sa

p-
va
lu
e

Â
12

47
3.
00

2.
00

<
0.
01

1.
00

(L
)

70
64

.7
3

99
.6
7

<
0.
01

0.
01

(L
)

48
59

.1
4

52
.4
0

<
0.
01

0.
87

(L
)

71
1.
00

80
.2
3

<
0.
01

0.
00

(L
)

49
45

.9
3

51
.8
3

0.
10

0.
37

(S
)

72
40

5.
20

37
5.
19

<
0.
01

0.
78

(L
)

50
2.
00

2.
20

0.
08

0.
45

(N
)

73
84

.4
8

14
3.
03

<
0.
01

0.
00

(L
)

51
41

.5
5

39
.9
3

0.
02

0.
67

(M
)

74
40

5.
40

71
6.
25

<
0.
01

0.
00

(L
)

52
26

6.
33

22
7.
40

<
0.
01

0.
97

(L
)

75
99

.9
0

12
7.
45

<
0.
01

0.
02

(L
)

53
64

.2
9

50
.3
3

<
0.
01

0.
95

(L
)

76
92

.0
0

56
.0
3

<
0.
01

0.
97

(L
)

54
43

.8
3

30
.3
3

<
0.
01

0.
97

(L
)

77
10

5.
66

77
.7
7

<
0.
01

0.
97

(L
)

55
46

0.
77

32
4.
33

<
0.
01

0.
95

(L
)

78
16

.5
3

19
.0
7

0.
01

0.
29

(M
)

56
8.
70

7.
93

<
0.
01

0.
97

(L
)

79
15

.6
9

20
.4
3

0.
55

0.
46

(N
)

57
96

.1
3

49
.5
0

<
0.
01

1.
00

(L
)

80
17

.5
3

16
.0
3

0.
02

0.
67

(M
)

58
38

7.
03

37
0.
59

<
0.
01

0.
78

(L
)

81
6.
00

4.
00

<
0.
01

1.
00

(L
)

59
16

1.
78

26
7.
47

<
0.
01

0.
00

(L
)

82
4.
00

4.
00

1
0.
50

(N
)

60
8.
34

9.
83

<
0.
01

0.
12

(L
)

83
35

.5
3

31
.8
0

<
0.
01

0.
84

(L
)

61
26

.4
0

20
.8
7

<
0.
01

0.
89

(L
)

84
10

6.
80

63
.1
7

<
0.
01

0.
92

(L
)

62
79

.5
0

46
.7
2

<
0.
01

0.
96

(L
)

85
77

8.
63

81
3.
32

0.
80

0.
52

(N
)

63
21

9.
30

24
8.
79

<
0.
01

0.
17

(L
)

86
34

4.
28

35
6.
86

0.
31

0.
42

(S
)

64
11

4.
00

92
.6
1

<
0.
01

0.
98

(L
)

87
69

.5
0

61
.5
8

<
0.
01

0.
79

(L
)

65
15

.5
3

18
.7
9

<
0.
01

0.
17

(L
)

88
12

22
.6
9

10
22

.0
3

0.
02

0.
68

(M
)

66
72

.6
3

40
.8
0

<
0.
01

1.
00

(L
)

89
7.
90

6.
97

0.
15

0.
61

(S
)

67
40

3.
10

52
6.
37

<
0.
01

0.
03

(L
)

90
3.
00

3.
70

0.
01

0.
38

(S
)

68
49

.1
4

33
.4
0

<
0.
01

1.
00

(L
)

91
46

.3
2

56
.1
4

<
0.
01

0.
01

(L
)

69
35

4.
10

22
1.
83

<
0.
01

1.
00

(L
)

123

Empirical Software Engineering (2024) 29:71 Page 37 of 49 71

Ta
bl
e
9

N
um

be
r
of

Te
st
Sm

el
ls
in

te
st
cl
as
se
s
ge
ne
ra
te
d
by

M
o
sa

an
d
G
-
M
o
sa

,w
ith

p-
va
lu
es

re
su
lti
ng

fr
om

th
e
W
ilc

ox
on

te
st
an
d
V
ar
gh

a-
D
el
an
ey

A
1
2
ef
fe
ct
si
ze
.W

e
us
e
N
,

S,
M
,a
nd

L
to

in
di
ca
te
ne
gl
ig
ib
le
,s
m
al
l,
m
ed
iu
m

an
d
la
rg
e
ef
fe
ct
si
ze

re
sp
ec
tiv

el
y.
Si
gn
ifi
ca
nt

p-
va
lu
es

ar
e
re
po
rt
ed

in
bo
ld
-f
ac
e

N
um

be
r
of

Te
st
Sm

el
ls

A
ve
ra
ge

M
o
sa

vs
.G

-
M
o
sa

A
ve
ra
ge

M
o
sa

vs
.G

-
M
o
sa

ID
M
o
sa

G
-
M
o
sa

p-
va
lu
e

Â
12

ID
te
xt
sc
M
os
a

te
xt
sc
G
-M

os
a

p-
va
lu
e

Â
12

1
0.
00

0.
00

N
aN

0.
50

(N
)

24
0.
97

1.
08

0.
33

0.
47

(N
)

2
3.
00

1.
00

<
0.
01

1.
00

(L
)

25
0.
97

0.
50

<
0.
01

0.
73

(M
)

3
1.
00

0.
00

<
0.
01

1.
00

(L
)

26
1.
04

0.
00

<
0.
01

1.
00

(L
)

4
1.
11

0.
00

<
0.
01

1.
00

(L
)

27
1.
17

0.
00

<
0.
01

1.
00

(L
)

5
1.
93

1.
00

<
0.
01

0.
97

(L
)

28
1.
00

0.
07

<
0.
01

0.
97

(L
)

6
1.
50

0.
07

<
0.
01

0.
98

(L
)

29
0.
00

0.
00

N
aN

0.
50

(N
)

7
0.
79

0.
44

0.
05

0.
67

(M
)

30
1.
00

0.
00

<
0.
01

1.
00

(L
)

8
1.
52

1.
13

0.
27

0.
58

(S
)

31
1.
00

0.
00

<
0.
01

1.
00

(L
)

9
0.
03

0.
00

0.
54

0.
52

(N
)

32
1.
00

0.
07

<
0.
01

0.
97

(L
)

10
1.
67

0.
34

<
0.
01

0.
88

(L
)

33
1.
00

0.
00

<
0.
01

1.
00

(L
)

11
1.
00

0.
00

<
0.
01

1.
00

(L
)

34
0.
71

0.
07

<
0.
01

0.
81

(L
)

12
0.
93

0.
03

<
0.
01

0.
95

(L
)

35
0.
97

0.
00

<
0.
01

0.
98

(L
)

13
0.
00

0.
00

N
aN

0.
50

(N
)

36
0.
00

0.
00

N
aN

0.
50

(N
)

14
0.
17

0.
00

0.
04

0.
57

(N
)

37
1.
60

0.
67

<
0.
01

0.
86

(L
)

15
0.
77

0.
00

<
0.
01

0.
88

(L
)

38
1.
00

0.
10

<
0.
01

0.
95

(L
)

16
1.
17

0.
00

<
0.
01

1.
00

(L
)

39
1.
00

0.
00

<
0.
01

1.
00

(L
)

17
0.
00

0.
00

N
aN

0.
50

(N
)

40
1.
17

0.
00

<
0.
01

0.
98

(L
)

18
1.
00

0.
00

<
0.
01

1.
00

(L
)

41
1.
00

0.
00

<
0.
01

1.
00

(L
)

19
1.
00

0.
00

<
0.
01

1.
00

(L
)

42
1.
37

0.
00

<
0.
01

1.
00

(L
)

20
0.
00

0.
00

N
aN

0.
50

(N
)

43
0.
00

0.
00

N
aN

0.
50

(N
)

21
1.
00

0.
07

<
0.
01

0.
91

(L
)

44
0.
00

0.
00

N
aN

0.
50

(N
)

22
1.
17

0.
37

<
0.
01

0.
74

(L
)

45
0.
07

0.
17

0.
24

0.
45

(N
)

23
1.
00

0.
00

<
0.
01

1.
00

(L
)

46
0.
00

0.
00

N
aN

0.
50

(N
)

123

 71 Page 38 of 49 Empirical Software Engineering (2024) 29:71

Ta
bl
e
9

co
nt
in
ue
d

N
um

be
r
of

Te
st
Sm

el
ls

A
ve
ra
ge

M
o
sa

vs
.G

-
M
o
sa

A
ve
ra
ge

M
o
sa

vs
.G

-
M
o
sa

ID
M
o
sa

G
-
M
o
sa

p-
va
lu
e

Â
12

ID
te
xt
sc
M
os
a

te
xt
sc
G
-M

os
a

p-
va
lu
e

Â
12

47
0.
00

0.
00

N
aN

0.
50

(N
)

70
0.
67

0.
03

<
0.
01

0.
78

(L
)

48
2.
00

1.
00

<
0.
01

1.
00

(L
)

71
1.
00

0.
03

<
0.
01

0.
98

(L
)

49
1.
33

0.
21

<
0.
01

0.
93

(L
)

72
1.
07

0.
04

<
0.
01

0.
97

(L
)

50
0.
00

0.
00

N
aN

0.
50

(N
)

73
1.
00

1.
00

N
aN

0.
50

(N
)

51
1.
00

0.
03

<
0.
01

0.
98

(L
)

74
2.
77

2.
00

<
0.
01

0.
90

(L
)

52
1.
00

0.
00

<
0.
01

1.
00

(L
)

75
1.
03

0.
00

<
0.
01

1.
00

(L
)

53
0.
96

0.
00

<
0.
01

0.
98

(L
)

76
1.
00

0.
00

<
0.
01

1.
00

(L
)

54
0.
97

0.
00

<
0.
01

0.
98

(L
)

77
1.
00

0.
00

<
0.
01

1.
00

(L
)

55
1.
00

0.
13

<
0.
01

0.
93

(L
)

78
1.
03

0.
03

<
0.
01

0.
98

(L
)

56
0.
00

0.
00

N
aN

0.
50

(N
)

79
1.
03

0.
00

<
0.
01

1.
00

(L
)

57
1.
00

0.
00

<
0.
01

1.
00

(L
)

80
1.
00

0.
00

<
0.
01

1.
00

(L
)

58
1.
00

0.
00

<
0.
01

1.
00

(L
)

81
1.
00

0.
00

<
0.
01

1.
00

(L
)

59
0.
00

0.
00

N
aN

0.
50

(N
)

82
0.
00

0.
00

N
aN

0.
50

(N
)

60
1.
00

0.
00

<
0.
01

1.
00

(L
)

83
1.
00

0.
00

<
0.
01

1.
00

(L
)

61
1.
00

0.
00

<
0.
01

1.
00

(L
)

84
1.
03

0.
03

<
0.
01

0.
98

(L
)

62
0.
97

0.
17

<
0.
01

0.
90

(L
)

85
1.
40

0.
23

<
0.
01

0.
92

(L
)

63
1.
00

0.
00

<
0.
01

1.
00

(L
)

86
1.
48

0.
36

<
0.
01

0.
91

(L
)

64
1.
00

0.
00

<
0.
01

1.
00

(L
)

87
1.
71

0.
00

<
0.
01

1.
00

(L
)

65
1.
00

0.
07

<
0.
01

0.
97

(L
)

88
1.
41

0.
21

<
0.
01

0.
93

(L
)

66
2.
00

1.
00

<
0.
01

1.
00

(L
)

89
0.
03

0.
00

0.
33

0.
52

(N
)

67
3.
31

1.
60

<
0.
01

0.
96

(L
)

90
0.
00

0.
00

N
aN

0.
50

(N
)

68
1.
00

0.
00

<
0.
01

1.
00

(L
)

91
0.
29

0.
24

0.
71

0.
52

(N
)

69
2.
00

1.
00

<
0.
01

1.
00

(L
)

123

Empirical Software Engineering (2024) 29:71 Page 39 of 49 71

a better (i.e., lower) coupling while G- Mosa performs better in the remaining ≈52%. From
a statistical point of view, we can observe that for 80% of the classes in our dataset (i.e., 73
cases out of 91) there is a statistically significant difference between the coupling achieved
by the two approaches. As such, the results leads to reject the null hypothesis Hn 5 in favor
of the alternative hypotesis An 5. By considering only these 73 classes in which there is a
statistically significant difference, we observe that for 30 of themMosa performs better (i.e.,
≈41%), while G- Mosa achieves a lower coupling for the remaining 43 (i.e., ≈59%). While
these results could suggest that G- Mosa outperformsMosa in terms of coupling, we cannot
speculate on the results achieved, as they do not allow to make a definitive conclusion. In
this sense, more investigations would be desirable.

As a last dimension to measure classes’ maintainability, we considered the total number
of test smells in classes generated by the two approaches. Table 9 reports the results achieved
for this analysis. First and foremost, both approaches allow the generation of test classes
having a limited number of test smells, with average values ranging between 0 and 3.31.
Additionally, there are several cases in which both approaches generate classes with no test
smells. These cases are easily recognizable by the NaN values in the p-value column (this is
due to the Wilcoxon test failing in presence of ties).

However, when it turns to the statistical comparison the results clearly highlight that G-
Mosa outperformsMosa. For 68 out of the 91 analyzed classes (≈75%) we have a p-value
lower than 0.5 indicating a statistical significant difference. In all these 68 cases G- Mosa
outperforms Mosa with a large effect size. Based on such considerations, we can reject the
null hypothesis Hn 6 and accept the alternative hypothesis An 6 in favor of G- Mosa.

�SummingUp:On themaintainability side,we could not reach a definitive conclusion.When considering
WMC, our findings report that Mosa is statistically better than G- Mosa, even though we highlight that
this may not necessarily indicate a lower level of understandability and maintainability by G- Mosa. In
terms of coupling, there seems not be a clear winner. Finally,G- Mosa provides test cases with a significant
lower amount of test smells. The follow-up analysis of the practitioners’ perspective might provide further
insights into the merit of the experimented techniques in terms of maintainability.

6.4 RQ4 - Understandability

To answer RQ4, we compared the understandability scores given to test cases generated
by Mosa and G- Mosa. Figure 2 shows a plot reporting the understandability scores for
both approaches. More particularly, the figure shows the amount of participants who scored
the understandability of test cases produced by the experimented approaches from 1 (low
understandability) to 5 (high understandability). As we can observe, tests generated byMosa
are associated with lower understandability scores, as 99 out of the 120 (≈82%) respondents
rated themwith a score between 1 and 3. On the contrary, for G- Mosa the ratings are higher,
with 42 participants (35%) giving ratings of 4 or 5. This result already provides an indication
of the goodness of the test cases generated by a granular approach: according to our findings,
G- Mosa is actually able to generate test classes which are perceived by practitioners are
more understandable, overall.

Table 10 reports the results of the statistical analysis performed to compare the understand-
ability scores of Mosa andG- Mosa. The tests confirmed the quantitative insights discussed
above. On the one hand, the test classes generated by our approach have higher ratings on
average (2.9 against 2.5). On the other hand, theWilcoxon and Vargha-Delaney tests reported
a p-value of 0.01, highlighting statistical significance with a small effect size. On the basis
of these observations, we could reject the null hypothesis Hn 7 and accept the alternative

123

 71 Page 40 of 49 Empirical Software Engineering (2024) 29:71

Fig. 2 Understandability scores achieved by MOSA and G- Mosa

hypothesisAn 7 in favor of G- Mosa: our approach generates more understandable test cases
with a statistically significant difference with respect to the baseline approach.

To further support our findings, we also looked at the assertions reported by participants
for tests generated by the two approaches. As introduced in Section 5, we performed a
manual analysis of all the assertion statements to check whether they were consistent with the
corresponding test case. From the analysis, it turned out that for both approaches participants
were able towrite valid assertion statements inmost of the cases. In particular, as forMosa, at
least one valid assertion was reported for 195 out of the 240 tests (≈ 81%).When considering
test cases generated by G- Mosa, 220 cases with at least one valid assert statement were
reported (≈92%).These results further corroborate the conclusion that the test cases generated
by G- Mosa are, overall, more understandable than those generated by Mosa.

An interesting observation which is worth to elaborate relates to the average number of
assertions for each test case. Our findings pointed out that the number of assertions generated
for Mosa is way higher with an average number of ≈2, compared to ≈1 of G- Mosa.

In literature, a higher number of assertions per single test case, i.e., a higher assertion
density, has been often associated with an increased capability of test classes to identify
faults in production code (Kudrjavets et al. 2006). As such, the reader may possibly interpret
the results so that, despite the lower understandability, the test cases generated by Mosa
could still be more effective when employed to discover faults. While this perspective might
be worth of assessment through a dedicated empirical investigation, we believe that our
findings should be interpreted differently. By design, G- Mosa generates more test cases,
but of smaller size and more cohesive when compared to the baseline. This implies that
the developers involved in our survey study were called to analyze a larger amount of tests

Table 10 Understandability scores of test classes generated by Mosa and G- Mosa, with p-values resulting
from the Wilcoxon test and Vargha-Delaney A12 effect size. We use N, S, M, and L to indicate negligible,
small, medium and large effect size respectively. Significant p-values are reported in bold-face

Understandability scores
Average Mosa vs. G- Mosa
sMosa sG- Mosa sp-value sÂ12

ss2.50 s2.90 s0.01 s0.41 (S)

123

Empirical Software Engineering (2024) 29:71 Page 41 of 49 71

of smaller size: when analyzing the assert statements, we could realize that the developers
were able to focus more the scope of the assertions, hence letting the tests focusing on more
specific targets of the production code. In our view, this represents a valuable characteristic of
our approach, as it allows developers to develop better test cases. In addition, it is also worth
remarking that the results obtained on the number of assertions per test case have significant
implications for fault localization and debugging. Indeed, test cases with less assertions but
more focused on targets might allow developers to potentially diagnose the root causes of
faults with a reduced effort.

To further investigate on the motivations behind the understandability ratings provided by
the survey participants, we analyzed the comments left when assessing the understandability
of test cases. We noticed some responses in which users assigned low ratings to both the
test classes generated by the two approaches, however, these ratings were influenced by the
lack of comments and assertions that are peculiarities of automatically generated test classes.
More interestingly, we found that in several cases the participants appreciated the granular
nature of our approach. Here we report two of these cases. The entire list of responses can
be found on our online appendix (Anonymous 2021).

This is the case of participant #21 who reported “Very difficult to understand the purpose
of each unit test. This can be inferred, but without assertions, new developers will have
to assume the purpose and fix the code.” for Mosa (with a rating of 2), while they rated
with a score of 4 the understandability of G- Mosa with the following comment: “Easy
to understand the purpose of each unit test, even with modules I do not have experience
with. With more comments in the code itself, the unit tests would be fully understandable.”.
Similarly, participant #42 reported the following comment for G- Mosa “The unit tests
were clear and written well since they tested only one thing at a time. I feel like more
documentation, organization, or labeling would be better”. Also in this case, the ratings
reported were 4 for G- Mosa and 2 for Mosa with the following justification: “This class
was harder to understand because there were few assertions and the code wasmore verbose”

� Summing Up: Test cases generated by G- Mosa are significantly more understandable than those
generated byMosa. Participants of the survey were able to generate at least one valid assertion statement
in a higher number of cases for G- Mosa. Moreover, test cases generatedMosa received a higher average
number of asserts per single test case, indicating that a major effort is required to write assertions for this
approach.

7 Threats to Validity

In this section, we discuss the main threats that might have affected the validity of our study
and how we mitigated them.

7.1 Threats to construct validity

Threats in this category refer to the relation between theory and observations. Our context
was originally composed of 100 classes but we only reported results for 91 of them since the
remaining 9 in our sample led EvoSuite to fail due to internal errors. Nevertheless, the size
of our experiment is inline with respect to previous work (Ali et al. 2009). Another possible
threat could be connected to the selection of the baseline technique on which we built G-
Mosa. The selection of Mosawas driven by the fact that this was the techniquewe knew best

123

 71 Page 42 of 49 Empirical Software Engineering (2024) 29:71

and felt most confident with to modify. Yet, we believe that the selection of another baseline
would have not had an important impact on the results obtained in the context of our study. In
particular, our aim was to define a systematic approach and to improve the resulting structure
of the generated test cases, independently from the baseline approach, i.e., the methodology
implemented in G- Mosa can be applied on any automatic test case generation technique.
As such, the results achieved would not be influenced by the technique chosen as baseline.
In any case, we already plan to replicate our study with different core techniques in order to
verify this consideration.

7.2 Threats to internal validity

As for the intrinsic factors that could have influenced our findings, our approach and the
baseline used for comparison were implemented within the same tool, i.e., Evosuite (Fraser
and Arcuri 2011). As such, they relied on exactly the same underlying implementation of the
genetic operators, avoidingpossible confounding effects due to the use of different algorithms.
Theparameter configuration represents a secondaspect possibly affectingour results.Weused
the default settings available in Evosuite on the basis of previous research in the field (Arcuri
and Fraser 2013) which showed that the configuration of parameters is not only expensive
but also possibly ineffective in improving the performance of search-based algorithms. To
deal with the inherent randomness of genetic algorithms, we re-executed the experimented
approaches 30 times—as recommended by previous research (Campos et al. 2017)—and
reported their average performance when discussing the results. Finally, we equally split the
search budget of our technique in two: this might have led G- Mosa to underperform with
respect to the optimal case, i.e., as noticed in our qualitative analysis, the effectiveness of the
intra-class step could be negatively influenced in some cases. Nonetheless, our goal was that
of investigating the feasibility of using a two-step approach for automatic test case generation;
we plan to perform an extensive analysis aimed at identifying the optimal configuration for
our technique in our followup research.

In the context of the user study conducted to assess the understandability of the generated
test cases, we did not limit our recruitment to original developers, but we also employed a
research-oriented platform like Prolific. On the one hand, we could not finally recruit any
original developers: this implies that we could not assess the understandability of the test
classes generated by the compared approaches from the perspective of the actual designers of
the source code under test. While the opinions of the original developers might have revealed
additional insights, the expertise and background of the participants who took part to the
survey make us confident of the results reported. On the other hand, the choice of selecting
Prolific might have potentially introduced some sort of selection bias (Reid et al. 2022).
To mitigate this risk, we have taken two main actions. First, we introduced an incentive of 2
pounds per valid respondent, which means that the participation was stimulated through the
recognition rather than left to the willingness of developers. Second, we manually verified
the actual validity of the answers received, in an effort of discarding the responses from
participants who did not take the task seriously. In addition, it is also worth mentioning that,
other than collecting background information by directly inquiring participants, the online
platform used by participants to execute the study is able to keep track of the time spent by
each participant on each answer: this enabled an improved analysis of the performance of
the participants and supported us when spotting cases to discard. Nonetheless, we are aware
of the limitations of an online experiment - yet, with the current pandemic situation, this was
the only viable solution.

123

Empirical Software Engineering (2024) 29:71 Page 43 of 49 71

Another aspect that might have affected the internal validity of the user study concerns
with the selection of the test classes shown to participants. To avoid any biased selection, we
proceeded with a random selection from the entire set of classes considered in our study.

7.3 Threats to conclusion validity

Threats in this category concern with the relationship between treatment and outcome.
In the comparison of G- Mosa and Mosa, we adopted well-known state-of-the-art met-
rics to assess their structure and performance. For example, we computed branch coverage
when understanding the effectiveness of the tests generated by the two approaches. In addi-
tion, we employed appropriate statistical tests to verify the significance of the differences
achieved by our approach and the baseline. Specifically, we first used the Wilcoxon Rank
Sum Test (Conover 1999) for statistical significance and then the Vargha-Delaney effect size
statistic (Van Deursen et al. 2001) to estimate the magnitude of the observed difference.

7.4 Threats to external validity

Threats to the external validity regard the generalization of our findings. We conducted our study
considering the SF110 benchmark dataset (Fraser and Arcuri 2014), which has been widely
employed by previous researchers to conduct experimentations in the context of automatic
test case generation (Fraser and Arcuri 2014; Panichella et al. 2015a; Grano et al. 2019b;
Fraser and Arcuri 2013). To increase the reliability of the reported results, we also filtered
out trivial classes from the initial dataset, ending up with a sample of 100 classes that allowed
us to analyze the results from a statistical point of view. Nevertheless, the re-execution of
the study in other contexts, e.g., the XCorpus dataset (Dietrich et al. 2017), might lead to
different results. We plan to tackle this potential issue in our future work. Finally, we limited
the study to classes written in Java because our tooling can only deal with them: as such,
replications of our work on systems written in other languages would therefore be desirable.

In the user study, we had to limit the selection of the test classes to present to participants
to two. Such a limited scope was required to ensure a reasonable compromise between
the amount of classes to verify and the time required to participants. Before opting for the
selection of two classes, we run a pilot study aimed at understanding the optimal amount
of classes to consider in the study. The pilot was conducted with 10 software engineering
researchers working within the lab of the third and last authors of the paper. The researchers
have between 2 and 5 years of academic experience on software quality assurance and testing,
with two of them who had previous experience in industry. In the pilot study, we verified
the amount of time required by participants to assess five pairs of test classes generated by
G- Mosa and MOSA. We could realize that after the first two pairs, not only the answers
took significantly longer, but the overall quality of the assertions provided decreased. By
interactingwith the participants, we could understand that their level of attention significantly
decreased after the first two evaluations due to the fatigue-effect. For this reason, we fixed
the number of tasks for the actual participants to two. Nonetheless, further replications of the
study aiming at corroborating our findings are already part of our future research agenda.

8 Conclusion

The ultimate goal of our research was to define a systematic strategy for the automatic
generation of test code. In this paper, we startedworking toward this goal by implementing the

123

 71 Page 44 of 49 Empirical Software Engineering (2024) 29:71

concepts of intra-method and intra-class testing within a state-of-the-art automatic technique
for test case generation like Mosa. One of the risks connected to these mechanisms is the
decrease of effectiveness: by forcing our approach to generate intra-method tests we naturally
limit its scope, potentially lowering the number of tangentially covered branches. It turned
out that, instead, this was not the case. According to our results,G- Mosa provided test cases
that are comparable in terms of both code and mutation coverage. Hence, it seems that it is
actually possible to improve the inner-working of automatic test case generators by creating
more granular tests that are still as effective as those produced by baseline techniques. The
empirical results of our study also suggest that our approach to the generation provides
rewards in terms of other desirable properties of test cases. The test cases produced by G-
Mosa are indeed shorter, more maintainable, and understandable than those produced by
Mosa. Hence, we can conclude that:

◎ Overall conclusion of our work.

The granular approach to the generation of test cases provides promising results. G-
Mosa tends to generate a larger amount of test cases with respect to the baseline, but
these are significantly shorter. On the one hand, this property does not damage code
and mutation coverage, which remain statistically comparable. On the other hand, it
provides multiple benefits in terms of maintainability and understandability, potentially
providing relevant implications to fields like fault localization and debugging.

We consider this as a key result of our research, as it might potentially lead further
researchers to consider the application of structured approaches that may generate test classes
that are potentially more focused, comprehensible, and maintainable while keeping the same
level of effectiveness.

The technique we proposed is also prepared to allow the generation at different granularity
levels. Indeed, one can simply increase the number of production calls allowed in the first
part of the generation, that we limit to one in this first concept, to generate tests at incremental
levels of granularity. This would potentially have key implications, as the proposed strategy
can be easily extended from a two-step (i.e., intra-method + intra-class) to an n-step approach
in which the number of calls allowed to methods of the class under test (CUT) is increased at
each step. Since different number of calls to methods of the class under test corresponds to
different paths on the state machine of the CUT, it would be possible to limit the length of the
paths to execute on the state machine, thus providing shorter and more comprehensible tests
for which it will be easier to generate an oracle. In this sense, our work poses the basis for the
definition of a brand new way to generate test cases that might be of particular interest for
the researchers working at intersection between software testing and software code quality.

Perhaps more importantly, when diving into the tests generated by the experimented
techniques we found out that G- Mosa performed better than Mosa on large classes. In a
real-case scenario, this becomes particularly important when a failing test must be diagnosed.
As shown in literature (Ramler et al. 2013; Zeller 2009), developers use test cases to start the
debugging activities and understand the nature of a failure: in this sense, the availability of
smaller test cases that contain a lower amount of assertions might help developers in finding
defects faster. More investigations into the implications of our technique for debugging are
part of our future research agenda.

In addition, we also plan to exploit the granular nature of G- Mosa to perform multiple
additional investigations. On the one hand, we plan to assess how the test cases generated
by our techniques behave when considering the detection of real defects: in this respect,

123

Empirical Software Engineering (2024) 29:71 Page 45 of 49 71

the use of Defects4J (Just et al. 2014) as a database of real defects might be instrument,
even though such an analysis might require some tuning and/or modifications to the inner-
working of G- Mosa to fit computation constraints (Fraser and Arcuri 2016). On the other
hand, we plan to conduct further experimentation based on several granularity levels. Finally,
we plan to implement our approach on top of a broader set of baselines as well as an in-vivo
performance assessment involving real testing experts.

9 Credits

Fabiano Pecorelli: Technique design, Technique experimentation, User study design and
execution,DataCuration,DataAnalysis,Writing.GiovanniGrano: Technique design, Tech-
nique implementation, Technique experimentation, Data Curation,Writing.Fabio Palomba:
Technique design, User study design and execution, Supervision, Writing. Harald C. Gall:
Supervision,Writing - Review&Editing.AndreaDeLucia: Technique design, Supervision,
Writing - Review & Editing.

Acknowledgements Fabio gratefully acknowledges the support of the Swiss National Science Foundation
(SNSF) through the SNF Project No. PZ00P2_186090 (TED).

Funding Open access funding provided by Università degli Studi di Salerno within the CRUI-CARE Agree-
ment.

Data Availability Statement (DAS) The data collected in the context of this study, along with the scripts used
to analyze and generate data, charts, and plots discussed when addressing our research goals, are publicly
available in our online appendix (Anonymous 2021).

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Afshan S, McMinn P, Stevenson M (2013) Evolving readable string test inputs using a natural language
model to reduce human oracle cost. In: Proceedings of the 2013 IEEE Sixth International Conference
on Software Testing, Verification and Validation, IEEE Computer Society, Washington, DC, USA, ICST
’13, pp 352–361. https://doi.org/10.1109/ICST.2013.11. http://dx.doi.org/10.1109/ICST.2013.11

Ali S, Briand LC, Hemmati H, Panesar-Walawege RK (2009) A systematic review of the application and
empirical investigation of search-based test case generation. IEEE rans Softw Eng 36(6):742–762

Ammann P, Offutt J (2016) Introduction to software testing. Cambridge University Press
AnandS,BurkeEK,ChenTY,Clark J, CohenMB,GrieskampW,HarmanM,HarroldMJ,McminnP,Bertolino

A et al (2013) An orchestrated survey of methodologies for automated software test case generation. J
Syst Softw 86(8):1978–2001

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/ICST.2013.11
http://dx.doi.org/10.1109/ICST.2013.11

 71 Page 46 of 49 Empirical Software Engineering (2024) 29:71

Anonymous (2021) Toward granular automatic unit test case generation - online appendix. https://figshare.
com/s/34d39dae76ed68d57d18

Arcuri A (2019) Restful api automated test case generation with evomaster. ACM Trans Softw Eng Methodol
28(1):1–37

Arcuri A, Fraser G (2013) Parameter tuning or default values? an empirical investigation in search-based
software engineering. Empir Softw Eng 18(3):594–623

Baltes S, Diehl S (2016) Worse than spam: Issues in sampling software developers. In: Proceedings of the
10th ACM/IEEE international symposium on empirical software engineering and measurement, p 1–6

Barr ET, Harman M, McMinn P, Shahbaz M, Yoo S (2015) The oracle problem in software testing: A survey.
IEEE Trans Softw Eng 41(5):507–525. https://doi.org/10.1109/TSE.2014.2372785

Beller M, Gousios G, Panichella A, Proksch S, Amann S, Zaidman A (2017) Developer testing in the ide:
Patterns, beliefs, and behavior. IEEE Trans Softw Eng 45(3):261–284

Campos J, Ge Y, Fraser G, Eler M, Arcuri A (2017) An empirical evaluation of evolutionary algorithms for
test suite generation. In: Proceedings of the 9th International Symposium on Search Based Software
Engineering SSBSE 2017, p 33–48. https://doi.org/10.1007/978-3-319-66299-2_3

Ceccato M, Marchetto A, Mariani L, Nguyen CD, Tonella P (2015) Do automatically generated test cases
make debugging easier? an experimental assessment of debugging effectiveness and efficiency. ACM
Trans Softw Eng Methodol 25(1):1–38

Conover W (1999) Practical nonparametric statistics, 3rd edn. Wiley series in probability and statistics, Wiley,
New York, NY [u.a.]

Daka E, Campos J, Fraser G, Dorn J, Weimer W (2015) Modeling readability to improve unit tests. In:
Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering, ACM, p 107–118

Dietrich J, Schole H, Sui L, Tempero E (2017) Xcorpus–an executable corpus of java programs
ElishMO,RineD (2006)Design structural stabilitymetrics and post-release defect density:An empirical study.

In: 2006 30th Annual International Computer Software and Applications Conference (COMPSAC’06
Supplement), IEEE, p 1–8

Erdogmus H, Morisio M, Torchiano M (2005) On the effectiveness of the test-first approach to programming.
IEEE Trans Softw Eng 31(3):226–237

Ferrer J, ChicanoF,AlbaE (2012) Evolutionary algorithms for themulti-objective test data generation problem.
Softw Pract Exper 42(11):1331–1362. https://doi.org/10.1002/spe.1135. https://dx.doi.org/10.1002/spe.
1135

Fowler M, Beck K (1999) Refactoring: improving the design of existing code. Addison-Wesley Professional
Fraser G, Arcuri A (2011) Evosuite: Automatic test suite generation for object-oriented software. In: Pro-

ceedings of the 19th ACM SIGSOFT Symposium and the 13th European Conference on Foundations of
Software Engineering, ACM, New York, NY, USA, ESEC/FSE ’11, p 416–419. https://doi.org/10.1145/
2025113.2025179. http://doi.acm.org/10.1145/2025113.2025179

Fraser G, Arcuri A (2013) Whole test suite generation. IEEE Trans Softw Eng 39(2):276–291. https://doi.org/
10.1109/TSE.2012.14. https://dx.doi.org/10.1109/TSE.2012.14

Fraser G, Arcuri A (2014) A large-scale evaluation of automated unit test generation using evosuite. ACM
Trans Softw Eng Methodol 24(2):1–42

Fraser G, Arcuri A (2015) 1600 faults in 100 projects: automatically finding faults while achieving high
coverage with evosuite. Empir Softw Eng 20(3):611–639

Fraser G, Arcuri A (2015) Achieving scalable mutation-based generation of whole test suites. Empir Softw
Eng 20(3):783–812

Fraser G, Arcuri A (2016) Evosuite at the sbst 2016 tool competition. In: Proceedings of the 9th International
Workshop on Search-Based Software Testing, p 33–36

Fraser G, Staats M, McMinn P, Arcuri A, Padberg F (2015) Does automated unit test generation really help
software testers? a controlled empirical study. ACM Trans Softw Eng Methodol To Appear 24(4):1–49

Garousi V, Küçük B (2018) Smells in software test code: a survey of knowledge in industry and academia. J
Syst Softw 138:52–81

Goldberg DE (1989) Genetic Algorithms in Search, Optimization and Machine Learning, 1st edn. Addison-
Wesley Longman Publishing Co., Inc, Boston

Grano G, Scalabrino S, Oliveto R, Gall H (2018) An empirical investigation on the readability of manual and
generated test cases. In: Proceedings of the 26th International Conference on Program Comprehension,
ICPC

Grano G, Laaber C, Panichella A, Panichella S (2019a) Testing with fewer resources: An adaptive approach
to performance-aware test case generation. IEEE Trans Softw Eng

Grano G, Palomba F, Di Nucci D, De Lucia A, Gall HC (2019) Scented since the beginning: On the diffuseness
of test smells in automatically generated test code. J Syst Softw 156:312–327

123

https://figshare.com/s/34d39dae76ed68d57d18
https://figshare.com/s/34d39dae76ed68d57d18
https://doi.org/10.1109/TSE.2014.2372785
https://doi.org/10.1007/978-3-319-66299-2_3
https://doi.org/10.1002/spe.1135
https://dx.doi.org/10.1002/spe.1135
https://dx.doi.org/10.1002/spe.1135
https://doi.org/10.1145/2025113.2025179
https://doi.org/10.1145/2025113.2025179
http://doi.acm.org/10.1145/2025113.2025179
https://doi.org/10.1109/TSE.2012.14
https://doi.org/10.1109/TSE.2012.14
https://dx.doi.org/10.1109/TSE.2012.14

Empirical Software Engineering (2024) 29:71 Page 47 of 49 71

Grano G, De Iaco C, Palomba F, Gall HC (2020) Pizza versus pinsa: On the perception and measurability of
unit test code quality. In: 2020 IEEE International Conference on Software Maintenance and Evolution
(ICSME), IEEE, p 336–347

Gren L, Antinyan V (2017) On the relation between unit testing and code quality. In: 2017 43rd Euromicro
Conference on Software Engineering and Advanced Applications (SEAA), IEEE, p 52–56

Habchi S, Haben G, Papadakis M, Cordy M, Traon YL (2021) A qualitative study on the sources, impacts,
and mitigation strategies of flaky tests. arXiv preprint arXiv:2112.04919

Harrold MJ, McGregor JD, Fitzpatrick KJ (1992) Incremental testing of object-oriented class structures. In:
Proceedings of the 14th international conference on Software engineering, p 68–80

Heckman JJ (1990) Selection bias and self-selection. In: Econometrics, Springer, p 201–224
Henry S, Kafura D (1981) Software structure metrics based on information flow. IEEE Trans Softw Eng

5:510–518
Hunt KJ, Shlomo N, Addington-Hall J (2013) Participant recruitment in sensitive surveys: a comparative trial

of ‘opt in’versus ‘opt out’approaches. BMC Med Res Methodol 13(1):1–8
Just R, Jalali D, Ernst MD (2014) Defects4j: A database of existing faults to enable controlled testing studies

for java programs. In: Proceedings of the 2014 international symposium on software testing and analysis,
p 437–440

Knowles JD, Corne DW (2000) Approximating the nondominated front using the pareto archived evolution
strategy. Evol Comput 8(2):149–172

Kudrjavets G, Nagappan N, Ball T (2006) Assessing the relationship between software assertions and faults:
An empirical investigation. In: 2006 17th International Symposium on Software Reliability Engineering,
IEEE, p 204–212

Lakhotia K, Harman M, McMinn P (2007) A multi-objective approach to search-based test data generation.
In: Proceedings of the 9th annual conference on Genetic and evolutionary computation, p 1098–1105

von Lücken C, Barán B, Brizuela C (2014) A survey on multi-objective evolutionary algorithms for many-
objective problems. Comput Optim Appl 58(3):707–756

McCabe TJ (1976) A complexity measure. IEEE Trans Softw Eng 4:308–320
McMinn P (2004) Search-based software test data generation: A survey. Softw Test Verif Reliab 14(2):105–

156. https://doi.org/10.1002/stvr.v14:2. https://dx.doi.org/10.1002/stvr.v14:2
McMinn P (2004) Search-based software test data generation: a survey. Softw Test Verification Reliab

14(2):105–156
Myers GJ, Sandler C, Badgett T (2011) The art of software testing. John Wiley & Sons
OrsoA, Silva S (1998) Open issues and research directions in object-oriented testing. In: Proceedings of the 4th

International Conference on” Achieving Quality in Software: Software Quality in the Communication
Society” (AQUIS’98)

Oster N, Saglietti F (2006) Automatic test data generation by multi-objective optimisation. In: International
Conference on Computer Safety, Reliability, and Security, Springer, p 426–438

Palomba F, Panichella A, Zaidman A, Oliveto R, De Lucia A (2016) Automatic test case generation: What
if test code quality matters? In: Proceedings of the 25th International Symposium on Software Testing
and Analysis, ACM, New York, NY, USA, ISSTA 2016, p 130–141. https://doi.org/10.1145/2931037.
2931057. http://doi.acm.org/10.1145/2931037.2931057

Panichella A, Kifetew FM, Tonella P (2015a) Reformulating branch coverage as amany-objective optimization
problem. In: ICST, IEEE Computer Society, p 1–10

PanichellaA,KifetewFM,Tonella P (2015b) Reformulating branch coverage as amany-objective optimization
problem. In: ICST, IEEE Computer Society, p 1–10

Panichella A, Kifetew FM, Tonella P (2018) Automated test case generation as a many-objective optimisation
problem with dynamic selection of the targets. IEEE Trans Softw Eng 44(2):122–158

Panichella A, Kifetew FM, Tonella P (2018b) Incremental control dependency frontier exploration for many-
criteria test case generation. In: International Symposium on Search Based Software Engineering,
Springer, p 309–324

Papadakis M, Shin D, Yoo S, Bae DH (2018) Are mutation scores correlated with real fault detection? a large
scale empirical study on the relationship between mutants and real faults. In: 2018 IEEE/ACM 40th
International Conference on Software Engineering (ICSE), IEEE, p 537–548

Pecorelli F, Palomba F, De Lucia A (2021) The relation of test-related factors to software quality: a case study
on apache systems. Empir Softw Eng 26(2):1–42

Peruma A, Almalki K, Newman CD, Mkaouer MW, Ouni A, Palomba F (2020) Tsdetect: An open source test
smells detection tool. In: Proceedings of the 28th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, p 1650–1654

Pezzè M, Young M (2008) Software testing and analysis: process, principles, and techniques. John Wiley &
Sons

123

http://arxiv.org/abs/2112.04919
https://doi.org/10.1002/stvr.v14:2
https://dx.doi.org/10.1002/stvr.v14:2
https://doi.org/10.1145/2931037.2931057
https://doi.org/10.1145/2931037.2931057
http://doi.acm.org/10.1145/2931037.2931057

 71 Page 48 of 49 Empirical Software Engineering (2024) 29:71

Pinto GH, Vergilio SR (2010) A multi-objective genetic algorithm to test data generation. In: 2010 22nd IEEE
International Conference on Tools with Artificial Intelligence, IEEE, vol 1, p 129–134

Ramler R, Wolfmaier K, Kopetzky T (2013) A replicated study on random test case generation and manual
unit testing: How many bugs do professional developers find? In: 2013 IEEE 37th Annual Computer
Software and Applications Conference, IEEE, p 484–491

Reid B, Wagner M, d’Amorim M, Treude C (2022) Software engineering user study recruitment on prolific:
An experience report. arXiv preprint arXiv:2201.05348

Rojas JM, Campos J, Vivanti M, Fraser G, Arcuri A (2015) Combining multiple coverage criteria in search-
based unit test generation. In: Barros M, Labiche Y (eds) Search-Based Software Engineering. Springer
International Publishing, Cham, pp 93–108

Rojas JM, Fraser G, Arcuri A (2015b) Automated unit test generation during software development: A con-
trolled experiment and think-aloud observations. In: Proceedings of the 2015 international symposium
on software testing and analysis, p 338–349

Scalabrino S, Grano G, Di Nucci D, Oliveto R, De Lucia A (2016) Search-based testing of procedural pro-
grams: Iterative single-target or multi-target approach? In: Sarro F, Deb K (eds) Search Based Software
Engineering. Springer International Publishing, Cham, pp 64–79

Spadini D, Palomba F, Zaidman A, Bruntink M, Bacchelli A (2018) On the relation of test smells to software
code quality. In: 2018 IEEE International Conference on Software Maintenance and Evolution (ICSME),
IEEE, p 1–12

Spinellis D (2005) Tool writing: a forgotten art?(software tools). IEEE Softw 22(4):9–11
Subramanyam R, KrishnanMS (2003) Empirical analysis of ck metrics for object-oriented design complexity:

Implications for software defects. IEEE Trans Softw Eng 29(4):297–310
Van Deursen A, Moonen L, van den Bergh A, Kok G (2001) Refactoring test code. In: Proceedings of the

2nd international conference on extreme programming and flexible processes in software engineering
(XP2001), p 92–95

Wang S, Offutt J (2009) Comparison of unit-level automated test generation tools. In: 2009 International
Conference on Software Testing, Verification, and Validation Workshops, IEEE, p 210–219

Wappler S, Lammermann F (2005) Using evolutionary algorithms for the unit testing of object-oriented
software. In: Proceedings of the 7th Annual Conference on Genetic and Evolutionary Computation,
Association for ComputingMachinery, NewYork, NY, USA, GECCO ’05, p 1053–1060. https://doi.org/
10.1145/1068009.1068187

Williams L, Kudrjavets G, Nagappan N (2009) On the effectiveness of unit test automation at microsoft. In:
2009 20th International Symposium on Software Reliability Engineering, IEEE, p 81–89

Zamani S, Hemmati H (2020) A cost-effective approach for hyper-parameter tuning in search-based test case
generation. In: 2020 IEEE International Conference on Software Maintenance and Evolution (ICSME),
IEEE, p 418–429

Zeller A (2009) Why programs fail: a guide to systematic debugging. Elsevier

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

http://arxiv.org/abs/2201.05348
https://doi.org/10.1145/1068009.1068187
https://doi.org/10.1145/1068009.1068187

Empirical Software Engineering (2024) 29:71 Page 49 of 49 71

Authors and Affiliations

Fabiano Pecorelli1 · Giovanni Grano2 · Fabio Palomba1 · Harald C. Gall3 ·
Andrea De Lucia1

Giovanni Grano
me@giograno.com

Fabio Palomba
fpalomba@unisa.it

Harald C. Gall
harald.gall@uzh.ch

Andrea De Lucia
adelucia@unisa.it

1 SeSa Lab - University of Salerno, Fisciano, Italy
2 LocalStack, Zürich, Switzerland
3 SEAL Lab - University of Zurich, Zürich, Switzerland

123

http://orcid.org/0000-0003-2446-4291

	Toward granular search-based automatic unit test case generation
	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Automatic Unit Test Case Generation
	2.2 Related Work

	3 G-Mosa: A Two-Step Automatic Test Case Generation Approach
	3.1 Step I - Intra-Method Tests Generation
	3.2 Step II - Intra-Class Tests Generation

	4 Research Questions and Objectives
	5 Study Design
	5.1 Experimental Environment
	5.2 Collecting Performance Metrics
	5.3 Collecting Understandability Metrics
	5.4 Data Analysis
	5.5 Publication of generated data

	6 Analysis of the Results
	6.1 RQ1 - Effectiveness
	6.2 RQ2 - Size
	6.3 RQ3 - Maintainability
	6.4 RQ4 - Understandability

	7 Threats to Validity
	7.1 Threats to construct validity
	7.2 Threats to internal validity
	7.3 Threats to conclusion validity
	7.4 Threats to external validity

	8 Conclusion
	9 Credits
	Acknowledgements
	References

