
Empirical Software Engineering (2024) 29:52
https://doi.org/10.1007/s10664-023-10428-2

Traceability and reuse mechanisms, the most important
properties of model transformation languages

Stefan Höppner1 ·Matthias Tichy1

Accepted: 16 November 2023
© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may
apply 2024

Abstract
Context Dedicated model transformation languages are claimed to provide many benefits
over the use of general purpose languages for developing model transformations. However,
the actual advantages and disadvantages associated with the use of model transformation
languages are poorly understood empirically. There is little knowledge and even less empirical
assessment about what advantages and disadvantages hold in which cases and where they
originate from. In a prior interview study, we elicited expert opinions on what advantages
result from what factors surrounding model transformation languages as well as a number of
moderating factors that moderate the influence.
Objective We aim to quantitatively asses the interview results to confirm or reject the influ-
ences and moderation effects posed by different factors. We further intend to gain insights
into how valuable different factors are to the discussion so that future studies can draw on
these data for designing targeted and relevant studies.
Method Wegather data on the factors and quality attributes using an online survey. To analyse
the data and examine the hypothesised influences andmoderations, we use universal structure
modelling based on a structural equation model. Universal structure modelling produces
significance values and path coefficients for each hypothesised andmodelled interdependence
between factors and quality attributes that can be used to confirm or reject correlation and to
weigh the strength of influence present.
Results We analyzed 113 responses. The results show that the MTL capabilities Tracing and
Reuse Mechanisms are most important overall. Though the observed effects were generally
10 times lower than anticipated. Furthermore, we found that moderation effects need to be
individually assessed for each influence on a quality attribute. The moderation effects of a
single moderating variable vary significantly for each influence, with the strongest effects
being 1000 times higher than the weakest.
Conclusion The empirical assessment of MTLs is a complex topic that cannot be solved by
looking at a single stand-alone factor. Our results provide clear indication that evaluation

Communicated by: Maria Teresa Baldassarre and Tayana Conte

This article belongs to the Topical Collection: Registered Reports

B Stefan Höppner
stefan.hoeppner@uni-ulm.de

Extended author information available on the last page of the article

0123456789().: V,-vol 123

/ Published online: 24 February 2024

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-023-10428-2&domain=pdf
http://orcid.org/0000-0001-7028-131X

Empirical Software Engineering (2024) 29:52

should consider transformations of different sizes and use-cases that go beyond mapping one
elements attributes to another. Language development on the other hand should focus on
providing practical, transformation specific reuse mechanisms that allow MTLs to excel in
areas such as maintainability and productivity compared to GPLs.

Keywords Survey · Universal structure modeling · Model transformation language · DSL ·
Model transformation · MDSE · Advantages · Disadvantages · Quantitative analysis

1 Introduction

Model driven engineering (MDE) envisions the use of model transformations as a main
activity during development (Sendall and Kozaczynski 2003). Studies show that MDE can
help with analysis of complex systems during design (Evora et al. 2014) and even reduce
development effort by a factor of 2 (Baker et al. 2005). This is especially true for industries
where high degree of domain knowledge is required and many domain experts are involved
during system design and development, e.g., embedded systems (Liebel et al. 2016). The
recent resurgence of low/no-code development highlights the importance ofmodels as central
development artefacts for non-software developers. When practising MDE, model transfor-
mations are used for awide array of tasks such asmanipulating and evolvingmodels (Metzger
2005), deriving artefacts like source code or documentation, simulating system behaviour or
analysing system aspects (Schmidt 2006a).

Numerous dedicated model transformation languages (MTLs) of different form, aim and
syntax (Kahani et al. 2019) have been developed to aid with model transformations. Using
MTLs is associatedwithmany benefits compared to using general purpose languages (GPLs),
though little evidence for this has been brought forth (Götz et al. 2021). The number of
claimed benefits is enormous and includes, but is not limited to, better Comprehensibility,
Productivity andMaintainability as well as easier development in general (Götz et al. 2021).
The existence of such claims can partially be attributed to the advantages that are ascribed
to domain specific languages (DSLs) (Hermans et al. 2009; Johannes et al. 2009).

In a prior systematic literature review, we have shown that it is still uncertain whether
these advantages exist and where they arise from (Götz et al. 2021). Due to this uncertainty
it is hard to convincingly argue the use of MTLs over GPLs for transformation development.
This problem is exacerbated when considering recent GPL advancements, like Java Streams,
LINQ in C# or advanced pattern matching syntax, that help reduce boilerplate code (Höppner
et al. 2021) and have put them back into the discussion for transformation development.
Even a community discussion held at the 12th edition for the International Conference on
Model Transformations (ICMT’19) acknowledges GPLs as suitable contenders (Cabot and
Gerard 2019). Moreover, the few existing empirical studies on this topic provide mixed and
limited results. Hebig et al. found no direct advantage for the development of transformations,
but did find an advantage for the comprehensibility of transformation code in their limited
setup (Hebig et al. 2018). A study conducted by us, found that certain use cases favour the
use of MTLs, while in others the versatility of GPLs prevails (Höppner et al. 2021). Overall
there exists a gap in knowledge in what the exact benefits of MTLs are, how strong their
impact really is and what parts of the language they originate from.

To bridge this gap, we conducted an interview study with 56 experts from research and
industry to discuss the topic of advantages and disadvantages of model transformation lan-
guages (Höppner et al. 2022). Participants were queried about their views on the advantages

123

52 Page 2 of 55

Empirical Software Engineering (2024) 29:52

and disadvantages of model transformation languages and the origins thereof. Responses
were analysed using qualitative content analysis (Kuckartz 2014). The focus was on iden-
tifying factors influencing participants’ beliefs regarding the existence of specific quality
properties of MTLs. We also tried to elicit their reasons for having these beliefs. The results
point towards three main-areas that are relevant to the discussion, namely General Purpose
Languages Capabilities, Model Transformation Languages Capabilities and Tooling. From
the responses of the interviewees we identified which claimedMTL properties are influenced
by which sub-areas and why. They also provided us with insights on moderation effects on
these interdependencies caused by different Use-Cases, Skill & Experience levels of users
and Choice of Transformation Language.

All results of the interview study are qualitative. They do not provide indication on the
strength of influence between the involved variables. Therefore they represent an initial data
set that also requires quantitative analysis.

In this paper, we report on the results of a study to confirm or deny the interdependencies
hypothesised from our interview results. We provide quantification of the influence strengths
and moderation effects. To ensure a more complete theory of interactions, we also present
the results of exploring interdependencies between factors and quality properties not hypoth-
esised in the interviews.

Due to limited resources, this study focuses on the effects of MTL capabilities (namely
Bidirectionality, Incrementality, Mappings, Model Management, Model Navigation, Model
Traversal, Pattern Matching, Reuse Mechanisms and Traceability) on MTL properties
(namely Comprehensibility, Ease of Writing, Expressiveness, Productivity, Maintainabil-
ity and Reusability and Tool Support) in the context of their uses-case (namely bidirectional
or unidirectional, incremental or non-incremental, meta-model sanity, meta-model, model
and transformation size and semantic gap between input and output), the skills & experience
of users and language choice. Further studies can follow the same approach and focus on
different areas. Descriptions for all MTL capabilities and MTL properties can be found in
Sect. 2 and thorough explanations can be found in the works of Götz et al. (2021); Höppner
et al. (2022).

The goal of our study is to provide quantitative results on the influence strengths of
interdependences between model transformation language Capabilities and claimed Quality
Properties as perceived by users. Additionally we provide data on the strength of moderation
expressed by contextual properties. The study is structured around the hypothesised interde-
pendencies between these variables, and their more detailed breakdown, extracted from the
previous interview study. Each presumed influence of a MTL capability on a MTL property
forms one hypothesis which is to be examined in this study. All hypotheses are extended
with an assumption of moderation by the context variables. The system of hypotheses that
arises from these deliberations is visualised in a structure model, which forms the basis for
our study. The structure model is depicted in Fig. 1. The model shows exogenous variables
on the left and right and endogenous variables at the centre. Exogenous variables depicted
in a ellipse with a dashed outline constitute the hypothesised moderating variables.

All hypotheses investigated in our study are of the form: “<MTL Property> is (positively
or negatively) influenced by <MTL Capability>”. They are represented by arrows from
exogenous variables on the left of Fig. 1 to endogenous variable at the centre. Amoderation on
the hypothesised influence is assumed from all exogenous variables on the right of the figure
connected to the considered endogenous variable. In total we investigate 31 hypothesised
influences, i.e. the number of outgoing arrows from the exogenous variables on the left of
Fig. 1.

Our study is guided by the following research questions:

123

Page 3 of 55 52

Empirical Software Engineering (2024) 29:52

Fig. 1 Structure model depicting the hypothesised influence and moderation effects of factors on MTL prop-
erties

123

52 Page 4 of 55

Empirical Software Engineering (2024) 29:52

RQ1 Which of the hypothesised interdependencies withstands a test of significance?
RQ2 How strong are the influences of model transformation language capabilities on the

properties thereof?
RQ3 How strong are moderation effects expressed by the contextual factors use-case, skills

& experience andMTL choice?
RQ4 What additional interdependencies arise from the analysis thatwere not initially hypoth-

esised?

As the first study on this subject it contains confirmatory and exploratory elements. We
intend to confirm which of the interdependencies betweenMTL capabilities,MTL properties
and contextual properties withstand quantitative scrutiny (RQ1). We explore how strong
the influence and moderation effects between variables are (RQ2 & RQ3), to gain new
insights and to confirm their significance and relevance (minor influence strengths might
suggest irrelevance even if goodness of fit tests confirm a correlation that is not purely
accidental). Lastly, we utilise the exploratory elements of USM to identify interdependencies
not hypothesised by the experts in our interviews (RQ4).

We use an online survey to gather data on language use and perceived quality of
researchers and practitioners. The responses are analysed using universal structure mod-
elling (USM) (Buckler and Hennig-Thurau 2008) based on the structure model developed
from the interview responses. This results in a quantified structure model with influence
weights, significance values and effect strengths.

Based on the responses from 113 participants, the key contributions of this paper are:

• An adjusted structure model with newly discovered interdependencies;
• Quantitative data on the influence weight and effect strength of all factors as well as
significant values for the influences;

• Quantitative data on the moderation strength of context factors;
• An analysis of the implications of the results for further empirical studies and language
development;

• Reflections on the use of USM for investigating large hypotheses systems in software
engineering research;

The method used in the reported study has been reviewed and published as part of the
Registered Reports track at ESEM’22 (Höppner and Tichy 2022).

The structure of this paper is as follows: Sect. 2 provides an extensive overview of
model-driven engineering, domain-specific languages, model transformation languages and
structural equation modelling as well as universal structure modelling. Afterwards, in
Sect. 3 the methodology is outlined. Demographic data of the responses is reported in Sect. 4
and the results of analysis is presented in Sect. 5. In Sect. 6 we discuss implications of the
results and report our reflections on the use of USM. Section7 discusses threats to validity
of our study and how we met them. Lastly, in Sect. 8 we present related work before giving
concluding remarks on our study in Sect. 9.

2 Background

In this section we provide the necessary background for our study.

123

Page 5 of 55 52

Empirical Software Engineering (2024) 29:52

2.1 Models &Model-driven Engineering

A multitude of model-driven approaches exists, each with a slightly different focus. In
this paper, we focus on model-driven engineering (MDE), as it encompasses all the other
approaches. We use the definition given by Brambilla et al. (2017).

According to Stachowiak (1973) models are “a representation of entities and relation-
ships in the real world with a certain correspondence for a certain purpose”. Such models
are used as the central artefact in MDE (Brambilla et al. 2017). They are used for developing
the intended solutions as well as to describe and reason about the problem domain (Brown
et al. 2005). Using models in this way is claimed to be advantageous over regular develop-
ment because the models can easily express domain-related concepts in an understandable
fashion (Selic 2003).

The goal when applying MDE is to automatically generate artefacts from models. The
generated artefacts can be models themselves or they can be other parts used in the running
system that is being developed.

Brambilla et al. (2017) explain that the implementation of a system is spread over three lev-
els. Themodelling level, wheremodels are defined. The realisation level, where the solutions
are implemented through artefacts in use within the running system. And the automation
level, where transformations from models to artefacts are defined. An overview of the rela-
tionship between the three levels can be found in Fig. 2.

Transformation
Language

Artefact
Artefact

Transformation
Transformation

Transformation
DefinitionTransformation

Definition

Meta-Model
Meta-Model

Model
Model

defined using

Model

uses

Platform Artefact

Platform

defined by

to
to

from
Transformation

Meta-Model

defined in

Transformation
Definition

Transformation
Language

defines

Modeling Language

Artefact

Legend

Modelling Level Automation Level Realisation Level

maps

Fig. 2 Overview of MDE adapted from Brambilla et al. (2017)

123

52 Page 6 of 55

Empirical Software Engineering (2024) 29:52

Within this context, meta-models play an important role. Meta-models define howmodels
that adhere to them are structured. They define an application domain for which models
can be created. Each model is thus written in a modelling language defined through a meta-
model (Bezivin 2004). Meta-models themselves also adhere to their ownmeta-models. To be
able to define these higher-levelmeta-models theObjectManagementGroup (OMG) released
themodelling standardMeta-object Facility (MOF) (OMG2002). Concrete implementations
of MOF are e.g., the Eclipse Modelling Framework (EMF) (Steinberg et al. 2008) and the
.NET Modelling Framework (Hinkel 2016).

In summary MDE describes a top-down approach to automatically generate executable
solutions based on abstractmodels (Selic 2003; Schmidt 2006b). The (automatic) transforma-
tions from one model into other artefacts are calledmodel transformations (MTs). They form
the most essential part within MDE because they connect the modelling level with the reali-
sation level. This is often stated in literature (Sendall and Kozaczynski 2003; Metzger 2005).
Model transformations can be developed through the use of general-purpose programming
languages (GPLs) or through the use of dedicated languages called model transformation
languages (MTLs).

2.2 Domain-specific Languages

Fowler (2011) defines domain-specific languages (DSLs) as languages focused on one par-
ticular aspect. Their notation is designed by focusing on relevant features within the target
domain (Van Deursen and Klint 2002). Thus, they provide domain specific language con-
structs allowing developers to directly express domain concepts. This, in turn, can increase
ease of development and reduce the barrier of entry for non experts to understandwhat is writ-
ten (Sprinkle et al. 2009; Fowler 2011). DSLs are intended to provide a suitable alternative
to using general-purpose tools for solving problems for a specific domain.

Examples of domain specific languages are shell scripts in Unix operating sys-
tems (Kernighan and Pike 1984), HTML (Raggett et al. 1999) for designing web pages
or AADL an architecture design language (SAEMobilus 2004).

DSLs can be either internal or external languages Fowler (2011). External DSLs gen-
erally require a separate parser and execution environment. Examples of external DSLs are
SQL (Codd1970) and CSS (W3C2021). Internal DSLs, on the other hand, do not require
separate parsers or runtime environments. Instead, they are a form of API within a general-
purpose language referred to as fluent interfaces (Fowler 2011). This means they allow an
eloquent definition of DSL expressions that can be read much like a standard sentence in
a natural language. LINQ (Meijer2006), a language integrated in.NET, and the declarative
Java API to create mock objects JMock (Freeman2004) fall in this category of DSLs.

2.3 Model Transformation Concepts and Languages

As stated in Sect. 2.1, a model transformation (MT) is the process of (automatically) trans-
forming one model into another artefact. Model transformations are the most integral part of
MDE. To aid in developing them ample domain specific languages, so called model trans-
formation languages (MTLs) have been developed (Arendt et al. 2010; Balogh and Varro
2006; Jouault et al. 2006; Kolovos et al. 2008; Horn 2013; George et al. 2012; Hinkel and
Burger 2019). They provide explicit language constructs for many tasks involved in model
transformations such as model matching.

123

Page 7 of 55 52

Empirical Software Engineering (2024) 29:52

There exist several works that classify the functionalities in model transformations and
makeup of model transformation languages Czarnecki and Helsen (2006); Kahani et al.
(2019); Mens and Gorp (2006). For the purpose of this paper, we will only be explaining
those features that are relevant to our study and discussion in Sects. 2.3.1, 2.3.2, 2.3.3, 2.3.4,
2.3.5, 2.3.6, and 2.3.7. Table 1 provides an overview over the presented features.

Please refer to Czarnecki and Helsen (2006); Kahani et al. (2019); Mens and Gorp (2006)
for complete classifications.

2.3.1 External and Internal Transformation Languages

Like domain-specific languages, MTLs can be distinguished based on whether they are
embedded in another language or whether they are completely independent languages. Lan-
guages embedded in a host language are called internal languages. Examples for internal
MTLs are FunnyQT (Horn 2013) a language embedded in Clojure, NMF Synchronizations
and the .NET transformation language (Hinkel and Burger 2019) embedded in C#, and
RubyTL (Cuadrado et al. 2006) embedded in Ruby.

Fully independent languages are called external languages. Prominent examples thereof
are Atlas transformation language (ATL) (Jouault et al. 2006), one of the most widely known
model transformation languages, the graphical transformation language Henshin (Arendt
et al. 2010) as well as the transformation framework called VIATRA (Balogh and Varro
2006).

2.3.2 Transformation Rules

Czarnecki and Helsen (2006) describe rules as being “understood as a broad term that
describes the smallest units of [a] transformation [definition]”. Transformation rules take

Table 1 MTL feature overview

Feature Characteristic Representative language

Embeddedness Internal FunnyQT (Clojure), RubyTL (Ruby),
NMF Synchronizations (C#)

External ATL, Henshin, QVT

Rules Explicit Syntax Construct ATL, Henshin, QVT

Repurposed Syntax
Construct

NMF Synchronizations (Classes),
FunnyQT (Macros)

Location determination Automatic Traversal ATL, QVT

Pattern Matching Henshin

Directionality Unidirectional ATL, QVT-O

Bidirectional QVT-R, NMF Synchronisations

Incrementality Yes NMF Synchronizations

No RubyTL

Tracing Automatic ATL, QVT

Manual NMF Synchronizations

Dedicated model
navigation syntax

Yes ATL (OCL), QVT (OCL), Henshin
(implicit in rules)

No NMF Synchronizations, FunnyQT, RubyTL

123

52 Page 8 of 55

Empirical Software Engineering (2024) 29:52

� �

1 public void methodExample(Wolf w) {
2 System.out.println(w.getName());
3 }
4 public void methodExample2(Wolf w) {
5 Male target = new Male();
6 target.setFullName(w.getName() + " Wolf");
7 REGISTRY.register(target);
8 }

� �

List. 1 Example Java methods

on many different forms depending on the language. For example in ATL they are imple-
mented via an explicit language construct called rule, while in GPLs they are often defined
as functions, methods or procedures that implement a transformation from input elements to
output elements.

The fundamental difference betweenmodel transformation languages andgeneral-purpose
languages that originates in this definition, lies in dedicated constructs that represent rules.
When looking at GPLs, the difference between a transformation rule and any other function
or procedure is not represented explicitly. It can only be made based on their contents. An
example of this can be seen in List. 1, which contains exemplary Java methods.

In MTLs, on the other hand, rules tend to be dedicated language constructs that allow
the explicit definition of a mapping between input and output elements. The example rules
written in the model transformation language ATL in List. 2 make this apparent. They define
mappings between model elements of type Wolf and model elements of type Male as
well as between Wolf and Female using rules, a dedicated language construct for defin-
ing transformation mappings. The transformation is a modified version of the well known
Families2Persons transformation case (Anjorin et al. 2017).

� �

1 rule Wolf2Male {
2 from
3 s : Member (not s.isFemale())
4 to
5 t : Male (
6 fullName <- s.name + ’ Wolf’
7)
8 }
9

10 rule Wolf2Female {
11 from
12 s : Member (s.isFemale())
13 to
14 t : Female (
15 fullName = s.name + ’ Wolfess’
16 partner = s.companion
17)
18 }

� �

List. 2 Example ATL rules

123

Page 9 of 55 52

Empirical Software Engineering (2024) 29:52

2.3.3 Rule Application Control: Location Determination

Location determination describes the strategy that is applied to find those elements within
a model that should be transformed by a transformation rule (Czarnecki and Helsen 2006).
Mostmodel transformation languages such asATL,Henshin, VIATRAorQVT (OMG2016),
rely on some form of automatic traversal strategy for this.

We differentiate between two strategies of location determination, based on what match-
ing that takes place during traversal. Languages such as ATL or QVT use the basic automatic
traversal, where single elements are matched to which transformation rules are applied.
The other type is pattern matching, which is used in languages like Henshin. In this type
of location determination a model- or graph-pattern is matched to which rules are applied.
This does allow the definition of sub-graphs consisting of several model elements and refer-
ences between them which are then manipulated by a rule. The two location determination
strategies cover two vastly different use-cases. Automatic traversal mainly aims at finding
single elements to use for creating new elements. Pattern-matching mainly aims at finding
structures and manipulating them or their elements directly.

General-purpose programming languages typically do not incorporate either location
determination strategy. Instead, they depend on developers to manually write code for iden-
tifying the appropriate elements to which rules should be applied.

The automatic traversal of ATL applied to the example fromList. 2 will result in the trans-
formation engine automatically executing the Wolf2Male on all individual model elements
of type Wolfwhere the function isFemale() returns false and the Wolf2Female on
all other model elements of type Member.

The pattern matching of Henshin can be demonstrated using Fig. 3. It describes a trans-
formation that creates a couple connection between two persons that like each other. When
the transformation is executed the transformation engine will try and find instances of the
defined graph pattern and apply the changes on the foundmatches. This example also demon-
strates the main difference between automatic traversal and pattern matching. The engine
will search for a sub graph within the model instead of finding a single model element.

<<perserve>>
:Person

<<perserve>>
:Person

likes

likes

<<create>>
:Couple

p1 p2

Rule ExampleCouple

<<perserve>>

<<perserve>>

<<create>><<create>>

Fig. 3 Example Henshin transformation

123

52 Page 10 of 55

Empirical Software Engineering (2024) 29:52

� �

1 top relation Wolf2Male {
2 n, name : String;
3 domain Wolfs s:Wolf {
4 name = n };
5 domain Wolfssex t:Male {
6 name = fullName};
7 where {
8 fullName = n + ’ Wolf’; };
9 }

� �

List. 3 Example QVT-R relation

2.3.4 Directionality

The directionality of a model transformation describes whether it can be executed in one
direction, called a unidirectional transformation or in multiple directions, called a multidi-
rectional transformation (Czarnecki and Helsen 2006).

Distinguishing between unidirectional and bidirectional transformation languages is rele-
vant to this study. Many bidirectional languages allow for executing transformations in both
ways based solely on one transformation rule definition.Other bidirectional languages require
rules for both directions to be defined explicitly. Such languages distinguish themselves from
unidirectional languages solely through the fact, that the definitions for both directions can
be made next to each other in the same module. General-purpose languages can not provide
bidirectional support and also require both directions to be implemented explicitly in two
separate transformation definitions.

The transformation definition in List. 2 defines a unidirectional transformation. The input
and output of the transformation are fix and the transformation can only be executed in that
direction.

In contrast, the QVT-R relation in List. 3 is a bidirectional transformation definition (For
simplicity reasons the transformation omits the condition that males are only created from
wolfs that are not female). The transformation does not define input and output. Instead it
defines how two elements of the respective domains relate to one another. As a result given
a Wolf element its corresponding Male elements can be inferred, and vice versa.

2.3.5 Incrementality

Incrementality of a transformation describes whether existing models can be updated based
on changes in the source models without rerunning the complete transformation (Czarnecki
and Helsen 2006). Some refer to this as model synchronisation.

Incrementality implementations require active monitoring of the input and output models.
They also need information on which rules affect what parts of the models. If a change in
the input model occurs, this information is used to determine which rules should be exe-
cuted on the changed elements to produce the synchronized target elements. This sometimes
requires additional management tasks to be executed to keep synchronized models valid and
consistent.

123

Page 11 of 55 52

Empirical Software Engineering (2024) 29:52

2.3.6 Tracing

Tracing “is concerned with the mechanisms for recording different aspects of transformation
execution, such as creating and maintaining trace links between source and target model
elements” Czarnecki and Helsen (2006).

Many dedicated transformation languages, such as ATL and QVT have automated mech-
anisms to manage trace information. In these languages, the traces are automatically created
during transformation execution. The trace information is used to provide seamless access
to the target elements based on their sources. Additionally, some languages allow the infor-
mation to be accessed through special syntax constructs.

An example of tracing in action can be seen in line 16 of List. 2. Here the partner
attribute of a Female element that is being created, is assigned to s.companion. The
s.companion reference points towards a element of type Wolf within the input model.
When creating a Female or Male element from a Wolf element, the ATL engine will
resolve this reference into the corresponding element, that was created from the referred
Wolf element via either the Wolf2Male or Wolf2Female rule.

2.3.7 Dedicated Model Navigation Syntax

Dedicated query languages or syntax constructs for navigating models is not part of any
feature classification for model transformation languages. However, it was an often discussed
topic in the preceding interview study (Höppner et al. 2022) and therefore an explanation is
required for this study too.

Languages such as OCL (OMG 2014), which are often embedded in transformation lan-
guages like ATL, provide dedicated syntax for querying and navigatingmodels. They provide
syntactical constructs that aid users in navigation tasks. Their aim is to ease access to models
by not requiring users to implement queries using loops or other general-purpose constructs.
To do so, OCL provides a functional approach for accumulating and querying data based
on collections. In contrast, Henshin combines model navigation with its pattern matching
enabling users to define graph patterns to find the sought-after model elements.

2.4 MTL Quality Properties

There exists a large body of quality properties that get associated with model transformation
languages. In literature many claims are made about advantages or disadvantages ofMTLs in
these different properties. These properties were previously categories by Götz et al. (2021).
This study focuses on a subset of all the identified quality properties of MTLs which requires
them to be properly explained. In this section, we give a brief description of our definitions
of each of the quality properties of MTLs relevant to the study.

Comprehensibility describes the ease of understanding the purpose and functionality of a
transformation based on reading code.

Ease of Writing describes the ease at which a developer can produce a transformation for
a specific purpose.

Expressiveness describes the amount of useful dedicated transformation concepts in a
language.

Productivity describes the degree of effectiveness and efficiency with which transforma-
tions can be developed and used.

123

52 Page 12 of 55

Empirical Software Engineering (2024) 29:52

Comprehensibility

η₁

ζ₁

ƛ₁₁

Mappings

ξ₁
% Mappings

used x₁

Comp.

rating y₁

δ₁

ε₁

Measurement model for exogenous latent

variables

Measurement model for endogenous

latent variables

structure model

γ₁₁

ƛ₁

Legend

δ₁

x₁

residual variable

manifest variable

latent variable

Experience

ξ₂

programmer

for #years x₂
ƛ₂₂δ₂

ξ₁

moderating

latent variable
ξ₁

#hours

working per

month x₃
δ₃

ƛ₃₂

γ₂₁

Fig. 4 The makeup of a structural equation model. (Höppner and Tichy 2022)

Maintainability describes the degree of effectiveness and efficiency with which a trans-
formation can be modified.

Reusability describes the ease of reusing transformations or parts of transformations to
create new transformations (with different purposes).

Tool Support describes the amount of quality tools that exist to support developers in their
efforts.

2.5 Structural EquationModelling and (Universal) Structural EquationModelling

Structural Equation Modelling (SEM) is an approach used for confirmatory factor analy-
sis (Graziotin et al. 2021). It defines a set ofmethods used to“investigate complex relationship
structures between variables and allows for quantitative estimates of interdependencies
thereof. Its goal is to map the a-priori formulated cause-effect relationships into a linear
system of equations and to estimate the model parameters in such a way that the initial data,
collected for the variables, are reproduced as well as possible” (Weiber andMuhlhaus 2021).

In structural equation modelling a distinction between two sets of variables (manifest &
latent) is made. Manifest variables are empirically measured. Latent variables are not mea-
sured directly and describe theoretical constructs that are hypothesised to interact with each
other. They are further divided into exogenous or independent and endogenous or dependent
variables.

At the heart of SEM are so called structural equation models, a sample of which can
be seen in Fig. 4. structural equation models are made up of three connected sub-models.
The structure model, which defines all hypothesised interactions between exogenous (ξex I D)
and endogenous (ηend I D) latent variables. The measurement model of the exogenous latent
variables, which reflects the relationships between all exogenous latent variables and their
associated manifest variables. The measurement model of the endogenous latent variables,
which reflects the relationships between all endogenous latent variables and their associated
manifest variables.

In the structure model each exogenous variable is linked, by arrow, to all endogenous
variables that are presumed to be influenced by it. Each connection is given a variable
(γex I D_end I D) that measures the influence strength. If an exogenous variable moderates the
influences on another endogenous variable, the exogenous variable is depicted with a dashed

123

Page 13 of 55 52

Empirical Software Engineering (2024) 29:52

outline and connected to all endogenous variables that are moderated by it1 For each mod-
erated influence a variable of the form γex I D_end I D_modEnd I D is assigned. Additionally, an
error variable is appended to each endogenous latent variable. The error variable represents
the influence of variables not represented in the model.

Figure4 shows an example structure equation model model for the hypothesis that “Map-
pings help with the comprehensibility of transformations, depending on the developers
experience.” Höppner and Tichy (2022). The structure model at the centre of the figure,
is comprised of the exogenous latent variable ξ1 (Mappings), the moderating exogenous
variable ξ2 (Experience), the endogenous latent variable η1 (Comprehensibility), a presumed
influence of Mappings on Comprehensibility via γ11 and the error variable ζ1. Lastly, the
model contains a moderation effect of Experience on all influences of Comprehensibility.
This moderation effect is assigned by the variable γ11_2. The moderation variables are not
depicted in our graphical representation of the structure model because of their high number
and associated visibility issues.

In the measurement model each manifest variable is linked, by arrow, to all exogenous
latent variables that are measured through it. For each connection a variable is assigned that
measures the indication strength of the manifest variable for the latent variable. An error
variable for each manifest variable is also introduced. They represent measurement errors.

In Fig. 4, the measurement model for exogenous latent variables is seen at the left of the
figure. It is comprised of the exogenous latent variables ξ1 (Mappings) and ξ2 (Experience),
the manifest variables x1 (% of code using Mappings), x2 (number of years a person has
been a programmer) and x3 (number of hours per month spent developing transformations)
their measurement accuracy for Mapping usage λ11 and their measurement accuracy for
Experience λ22 & λ32 and the associated measurement error δ1, δ2 & δ3.

The measurement model for endogenous latent variables, seen at the right side of Fig. 4,
is structured the same way as the measurement model for exogenous latent variables.

Structural equationmodelling calls for estimation of influenceweights and latent variables
within a given structural equation model. Traditional methods (covariance-based structural
equation modeling & partial least squares) use different mathematical approaches such as
maximum-likelihood estimation or least squares (Weiber and Muhlhaus 2021).

Universal Structure Modeling (USM) is an exploratory approach that complements the
traditional confirmatory SEMmethods (Buckler and Hennig-Thurau 2008). It combines and
enhances the iterative methodology of partial least squares with a Bayesian neural network
approach using multilayer perceptron architecture. USM derives a starting value for latent
variables in the model via principal component analysis. The Bayesian neural network is then
used to discover a system of linear and non-linear interaction paths between the variables
within the structure model. This enables USM to identify complex relationships that may
not be detected using traditional SEM approaches including hidden structures within the
data and highlights unproposed model paths, nonlinear relations among model variables, and
moderation effects.

The primary measures calculated in USM are the ‘Average Simulated Effect’ (ASE),
‘Overall Explained Absolute Deviation’ (OEAD), ‘interaction effect’ (IE) and ‘parameter
significance’. ASE measures the average change in the endogenous variable resulting from a
one-unit change in the exogenous variable across all simulations. OEAD assesses the degree

1 Usually moderation is illustrated via arrows from the moderating exogenous variable to the arrow repre-
senting the moderated influence, i.e., an arrow between an exogenous variable and an endogenous variable.
However our illustration deviates from this due to the size and makeup of our hypothesis system. Standard
representations can be found in the basic literature such as Weiber and Muhlhaus (2021).

123

52 Page 14 of 55

Empirical Software Engineering (2024) 29:52

of fit between the observed and simulated values of the endogenous variable, capturing the
overall explanatory power of the model. IE evaluates the extent to which the effect of one
exogenous variable on the endogenous variable depends on the level of another variable.
Parameter Significance determines whether the estimated coefficients for each exogenous
variable in the model are statistically significant at a predetermined level of confidence which
indicated if the exogenous variable has a meaningful impact on the endogenous variable and
is calculated through a bootstrapping routine (Mooney et al. 1993). These metrics together
provide a comprehensive assessment of the performance and explanatory power of a USM
model.

USM is recommended for use in situations where traditional SEM approaches may not
be sufficient to fully explore the relationships between variables. Using USM instead of
traditional structural equation modelling approaches is suggested for studies where there
are still uncertainties about the completeness of the underlying hypotheses system and for
exploring non-linearity in the influences (Weiber and Muhlhaus 2021; Buckler and Hennig-
Thurau 2008). Furthermore, the requirements for the scale levels of data is reduced. This
enables the use of categorical variables in addition to metric variables (Weiber andMuhlhaus
2021).

At present, the tool NEUSREL2 is the only tool available for conducting USM.

3 Methodology

The methodology used in this study has been reviewed and published as part of the Regis-
tered Reports track at ESEM’22 (Höppner and Tichy 2022). In the following, we provide a
more detailed description and highlight all deviations from the reported method as well as
justification for the changes.

The study itself is comprised of the following steps which were executed sequentially and
are reported on in this section.

1. Development of survey methodology.
2. Submission to the Registered Reports track at EMSE’22.
3. Methodology revision based on feedback.
4. Development of online survey using an on premise version of the survey tool LimeSur-

vey.3

5. Survey review and pilot test by co-authors.
6. Reworking survey based on pilot test.
7. Opening online survey to public.
8. Reaching out to potential survey subjects per mail and social media.
9. Closing of online survey (9 weeks after opening).
10. Data extraction.
11. Data analysis using the USM tool NEUSREL.

The steps executed differ in two ways from those reported in the registered report. First,
we do not contact potential participants for a second time after two weeks. This was deemed
unnecessary based on the number of participants at that point in time. Moreover, we did
not want to bother those that participated already and had no way of knowing their identity.

2 https://www.neusrel.com
3 https://www.limesurvey.org/

123

Page 15 of 55 52

https://www.neusrel.com
https://www.limesurvey.org/

Empirical Software Engineering (2024) 29:52

Second, we kept the survey open 3 weeks longer than intended due to receiving several
requests to do so.

3.1 Survey Design

In this sectionwe detail the design of the used questionnaire andmethodology used to develop
and distribute it.

3.1.1 Questionnaire

Thequestions in thequestionnaire are designed toquerydata formeasuring the latent variables
from the structuremodel in Fig. 1. The complete questionnaire can be found in the open access
repository of Ulm University (Höppner and Tichy 2023). In the following, we describe each
latent variable and explain how we measure it through questions in the questionnaire.

There are 26 latent variables relevant to our study. Variables ξ1..19 describe exogenous
variables and η1..7 describe endogenous variables. Each latent variable is measured through
one or more manifest variables. Extending the structure model from Fig. 1 with the manifest
variables produces the complete structural equation model evaluated in this study. Note that
USM reduces the requirements for the scale levels of data thus allowing the use of categorical
variables in addition to metric variables (Weiber and Muhlhaus 2021).

All latent variables related toMTL capabilities (ξ1..9) are associated with a single manifest
variable x1..9, which measures how frequently the participants utilized the MTL capabilities
in their transformations. This measurement is represented as a ratio ranging from 0% to
100%. The higher the value of x1..9, the more frequently the participants used the MTL
capabilities in their transformations. Similarly, latent variables related to MTL properties
(η1..7) are associated with a single manifest variable y1..7 which measures the perceived
quality of the property on a 5-point likert scale (e.g., very good, good, neither good nor bad,
bad, very bad). For USM analysis the likert scale answers are mapped to numbers from 1 to
5 for each manifest variable.

The use of single-item scales is a debated topic. We justify their usage for the described
latent variables on multiple grounds. First, the latent variables are of high complexity due to
the abstract concepts they represent. Second, our study aims to produce first results that need
to be investigated in more detail in follow up studies, more focused on single aspects of the
model. And third, due to the size of our structural equation model multi-item scales for all
latent variables would increase the size of the survey, potentially putting off many subjects.
The validity of these deliberations for using single-item scales is supported by Fuchs and
Diamantopoulos (2009).

The latent variable language choice (ξ10) is measured bymeans of querying participants to
list their 5 most recently used transformation languages. In our registered report we planned
to also request participants to give an estimate on the percentage of their respective use %
(x10). This was discarded during pilot testing as it was seen as unnecessarily prolonging the
questionnaire. Pilot testers had difficulties providing accurate data and questioned whether
this data was actually used in analysis.

Language skills (ξ11) is measured through x11 and x12 for which participants are asked
to give the amount of years they have been using each language (x11) and the amount of
hours they use the language per month (x12). The relation between the latent variable and the
manifest variables is grounded in the assumption that using a language for a longer time and
more frequently increases one’s skills in it.

123

52 Page 16 of 55

Empirical Software Engineering (2024) 29:52

Similarly, experience (ξ12) is associated with the amount of years subjects have been
involved in defining model transformations (x13) and the amount of hours they spend on
developing transformations each month (x14).

Meta-model size (ξ13) and model size (ξ14) both require participants to state the range
between which their (meta-) models vary (x15, x16). This is measured by offering participants
a number of ranges of (meta-) model objects. For each range participants should give an
estimate on how much percent of the (meta-) models they work fall within that size range.
For models the ranges are: #objects ≤ 10, 10 ≤ #objects ≤ 100, 100 ≤ #objects ≤ 1000,
1000 ≤ #objects ≤ 10000, 10000 ≤ #objects ≤ 100000, 100000 ≤ #objects. For meta-
model the ranges are: #objects ≤ 10, 10 ≤ #objects ≤ 20, 20 ≤ #objects ≤ 50, 50 ≤
#objects ≤ 100, 100 ≤ #objects ≤ 1000, 1000 ≤ #objects. Similarly, Transformation size
(ξ15) is measured on a range of lines of code (x17). The options being: LOC ≤ 100, 100 ≤
LOC ≤ 500, 500 ≤ LOC ≤ 1000, 1000 ≤ LOC ≤ 5000, 5000 ≤ LOC ≤ 10000, 10000 ≤
LOC. Querying size data in this manner and the associated ranges have been successfully
applied in a prior work the authors were involved in Groner et al. (2021). For USM analysis
each range is assigned a number from 1 to 6 to represent them.

To formulate the semantic gap between input and output (ξ16) we elicit the similarity of
the structure (x18) and data types (x19) on a 5-point likert scale (very similar, similar, neither
similar nor dissimilar, dissimilar, very dissimilar). We chose to measure the semantic gap
this way, because from our experience the structure and involved data types are the main
factors that make models look similar. Participants are asked to give the percentage of all
their meta-models that fall within each of the five assessments.

The meta-model sanity (ξ17) is measured through means of how well participants per-
ceive their structure (x20) and their documentation (x21) to be on a 5-point scale (very well,
well, neither well nor bad, bad, very bad). Based on our experience, these are the two main
contributing factors to how easily people can understand a meta-model and work with it
effectively. Participants are asked to give the percentage of all their meta-models that fall
within each of the five assessments.

Lastly, for both bidirectional uses (ξ18) and incremental uses (ξ19) we query participants
on the ratio of bidirectional (x22) and incremental (x23) transformations compared to simple
uni-directional transformations they have written.

3.1.2 Pilot Study

We pilot tested the study with three researchers from the institute. All pilot testers are
researchers in the field of model driven engineering with more than 5 years of experience.
Based on their feedback, we reworded some questions, removed the usage percentage part of
the question for language choice and addedmore precise descriptions of the queried concepts.
We then made the questionnaire publicly available and distributed a link to it via emails.

3.1.3 Target Subjects & Distribution

The target subjects are both researchers and professionals from industry that have used
dedicated model transformation languages to develop model transformations in the last five
years.We use voluntary, judgment and convenience sampling to select our study participants.
Both authors reached out to researchers and professionals they knew personally via mail and
request them to fill out the online survey. We further reach out, via mail, to all authors of
publications listed in ACM Digital Library, IEEE Xplore, Springer Link andWeb of Science

123

Page 17 of 55 52

Empirical Software Engineering (2024) 29:52

that contain the key word model transformation from the last five years. One author used the
search engines provided by each of the publication repositories to find such publications. The
abstracts of all resulting publications were then used to decide whether authors should be
contacted. A third source of subjects is drawn from social media. The authors use their avail-
able social media channels to recruit further subjects by posting about the online-survey on
the platforms. The social media platform used for distribution was MDE-Net,4 a community
platform dedicated to model driven engineering.

The sampling method differs from the intended method by not including snowballing
sampling as a secondary sampling method. We decided on this to have more control over the
subjects receiving a link to the study. There is no way to control how closely secondary and
tertiary contacts are related to the subject matter of model transformations and MTLs. This
could introduce an additional threat to the validity of the answers regarding the representa-
tiveness of survey participants.

Participation was voluntary, and we did not incentivise participation through offering
rewards. This decision is rooted in our experience in previous studies, one other survey with
83 subjects (Groner et al. 2021), and the interview study we are basing this study on with
56 subjects (Höppner et al. 2022). Both studies reached a satisfactory number of participants
without resorting to participation incentives.

It is suggested in literature to have between 5 to 10 times as many participants as the
largest number of parameters to be estimated in each structural equation (i.e., the largest
number of incoming paths for a latent model variable) (Buckler and Hennig-Thurau 2008).
Thus, the minimal number of subjects for our study to achieve stable results is 80. To gain any
meaningful results a sample size of 30 must not be undercut (Buckler and Hennig-Thurau
2008).

In total we directly contacted 2383 potential participants. Of these, 99 were contacted
because of personal contacts of the authors, while the remaining 2284 were contacted as
a result of the literature search. How many additional potential participants were reached
through the socialmedia posts can not be determined. The survey got a total of 1135 responses.
It surpasses the minimum threshold of 80, ensuring stable results, suggested in literature.

3.2 Data Analysis

We use USM to examine the hypotheses system modelled by the structure model shown
in Fig. 1. USM is chosen over its structural equation modelling alternatives due to it being
able to better handle uncertainty about the completeness of the hypothesis system under
investigation, it having more capabilities to analyse moderation effects and the ability to
investigate non linear correlations (Weiber and Muhlhaus 2021).

USM requires a declaration of an initial likelihood of an interdependence between two
variables. This is used as a starting point for calculating influence weights but can change
over the course of calculation. For this, Buckler and Hennig-Thurau (2008) suggest to only
assign a value of 0 to those relationships that are known to be wrong. We use the results
of our interview study (Höppner et al. 2022), shown in the structure model, to assign these
values. For each path that is present in the model, we assume a likelihood of 100%. To check
for interdependencies that might have been missed by interview participants, we also use
a likelihood of 100% for all missing paths between ξ1..19 and η1..7. Our plan was to use a

4 https://mde-network.com/
5 This constitutes a response rate of max. 4.8%. We do not know how many responses are a result of our
social media posting.

123

52 Page 18 of 55

https://mde-network.com/

Empirical Software Engineering (2024) 29:52

likelihood of 50% for these interdependencies, to provide the tool with some hints to the
possibility of these paths not existing, but the tool available to us only allowed for either
100% or 0% to be put as input.

The tool NEUSREL is used on the extracted empirical data and the described additional
input to estimate path weights and moderation weights within the extended structure model,
i.e., the structure model where each exogenous latent variable is connected to all endoge-
nous latent variables. It also runs significance tests via a bootstrapping routine (Buckler and
Hennig-Thurau 2008; Mooney et al. 1993) and produces the significance value estimates for
each influence. The following procedures are then followed to answer the research questions
from Sect. 1.

RQ1. We reject all hypothesised influences, i.e., those present in our structure model in
Fig. 1, that do not pass the statistical significance test. The threshold we set for this is 0.01,
deviating from the standard practice of 0.05 becausewewant greater confidence in the results.
Moreover, we discard hypothesised influences with minimal effects strengths that are several
(two or more) magnitudes lower than the median influence of all coefficients. If, for example,
the median of all path coefficients is 0.03 all influences with a coefficient lower or equal to
0.0009 are discarded. We do so because such low influences suggest that the influence is
negligible.

RQ2 & RQ3. All path coefficients produced that were not rejected in RQ1 will then
provide direct values for the influence and moderation strengths to answer RQ2 & RQ3.

RQ4. The same significance criteria we applied to all hypothesised influences for RQ1,
we also apply to the extended influences, i.e., those not present in the structure model from
Fig. 1. Those influences that pass the significance test are added to the initial structural model
as newly discovered influences.

3.3 Privacy and Ethical Concerns

All participants were informed of the data collection procedure, handling of the data and
their rights, prior to filling out the questionnaire. Participation was completely voluntary and
not incentivised through rewards.

During selection of potential participants the following data was collected and processed.

• First & last name.
• E-Mail address.

This data was deleted once the potential participants were contacted.
The questionnaire did not collect any sensitive or identifiable data.
All data collected during the study was not shared with any person outside of the group

of authors.
The complete information and consent form can be found in Appendix C.
The study design was not presented to an ethical board. The basis for this decision are the

rules of the GermanResearch Foundation (DFG) onwhen to use a ethical board in humanities
and social sciences.6 We refer to these guidelines because there are none specifically for
software engineering research and humanities and social sciences are the closest related
branch of science for our research.

6 https://www.dfg.de/foerderung/faq/geistes_sozialwissenschaften/

123

Page 19 of 55 52

https://www.dfg.de/foerderung/faq/geistes_sozialwissenschaften/

Empirical Software Engineering (2024) 29:52

4 Demographics

We detail the background and experience of the participants in our study in the following
sections.
To illustrate distributions of participants answers to questions where they were asked to
estimate how many of their use cases fall into which category, we use Ridgeline Plots (Wilke
2019) (Figs. 7, 8, 9, 10, 11, and 12). Each line in the plot illustrates the distribution of responses
from an individual participant for a specific category, and the peaks in each line highlight
areas where they provided higher estimates.
For example, the first ridge line at the bottom of Fig. 7 shows the answers of a participant
who has stated that 100% of their transformations revolve around meta-models with 10 or
less meta-model elements.

0
10

20
30

40

0 5 10 15 20 25 30

of years

of

 p
ar

tic
ip

an
ts

Fig. 5 Histogram of participants’ total experience in years

123

52 Page 20 of 55

Empirical Software Engineering (2024) 29:52

4.1 Experience in DevelopingModel Transformations (�12)

Our survey captured model transformation developers with wide range of experience. The
experience span (x13) ranges from the least experience participant with half a year of expe-
rience up to the one with most experience of 30 years. Figure5 shows a histogram of the
experience stated by participants. Over half of all participants have between 1 to ten years
of experience in writing model transformations. Three stated to have more than 20 years in
total. On average our participants have 9 years of experience with a median of 8 years of
experience.

How much time participants spend developing transformations each month (x14) also
greatly varies. Some participants have not developed transformations in recent time whereas
others stated to spend 70 or more hours each month on transformation development. Figure6
shows an overview over the hours participants spend each month in developing transforma-

0
20

40
60

80

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Hours per Month

of

 p
ar

tic
ip

an
ts

Fig. 6 Histogram of participants recent experience in hours per month

123

Page 21 of 55 52

Empirical Software Engineering (2024) 29:52

Table 2 Overview of languages
used by participants

Language # number of participants

Java 70

ATL 58

Xtend 52

ETL 29

QVTo 22

Henshin 14

JavaScript 12

eMoflon 7

Fujaba 5

Python 4

tions. The vast majority spends around 1 to 10h each month on transformation development.
Nine stated that they did not develop any transformation in recent times. Their responses are
still included in the analysis because they all had prior experience with model transforma-
tions. Their experiences just were more than one year ago. On average our participants spend
about 14h per month developing model transformations.

ele

men
ts

<=
 1

0
10

 <
 #

 e
lem

en
ts

<=
 2

0
20

 <
 #

 e
lem

en
ts

<=
 5

0
50

 <
 #

 e
lem

en
ts

<=
 1

00
10

0
<

ele

men
ts

<=
 1

00
0

ele

men
ts

>
10

00

Fig. 7 Distribution of meta-model sizes per participant

123

52 Page 22 of 55

Empirical Software Engineering (2024) 29:52

4.2 Languages Used for DevelopingModel Transformations (�10) and Experience
Therein (�11)

To develop their transformations, participants use a wide array of languages. In total 43
languages (x10) have been named 24 of which are unique languages used only by a single
participant.

The language that has been used by the most participants is Java, a general purpose
language. Java has been used by 70 of the 113 participants. The most used MTL is ATL with
58 users closely followed by another GPL, namely Xtend with 52 users. Table 2 shows how
many participants use one of the ten most used languages for developing transformations.

Overall the prevalence of general purpose programming languages is higher than expected.
This might be explained by the large number of existing MTLs which reduce the amount of
total users per language while only four different GPLs are used.

4.3 Sizes (�12,�14)

The size distribution of meta-models (x15) transformed by participants is shown in Fig. 7. On
the x-axis the given intervals of meta-model sizes are shown and on the y-axis the distribution
for each participant is shown.

LO
C

<=
 1

00
10

0
<

LO
C

<=
 5

00
50

0
<

LO
C

<=
 1

00
0

10
00

 <
 L

OC
<=

 5
00

0
50

00
 <

 L
OC

<=
 1

00
00

LO
C

>
10

00
0

Fig. 8 Distribution of transformation sizes per participant

123

Page 23 of 55 52

Empirical Software Engineering (2024) 29:52

The figure illustrates that most transformations involve meta-models with 20 to 100 meta-
model elements. Moreover, most participants have some experience with small meta-models
while only a handful of themhas experiencewith transformations involving largemetamodels
of more than 1.000 elements.

The size distribution of model transformations (x17) written by participants is shown in
Fig. 8. Similarly to the meta-model sizes, the figure illustrates that most participants have
some experience with small transformations of sizes up to 100 lines of code. Most also
have experience with large transformations up to 1.000 lines of code. More than 25% of
all participants also have experience with large and very large transformations ranging from
5.000 up to more than 10.000 lines of transformation code.

Overall the experience of our participants includes many moderately large to large trans-
formations. Thus, the experiences of the participants closely align with those one would
expect in real-world cases. This strengthens our confidence that our results are reliable.

4.4 Conceptual Distance BetweenMeta-models (�16)

The similarity distribution of meta-models involved in the transformations of our partici-
pants is shown in Fig. 9 for the similarity of meta-model structures (x18) and Fig. 10 for the
similarity of data types (x19). Both show a even mix between structurally similar and distant

Ve
ry

 S
im

ila
r

Si
mila

r
Ne

ith
er

 D
iss

im
ila

r n
or

 S
im

ila
r

Di
ss

im
ila

r

Ve
ry

 D
iss

im
ila

r

Fig. 9 Distribution of input output meta-model structure similarity

123

52 Page 24 of 55

Empirical Software Engineering (2024) 29:52

Ve
ry

 S
im

ila
r

Si
mila

r
Ne

ith
er

 D
iss

im
ila

r n
or

 S
im

ila
r

Di
ss

im
ila

r

Ve
ry

 D
iss

im
ila

r

Fig. 10 Distribution of input output meta-model attribute types similarity

meta-models as well as similar and dissimilar attribute types within the elements that are
transformed into each other.

4.5 Meta-model Quality (�17)

Participants agreed that the vast majority of meta-models they transform are well structured
(x20). This means there is little to no additional burden put onto development solely due to
unfavourably structuredmeta-models. The distribution of structure assessment per participant
is shown in Fig. 11.

The situation is different with documentation (x21). Most participants stated that they
have experience with badly or even very badly documented meta-models (Fig. 12). For many
participants, this constitutes the majority of meta-models they work with.

5 Results

In this section, we present the results of our analysis of the questionnaire responses using
universal structure modelling structured around the research questions RQ1-4. The quan-
titative results for all influences between MTL capabilities and MTL properties are shown
in Table 3 in Appendix A. On the x-axis the different MTL Properties are shown. On the

123

Page 25 of 55 52

Empirical Software Engineering (2024) 29:52

ve
ry

 w
ell

we
ll

ne
ith

er
 w

ell
 n

or
 b

ad

ba
d

ve
ry

 b
ad

Fig. 11 Distribution of structure quality of meta-models per participant

y-axis the MTL Capabilities are shown. The first number in a cell describes the average
simulated effect. The second number describes the overall explained absolute deviation. The
third number shows the significance value. A significance value lower or equal to 0.01* (the
chosen significance level) is indicated with one asterisks. The effect strengths of moderation
effects can be found in Tables 4, 5, 6, 7, 8, 9, 10, 11, 12, and 13 in Appendix A. Each table
describes the moderation effect of one of the moderating factors on all influences between
MTL Capabilities and MTL Properties.

The rest of this section presents our results in context of the four research questions. We
focus on the most salient influences that we deem interesting for the respective research
question. Detailed interpretation and discussion of the implications of the presented results
are done in Sect. 6.

5.1 RQ1:Which of the Hypothesised InterdependenciesWithstands a Test
of Significance? & RQ4:What Additional Interdependencies Arise
from the Analysis that were not Initially Hypothesised?

Our first research question is aimed at evaluating the accuracy of the structure model devel-
oped in the preceding interview study (Höppner et al. 2022). We do so by subjecting all
hypothesised influences to a significance test during analysis. The significance test can also
be used to directly gain insights into interdependencies missed in the initial model. Thus we

123

52 Page 26 of 55

Empirical Software Engineering (2024) 29:52

ve
ry

 w
ell

we
ll

ne
ith

er
 w

ell
 n

or
 b

ad

ba
d

ve
ry

 b
ad

Fig. 12 Distribution of meta-model documentation quality per participant

discuss both the rejection of previously hypothesised influences as well as the extension of
the model through newly discovered significant interdependencies in this section.

Most initially hypothesised influences withstand the test of significance but there are
several exceptions. Most notably all but one(Maintainability) of the hypothesised influences
ofBidirectionality functionality ofMTLs have to be rejected. Thismeans that fromour results
we can not conclude that the presence of Bidirectionality functionality in a language changes
how people perceive the Comprehensibility, Ease of Writing Expressiveness, Tool Support,
Productivity and Reusability of the language.

Similarly, half of the influences on Ease of Writing and Expressiveness are also rejected.
This means that the presence of Bidirectionality, Incrementality, Model Management and
Model Traversal functionality do not change how people perceive the Ease of Writing trans-
formations with a language. And that the presence of Bidirectionality, Incrementality,Model
Navigation,Model Traversal and Reuse functionality do not change how people perceive the
Expressiveness of a language.

The hypothesised influences on Comprehensibility are confirmed (apart from the one
exerted by Bidirectionality). The same goes for Productivity and Reusability.

We also found that the perceived quality inTool Support andMaintainability are influenced
by most of the MTL Properties. A result that was not apparent from previous interview
study. Tool support was hypothesised to be influenced only by the chosen language and
Maintainability only by Bidirectionality and Mapping functionality. Our results however

123

Page 27 of 55 52

Empirical Software Engineering (2024) 29:52

show, that the perceivedMaintainability of transformationswritten in a language is influenced
by all MTL functionality considered in this study with the exception of Incrementality.

Moreover, several additional influences on Productivity and Reusability were also dis-
covered. The perceived Productivity and Reusability of transformations in a language are
influenced by Mappings, Model Management, Model Navigation, Model Traversal, Pattern
Matching, Reuse Mechanisms and Tracability functionality.

Regarding the moderating effects, our findings suggest that they need to be considered
separately for each influence on a quality attribute. The hypothesis that context moderates all
influences on an MTL Property still holds but the strength of the moderation effects varies
greatly.

As hypothesised, we are able to observe thatComprehensibility andEase ofWriting are the
two propertiesmoderated by themost context variables. But themoderation is only significant
for a hand full of influences on these properties. This can be seen e.g. in themoderation effects
ofMeta-Model Size on influences on Comprehensibility depicted in Table 5 in Appendix A.
Changes in the Meta-model sizes participants worked with had next to no effect on how
their usage of Bidirectionality functionality affected their view on the Comprehensibility of
transformations. The impact on the influence of Model Management on Comprehensibility
is orders of magnitudes higher.

Another observation that stands out is the impact of Language Choice and Language
Experience. Themoderation effects of both variables are negligible or even0 for all influences.
We believe this is due to the large number of languages considered in this study. It makes
analysing the effects of choosing one of the languages difficult.

Overall the results for research questionsRQ1& 4 suggest that our initial structure model
contains many relevant interdependencies but several more have to be considered as well.
We do have to reject several direct influences due to low significance and moderation effects
have to be considered on a per influence basis instead of being generalised for each MTL
Property.

5.2 RQ2: How Strong are the Influences of Model Transformation Language
Capabilities on the Properties Thereof?

Our second research question is intended to provide numbers that can help to identify the
most important factors to consider when evaluating the advantages and disadvantages of
model transformation languages empirically. We do this by considering both the average
simulated effect of influences calculated by NEUSREL as well as the overall explained
absolute deviation of influences compared to each other. As explained earlier in this section
all numbers can be found in Table 3.

Overall the effects identified in our analysis are lower than anticipated. They range from
0.29 down till 6.5e−8. It is possible, that this stems from the large number of variables that
are involved and the overall complexity of the matter under investigation. Nonetheless there
are meaningful insights that can be drawn when comparing the influences for each MTL
Property with each other.

Of the influences hypothesised from the preceding interview study (Höppner et al. 2022)
Traceability is the most impactful MTL Capability. Its usage exerts the highest influence
on perceived Comprehensibility with 0.29. Similarly it has the highest influence for Ease
of Writing though with a value of 0.0021 the effect is small. We were, however, already
able to show empirical evidence that MTLs utilising automatic trace handling provide clear
advantages for writing transformations compared to GPLs (Höppner et al. 2021).

123

52 Page 28 of 55

Empirical Software Engineering (2024) 29:52

For the properties Tool Support,Maintainability and Productivity the availability of Reuse
Mechanisms seems to be the strongest driving factor with an average simulated effect of 0.1,
0.1, 0.1 and 0.2, respectively. No other factor has an ASE or effect strength as high as Reuse
Mechanisms for these properties. This result is significant as the influences were not raised
even once during our interview study.

Overall, automatic tracing and reuse mechanisms appear to be the most influential fac-
tors for MTL properties. This suggests to us two main pathways for further research. First,
to improve model transformation languages more research should be devoted to develop-
ing effective ways to reuse transformations or parts of transformations. Current usage of
reuse mechanisms is limited, as shown by the available techniques identified by Chechik
et al. (2016). From our experience, current mechanism are hard to use and are especially
unsuited for different use-cases. Secondly, the first area to address for improved adoption of
model transformation concepts in general purpose languages should be the development of
mechanisms for automatic trace handling.

5.3 RQ3: How Strong are Moderation Effects Expressed by the Contextual Factors
Use-case, Skills & Experience andMTL Choice?

As expressed in Sect. 5.1 the results of our analysis suggest that moderation effects need to
be considered separately for each influence on a quality attribute. In this section we go into
detail on these nuances.

As hypothesised the size of meta-models moderates the influences on Comprehensibil-
ity. The moderation strength differs greatly between the different causing factors though.
For example, Meta-model size exerts the strongest moderation on the influence of Model
Management onto Comprehensibility with 0.14. All other moderation effects are far lower.
The second highest moderation effect, the moderation of Meta-model size on the influence
of Traceability on Comprehensibility, is about half es strong (0.0778) and the lowest, the
moderation ofMeta-model size on the influence of Bidirectionality functionality on Compre-
hensibility, is only 0.0009. The moderations make sense intuitively as larger meta-models
would make implementing these tasks manually more labour intensive and thus clutter the
code unnecessarily.

Model size exerts similar moderation effects as meta-model size. Its strongest moderation
effect is also on the influence ofModel Management onComprehensibility (0.36). Moreover,
Model size also strongly moderates the influence of Traceability functionality on the Ease
of Writing transformations (0.17). Most other moderation effects ofModel size are far lower
than 0.1.

Transformation size seems to be the most relevant moderating factors across the board.
It has many noteworthy moderation effects on all influences of MTL Capabilities on Tool
Support, none being less than 0.16, and Productivity, most being above 0.12. We assume
this is because the larger transformations get, the more reliant developers are on tooling and
abstractions that reduce the development effort.

Another interesting effect we found is, that developer experiencemoderates the influence
of many of the domain specific abstractions, e.g. Mappings and Model Traversal, on Pro-
ductivity. This makes sense because these specific features often break with how developers
are used to develop programs and thus need practice to use them effectively.

The semantic gap between input and output meta-models exerts its moderation strongest
on the influences on Maintainability. Most notable are the moderations on the influences of
Model Traversal (0.194), Pattern Matching (0.239) and Reuse Mechanisms (0.237).

123

Page 29 of 55 52

Empirical Software Engineering (2024) 29:52

Lastly, there is a strong moderation effect of the meta-model sanity onto the influence of
Model Management facilities and Bidirectionality on Comprehensibility. Both being about
0.2. This makes sense as badly structured or poorly documented meta-models are harder to
handle and thus the tasks revolving around working with the structure are most influenced
by that.

Overall, we believe that the scale of transformations is the most important moderating
variable. However, the assumption about the relevance of language choice could not be
confirmed. This is most likely due to the large amount of languages each participant has
had experience with which weakens the ability to elicit the effect of differences of language
choice between participants.

5.4 Summary of Results

In this section, we aim to provide a less technical overview of the key findings from our
research, along with a brief preview of their implications which we will discuss in detail in
Sect. 6.

On the side of direct influences exerted by the capabilities of model transformation lan-
guages, we found that both bidirectionality and incrementality functionality had significantly
less impact than hypothesised. In fact, most of their influences did not cross the significance
threshold. Traceability and reuse mechanisms on the other hand emerged as the most impact-
ful aspects. They affect the highest number of MTL properties and also exhibited the highest
average simulated effect and overall explained deviation. This suggests that these are cur-
rently the most important properties of model transformation languages.

For researchers, this underscores the importance of focusing on traceability and reuse
mechanisms in empirical evaluations of MTLs. For language developers, it highlights the
need to allocate resourcesmainly for the improvement and further innovation of these specific
language features. Especially for reuse mechanisms we see a lot of potential for future
progress.

On the side of moderating factors, we were unable to determine the impact of language
choice and skills. All other investigated moderating factors demonstrated significant effects
on all MTL properties. While this was not initially hypothesized, it aligns with our broader
observations that the use-case for which MTLs are applied is crucial for their effectiveness.
This observation is underscored by the fact that the most potent moderation effects were
exerted by the factors surrounding meta-models. Considering the fact that meta-models and
their meta-data are the closest data we measure that relate to the use-case, this outcome is
somewhat expected.

6 Discussion

The results of our analysis provide useful insights for research on model transformation
languages. In this section, we discuss the implications of our results for evaluation and
development of MTLs. Additionally, we provide a critical evaluation of our methodology
with regards to the goals of this study.

123

52 Page 30 of 55

Empirical Software Engineering (2024) 29:52

6.1 Implications of Results

The topic of influences on the quality properties of model transformation language is vastly
complex, as reflected in the already large structure model that we set out to analyse.While we
were able to reject some of the hypothesized influences, our analysis also identified several
new influences. As a result, the structure model depicting the influences grew in complexity,
further highlighting the need for comprehensive studies of the factors that influence MTL
quality properties. The updated structure model can be seen in Fig. 13.

It contains 36 more interdependencies than the one we started our analysis with but also
misses some initially hypothesised ones. The difference to our initial structure model are
highlighted as follows: Removed interdependencies are coloured red. Newly added interde-
pendencies are coloured blue.

Our analysis produced a number of interesting observations that have important impli-
cations for further research. In particular, we now discuss the implications for empirical
evaluations. Additionally, we highlight the implications of our results for further develop-
ment of MTLs and domain-specific features thereof.

6.1.1 Suggestions for Further Empirical Evaluation Studies

The lack of empirical studies on the quality aspects of Model Transformation Languages
can be attributed to the inherent complexity of the field and the challenges associated with
obtaining suitable datasets. Recognizing this gap, this section aims to offer researchers sug-
gestions for directing their efforts and structuring their datasets strategically. By providing a
set of suggestions, we aim to guide researchers in overcoming the challenges posed by the
intricate nature of MTLs, facilitating the generation of meaningful and insightful results.

Traceability plays one of the most important roles in the development of model transfor-
mations, exerting the strongest influence on the perceived quality of both the ease of writing
and the comprehensibility of the resulting code. To assess the value of MTL abstractions for
writing and understanding transformations, it is essential to consider scenarios involving trac-
ing. Equally important is the evaluation of situations where tracing is not necessary, to discern
the impact of MTL abstractions. Conducting experiments with various transformation cases,
encompassing development, maintenance, or understanding, is crucial for focused studies in
these areas. To gauge the practical significance of this feature, it is imperative to analyze the
prevalence of real-world use cases requiring traceability. Large-scale meta-studies that scru-
tinize existing transformation problems are well-suited for this purpose. By systematically
considering these factors, a comprehensive understanding of the value of MTL abstractions
in the context of writing and comprehending transformations can be obtained.

For evaluation of Maintainability, Reuse Mechanisms as well as Model Traversal func-
tionality are important capabilities to consider.We therefore believe that researchers focusing
on such an evaluation must make sure to use transformations that utilise these capabilities.
Moreover, the most important context to consider is the semantic gap between input and out-
put meta-models. Empirical evaluations focusing on maintainability should therefore make
sure to evaluate transformation cases with varying degrees of differences between input and
output meta-models. Because of the complexity of the factors and quality attributes to con-
sider, case studies are most suitable. They can also be set up in cooperation with industry
partners to gain insights into real-world application of model transformations. These studies
should then analyse how much the effectiveness of MTLs and GPLs changes in light of the
semantic gap between input and output. There exist some studies in the area of MDE, such

123

Page 31 of 55 52

Empirical Software Engineering (2024) 29:52

Fig. 13 Structuremodel depicting the confirmed influence andmoderation effects of factors onMTLproperties

123

52 Page 32 of 55

Empirical Software Engineering (2024) 29:52

as the studies by Staron (2006); Mohagheghi et al. (2013a), but these lie far in the past and
no new studies have been conducted.

When choosing transformations for evaluation, it is crucial to take their size into account.
Our findings indicate that size has the most pronounced impact on the influence of other
factors on properties. In other words, the larger the transformation, the more discernible the
effect of all capabilitieswill be. Therefore, it is essential to concentrate on large transformation
use-cases when designing a study to evaluate MTLs.

6.1.2 Suggestions on Language Development

The most significant finding of this study is the importance of reuse functionality. Tool
support, maintainability, productivity, and reusability, among the quality attributes examined,
are predominantly influenced by the effectiveness of reuse functionality. This is especially
significant because there was no indication of this in our interviews (Höppner et al. 2022).We
suppose this influence stems from the fact that reuse mechanisms allow for more abstraction
and thus less code that can be developed and maintained more efficiently.

As a result, more focus should be put on developing transformation specific reuse
mechanisms. We are aware that some languages, e.g. ATL, already provide general reuse
mechanisms through concepts like inheritance. However, these concepts are limited by the
fact that they rely on the object-oriented nature of the involved models. This means that they
can only be used to define reusable code within transformations of a single meta-model.
Defining transformation behaviour that can be reused between different meta-models is not
possible. But this would be important to further reduce redundancy in transformation devel-
opment.

Lastly, the development of reusemechanisms tailored toMTs is also important to focus on.
In order to stand out compared to the reusemechanisms ofGPLs, itmay be valuable to explore
ways to define and reuse common transformation patterns independently of meta-models.
Higher order transformations are sometimes used to allow reuse too (Kusel et al. 2015), but
from our experience current implementations are too cumbersome to be used productively.
Chechik et al. (2016) provide a number of suggestions for transformation specific reuse
mechanisms but to the best of our knowledge there exist no implementations of their concepts.

6.1.3 Suggestions for Transformation Development

Our results also have direct implication for the decision making process when choosing a
language for developing transformations. Here we present a number of key points to consider
when making that decision.

Are there special requirements like bidirectionality or incrementality? Our results
point toward higher impact of bidirectional and incremental functionality provided byMTLs
if the use-case requires such special case transformations. This can reduce development
effort. However, there currently do not exist empirical studies to back up this claim, apart
from the data we provide here.

Is the amount of required tracing between input and output high or low? Dedicated
support for tracing is one of the main advantages of MTLs. This is shown by the high
effect strength exhibited by this property in our results. Thus, the higher the amount of
tracing between input and output of the transformation that is required the more advantage
developers can derive from using a MTL.

How high is the demand on the reusability of the transformations? As shown by our
results, reusability functionality has a high impact on the perception of model transformation

123

Page 33 of 55 52

Empirical Software Engineering (2024) 29:52

languages. The higher the demand for reusability themore prevalent this effect will be.MTLs
currently do provide reusability features solely on a per meta-model basis. If it is anticipated
that the transformations should also be reused in different contexts MTLs will not provide
ways of abstraction for that. In such cases using GPLs might be favourable.

6.2 Interesting Observations Outside of USM

When discussing model transformation languages, it is often stated that they are only demon-
strated on ‘toy examples’ that have little to no real world value. This argumentation has for
example been raised several times in the interview study (Höppner et al. 2022). However, the
demographic data collected in our study disputes this.

There are several participants that stated to have worked solely on small transformations
with small meta-and input models. But this group is opposed by a similarly large group of
participants that have worked with huge transformations, dissimilar and large meta-models
as well as large inputs. From this we conclude, that there are large use-cases where model
transformations and MTLs are applied but they rarely get described in publications. It seems
likely that such examples are not used for highlighting important aspects authors want to
discuss due to the space describing such cases would take up. However, we argue that it is
paramount that such case-studies are published to diminish the preconception that MTLs are
only useful for small examples.

Another noteworthy observation based on the demographic data of our participants is
that documentation pertaining meta-models is predominantly perceived as inadequate. We
believe that this is primarily due to the fact that many of meta-models stem from research
projects that prioritize expeditious prototyping over the long-term viability of the artefacts.
Nonetheless, we are convinced that there is an urgent need to enhance the documentation
surrounding model transformations. This issue is not limited solely to the meta-models, but
also extends to the languages that are known for their challenging learning curve because of
lack of tutorials (Höppner et al. 2022).

6.3 Critical Assessment of the UsedMethodology

The appeal of using structural equation modelling for analysing the responses to our survey
was to have a method of analysis that can be used to investigate a complex hypothesis
system in its entirety. Moreover, analysis is straight forward after an initial setup due to the
sophisticated tooling for this methodology. Instead of presenting participants with a case
that they should assess we also opted for querying them on their overall assessment of MTL
quality attributes. These design decisions have implications and ramifications that we discuss
in this section.

First, the effects observed in our study are small. We assume this stems from the intricate
and large structure model and the comparatively small sample size. As explained in Sect. 3
it is suggested to have between 5 to 10 times as many participants as the largest number
of parameters to be estimated in each structural equation. In light of the newly discovered
paths in our structure model, the 113 total participants are close to the minimum sample size
required. Moreover, because of the large number of influences we do expect the influence
of a single factor to be much smaller than in structure models where only 2-3 factors are
relevant. The results therefore reinforce our assessment that it is a very complex topic.

We also ran into some difficultieswhen usingNEUSREL to analyse our data. The structure
model was so large that sometimes the tool crashed during calculations. The online tooling

123

52 Page 34 of 55

Empirical Software Engineering (2024) 29:52

to set everything up was also painfully inefficient leading to more problems during setup like
browser crashes. It took us some trial and error to find a way to get everything set up and run
the analysis without crashes.

We chose to execute a study based on our study design in hopes of producing a complete
theory independent of the use case under consideration. The results of the study complement
other studies on the topic that used a more narrow scope, investigating effects under one
or several specific use-cases. Hebig et al. (2018), for example, investigate the effects of
using model transformation languages for comprehension and ease of writing in a controlled
experiment. During discussion of their results, the authors have to concede that their findings
are made under narrow conditions and thus can not be generalised to other use-cases. Similar
to our questionnaire setup, Groner et al. (2021) also use a questionnaire focused on the
general assessment of participants about performance engineering in model transformation
development and are able to produce statistically significant results. Nonetheless, additional
studies need to be conducted to confirm our results for different use-cases.

7 Threats to Validity

Our study is carefully designed and follows standard procedures for this type of study. There
are, however still threats to validity that stem from design decisions and limitations. In this
section we discuss these threats.

7.1 Internal Validity

Internal validity is threatened bymanual errors and biases of the involved researchers through-
out the process.

The two activities where such errors and biases can be introduced are the subject selection
and question creation. The selection criteria for study subjects is designed in such a way, that
no ambiguities exist during selection. This prevents researcher bias.

The survey questions and answers to the questions pose another threat to internal validity.
We used neutral questions to prevent subconsciously influencing the opinions of research
subjects. We also provide explanations for ambiguous terms used in the survey. However,
there are several instances where we can not fully ensure that each participant interprets
terms the same way. The questions on quality properties of model transformation languages
allow room for interpretation in that we do not provide a clear metric what terms such as
‘Very Comprehensible’ or ‘Very Hard to write’ mean. Similarly, the questions onmeta-model
quality leave room for interpretation on the side of participants. We opted for this limitation
because there are no universal ways to quantify such estimates and because the subjective
assessment is what we want to collect. The reason for this is, that subjective experiences are
the main driving factor for all discussions on development when people are the main subject.

To ensure overall understandability and prevent errors in the setup of the survey we used
a pilot study.

7.2 External Validity

External validity is threatened by our subject sampling strategy and the limitations on the
survey questions imposed by the complexity of the subject matter.

123

Page 35 of 55 52

Empirical Software Engineering (2024) 29:52

We utilise judgement, voluntary and convenience sampling. As a result, the representa-
tiveness of the participants for the target population is hampered. Convenience sampling can
limit how representative the final group of interviewees is. Since we do not know the target
populations makeup, it is difficult to asses the extend of this problem.

Moreover, using research articles as a starting point introduces a bias towards researchers.
There is little potential to mitigate this problem during the study design, because there exists
no systematic way to find industry users.

Due to the complexity and abstractness of the concepts under investigation, ameasurement
via reflective of formative indicators is not possible. Instead we use single item questions.
We further assume that positive and negative effects of a feature are more prominent if the
feature is used more frequently. This can have a negative effect on the external validity of
our results. We consciously decided for these limitations to be able to create a study that
concerns itself with all factors and influences at once.

7.3 Construct Validity

Construct validity is threatened by inappropriate methods used for the study.
Using the results of online surveys as input for structural equation modelling techniques

is common practice in market research (Weiber and Muhlhaus 2021). It is less common in
computer science. However, we argue that for the purpose of our study it is an appropriate
methodology. Structural equation modelling is designed to analyse large hypothesis systems
to quantify the interdependencies between variables (Weiber and Muhlhaus 2021). As such,
it suits the goal of our study to extract influence strengths and moderation effects of factors
on different properties.

Furthermore, due to tool limitations we had to add a likelihood of 100% to all interactions,
instead of using 100% for those hypothesised in the interviews and 50% for those that were
not hypothesised. This increases the initial weight that is put onto those influences during
analysis. This has no impact on the complexity of the hypothesis system analysed, as we had
not planned to exclude any influences completely. Thus, it has no impact on our results, but
only on the tool’s internal analysis process, which may take longer to reach its termination
condition.

Lastly, no single language of the languages our participants have used boasts all MTL
capabilities. As a result, depending on which languages participants have used, they may not
have experience with all MTL capabilities. This reduces the total amount of answers we get
for each MTL capability.

7.4 ConclusionValidity

Conclusion validity is mainly threatened by biases of our survey participants.
It is possible that people who do research on model transformation languages or use them

for a long time are more likely to see them in a positive light. As such there is the risk that too
little experiences will be reported on in our survey. However, this problem did not present
itself in a previous study by us on the subject matter (Höppner et al. 2022). In fact researchers
were far more critical in dealing with the subject. As a result, there might be a slight positive
bias in the survey responses, but we believe this to be negligible.

123

52 Page 36 of 55

Empirical Software Engineering (2024) 29:52

8 RelatedWork

There are numerous works that explore the possibilities gained through the usage of MTLs
such as automatic parallelisation (Sanchez Cuadrado et al. 2020; Biermann et al. 2010;
Benelallamet al. 2015), verification (Lano et al. 2015;Ko et al. 2015) or simply the application
of difficult transformations (Anastasakis et al. 2007). There is, however, only a small amount
of works trying to evaluate the languages to gain insights into where specific advantages or
disadvantages associatedwith the use ofMTLs originate from. Several otherworks that can be
related to our study also exist. The related work is divided into studies focused on the impact
of model driven software engineering, studies focused on the investigation of properties of
model transformation languages and empirical studies on model transformation languages.

8.1 Studies onModel Driven Software Engineering

There exist several studies that evaluate the usefulness of MDSE as a whole. Staron (2006)
used expert interviews from two companies which were planning to adopt MDSE to find
out how this is done in industry. Their main findings are that tooling and processes were not
ready to base development on models only. Tooling, specifically surroundingMTLs was also
criticised.

Whittle, Hutchinson, Rouncefiled et al. used questionnaires and interviews (Whittle et al.
2013; Hutchinson et al. 2011, 2010, 2014) to investigate the positive and negative effects
of using MDSE in industry. They also investigated the factors that driver or hinder MDSE
adoption in industry. Their findings point towards organisational advantages such as better
communication and flexibility when faced with requirement changes as well as gains in
productivity. Factors for the success of MDSE are mainly in the areas of organisational tasks
like choosing the right use-case to applyMDSE to and committing to see through all required
changes within the company. They also point out several open challenges for research such
as opening communities to educate people about MDSE and focusing research on the most
important aspects surrounding industrial adoption.

Mohagheghi et al. executed empirical studies focused on factors and consequences of
adoptingMDSE in industry. For this purpose they used both surveys and interviews at several
companies (Mohagheghi et al. 2013a, b) as well as a literature review (Mohagheghi and
Dehlen 2008). Their results show that MDSE is not suited for small projects because the
adoption overhead is too high.

8.2 Studies on the Properties of Model Transformation Languages

Cabot and Gerard (2019) conducted on a online survey and open discussion at the 12th
edition of the International Conference on Model Transformations (ICMT’2019). The goal
of the survey was to identify reasons why developers decided to use or dismiss MTLs for
writing transformations. They also tried to gauge the communities sentiment on the future
of model transformation languages. At ICMT’2019, where the results of the survey were
presented, they then held an open discussion on this topic and collected the responses of
participants. Their results show that MTLs have fallen in popularity. They attribute this to
3 types of issues, technical issues, tooling issues and social issues, as well as the fact that
GPLs have assimilated many ideas from MTLs. The results of their study are a major driver
in the motivation of our work. While they identified issues and potential avenues for future
research, their results are qualitative and broad which we try to improve upon with our study.

123

Page 37 of 55 52

Empirical Software Engineering (2024) 29:52

In a prior study of ours (Götz et al. 2021), we conducted a structured literature review
which forms the basis of much of our work since then. The literature review aimed at extract-
ing and categorising claims about the advantages and disadvantages of model transformation
languages as well as the state of empirical evaluation thereof. We searched over 4000 pub-
lication for this purpose and extracted 58 that directly claim properties of MTLs. In total
137 claims were found and categorised into 15 quality properties of model transformation
languages. The results of the study show that little to no empirical studies to evaluate MTLs
exist and that there is a severe lack of context and background information that further hinders
their evaluation.

Lastly, there is our interview study (Höppner et al. 2022) the data of which forms the
basis for the reported study. We interviewed 56 people on what they believe the most relevant
factors are that facilitate or hamper their advantages for different quality properties identified
in the prior literature review. The interviews brought forth insights into factors from which
the advantages and disadvantages of MTLs originate from as well as suggested a number
of moderation effects on the effects of these factors. These results for the data basis for this
study.

8.3 Empirical Studies onModel Transformation Languages

To identify differences in transformation development between MTLs and GPLs Tehrani
et al. (2016) used an interview study with five participants. They found that all projects
where MTLs were used started out as greenfield projects because incorporating MTLs in
existing, GPL focused projects is difficult. Furthermore their results point towards a lack of
systematic process on how to develop model transformations in general.

Jakumeit et al. (2014) did an in-depth comparison of different MTLs based on the Trans-
formation Tool Contest (TTC). For this purpose they analysed all submissions for the contest
in 2011 and summarise how the case was solved using different languages highlighting the
differences between them.

Hebig et al. (2018) report on a controlled experiment to evaluate how the use of different
languages, namely ATL, QVT-O and Xtend affects the outcome of students solving several
transformation tasks. During the study student participants had to complete a series of three
model transformation tasks. One task was focused on comprehension, one task focused
on modifying an existing transformation and one task required participants to develop a
transformation from scratch. The authors compared how the use of ATL, QVTo and Xtend
affected the outcome of each of the tasks. Unfortunately their results show no clear evidence
of an advantage when using a model transformation language compared to Xtend. However,
they concede that the conditions under which the observations are made, were narrow.

We published a study on howmuch complexity stems fromwhat parts of ATL transforma-
tions (Götz and Tichy 2020) and compared these results with data for transformations written
in Java (Höppner et al. 2021) to elicit advantageous features in ATL and to explore what use-
cases justify the use of a general purpose language over a model transformation language.
In the study, the complexity of transformations written in ATL were compared to the same
transformations written in Java SE5 and Java SE14 allowing for a comparison and historical
perspective. The Java transformations were translated from the ATL transformations using a
predefined translation schema. The results show that new language features in Java, like the
Streams API, allow for significant improvement over older Java code, the relative amount of
complexity aspects that ATL can hide stays the same between the two versions.

123

52 Page 38 of 55

Empirical Software Engineering (2024) 29:52

Gerpheide et al. (2016) use a mixed method study consisting of expert interviews, a
literature review and introspection, to formalize a quality model for the QVTo model trans-
formation standard. The quality model is validated using a survey and used to identify the
necessity of quality tool support for developers.

There are two study templates for evaluating model transformation languages that have
been proposed but not yet used. Kramer et al. (2016) propose a template for a controlled
experiment to evaluate comprehensibility of MTLs. The template envisages using a ques-
tionnaire to evaluate the ability of participants to understand what presented transformation
code does. The influence of the language used for the transformation should then bemeasured
by comparing the average number of correct answers and average time spent to fill out the
questionnaire. Struber and Anjorin (2016) also propose a template for a controlled experi-
ment. The aim of the study is to evaluate the benefits and drawbacks of rule refinement and
variability-based rules for reuse. The quality of reusability is measured through measuring
the comprehensibility as well as the changeability collected in bug-fixing and modification
tasks.

9 Conclusion

Our studyprovides thefirst quantification of the importance ofmodel transformation language
capabilities for the perception of quality attributes by developers. It once again highlight the
complexity of the subject matter as the effect sizes of the influences are small and the final
structure model grew in size.

As demonstrated by the amount of influences contained in the structure model many
language capabilities need to be considered when designing empirical studies on MTLs.
The results however point towards Traceability and Reuse Mechanisms as the two most
important MTL capabilities. Moreover, the size of the transformations provides the strongest
moderation effects to many of influences and is thus the most important context factor to
consider.

Apart from implications for further empirical studies our results also point a clear picture
for further language development. Transformation specific reuse mechanisms should be the
main focus as shown by their relevance for many development lifecycle focused quality
attributes such as Maintainability and Productivity.

Appendix

A USM Results for Moderation Effects

See Tables 4, 5, 6, 7, 8, 9, 10, 11, 12, and 13.

123

Page 39 of 55 52

Empirical Software Engineering (2024) 29:52

Ta
bl
e
3

A
ve
ra
ge

si
m
ul
at
ed

ef
fe
ct
,o
ve
ra
ll
ex
pl
ai
ne
d
ab
so
lu
te
de
vi
at
io
n
an
d
si
gn
ifi
ca
nc
e
of

di
re
ct
in
flu

en
ce
s

C
om

pr
eh
en
si
bi
lit
y

E
as
e
of

w
ri
tin

g
E
xp
re
ss
iv
en
es
s

To
ol

su
pp
or
t

M
ai
nt
ai
na
bi
lit
y

Pr
od
uc
tiv

ity
R
eu
sa
bi
lit
y

B
id
ir
ec
tio

na
lit
y

-3
.2
e−

07
/3

.3
e−

07
/1

6.
6e

−0
8/

9.
2e

−0
5/

1
1.
5e

−0
9/

4.
2e

−0
6/

1
-1
.5
e−

05
/2

.0
e−

05
/1

−0
.0
6/

0.
05

/0
.1
*

-8
.3
e−

06
/8

.9
e−

07
/1

1.
4e

−0
6/

5.
5e

−0
6/

1

In
cr
em

en
ta
lit
y

0.
02

/0
.0
1/

0.
01

*
-3
.5
e−

07
/0

.0
00

3/
1

7.
4e

−0
7/

0.
00

2/
1

0.
00

02
/0

.0
00

2/
1

0.
00

04
/1

.7
e−

05
/1

−0
.0
00

1/
6.
5e

−0
7/

1
0.
02

/0
.0
05

/0
.0
5

M
ap
pi
ng

s
0.
03

/0
.0
1/

0.
01

*
-1
.8
e−

05
/0

.0
1/

0.
01

*
-6
.8
e−

06
/0

.0
1/

0.
01

*
−0

.0
11

6/
0.
01

/0
.0
1*

−0
.0
00

79
3/

0.
00

3/
1−

0.
00

5/
0.
04

/0
.0
1*

−0
.0
2/

0.
01

/0
.0
1*

M
od

el
m
an
ag
em

en
t0
.0
3/

0.
1/

0.
01

*
4.
4e

−0
5/

0.
00

3/
1

0.
00

06
/0

.0
06

/0
.0
1*

0.
02

/0
.0
7/

0.
01

*
0.
03

/0
.0
4/

0.
01

*
−0

.0
00

5/
0.
05

/0
.0
1*

0.
06

/0
.0
3/

0.
01

*

M
od
el
na
vi
ga
tio

n
−0

.0
1/

0.
03

/0
.0
1*

-2
.3
e−

05
/0

.0
1/

0.
01

*
5.
9e

−0
5/

0.
00

5/
0.
05

0.
06

/0
.2
/0

.0
1*

−0
.0
04

/0
.0
5/

0.
01

*
0.
05

/0
.0
7/

0.
01

*
−0

.0
8/

0.
08

/0
.0
1*

M
od

el
tr
av
er
sa
l

0.
00

8/
0.
00

9/
0.
01

*
2.
1e

−0
7/

0.
00

2/
1

-9
.4
e−

05
/0

.0
00

5/
1

−0
.0
9/

0.
2/

0.
01

*
0.
07

/0
.1
/0

.0
1*

−0
.0
03

/0
.0
3/

0.
01

*
0.
00

7/
0.
01

/0
.0
1*

Pa
tte

rn
m
at
ch
in
g

0.
05

/0
.0
7/

0.
01

*
-8
.4
e−

05
/0

.0
1/

0.
01

*
−0

.0
00

1/
0.
00

6/
0.
01

*
0.
05

/0
.0
6/

0.
01

*
−0

.0
4/

0.
08

/0
.0
1*

0.
00

5/
0.
1/

0.
01

*
−0

.0
6/

0.
06

/0
.0
1*

R
eu
se

m
ec
ha
ni
sm

s
0.
1/

0.
08

/0
.0
1*

-7
.8
e−

05
/0

.0
08

/0
.0
1*

−0
.0
00

2/
0.
00

2/
1

0.
1/

0.
1/

0.
01

*
0.
1/

0.
2/

0.
01

*
0.
1/

0.
2/

0.
01

*
0.
2/

0.
1/

0.
01

*

T
ra
ce
ab
ili
ty

0.
29

/0
.1
2/

0.
01

*
0.
00

2/
0.
02

/0
.0
1*

-2
.1
e−

05
/0

.0
07

/0
.0
1*

−0
.0
5/

0.
2/

0.
01

*
−0

.0
2/

0.
1/

0.
01

*
0.
04

/0
.0
5/

0.
01

*
0.
08

/0
.0
9/

0.
01

*

Pl
ea
se

no
te
th
at
th
e
si
gn

ifi
ca
nc
e
va
lu
es

ob
ta
in
ed

th
ro
ug

h
th
e
N
E
U
SR

E
L
to
ol

m
ay

ex
hi
bi
tr
ed
uc
ed

ac
cu
ra
cy

co
m
pa
re
d
to

st
an
da
rd

ap
pr
oa
ch
es

du
e
to

th
e
bo

ot
st
ra
pp

in
g
m
et
ho

d
us
ed

fo
r
th
ei
r
es
tim

at
io
n

123

52 Page 40 of 55

Empirical Software Engineering (2024) 29:52

Ta
bl
e
4

O
ve
rv
ie
w
of

m
od
er
at
io
n
ef
fe
ct
s
of

m
et
a-
m
od
el
si
ze

C
om

pr
eh
en
si
bi
lit
y

E
as
e
of

w
ri
tin

g
E
xp
re
ss
iv
en
es
s

To
ol

su
pp
or
t

M
ai
nt
ai
na
bi
lit
y

Pr
od
uc
tiv

ity
R
eu
sa
bi
lit
y

B
id
ir
ec
tio

na
lit
y

0.
00

09
0.
16

44
0.
00

04
0.
03

41
0.
02

47
0.
01

97
0.
02

18

In
cr
em

en
ta
lit
y

0.
01

74
0.
00

03
0.
00

86
0.
03

35
0

0.
02

24
0.
00

54

M
ap
pi
ng

s
0.
01

8
0.
03

09
0.
00

58
0.
00

49
0

0.
00

12
0.
01

06

M
od

el
m
an
ag
em

en
t

0.
13

89
0.
02

64
0.
00

06
0.
02

3
0

0.
01

77
0.
01

99

M
od

el
na
vi
ga
tio

n
0.
00

1
0.
04

38
0.
00

19
0.
01

28
0.
00

32
0.
04

22
0.
01

8

M
od

el
tr
av
er
sa
l

0.
03

82
0.
05

9
0

0.
04

22
0.
00

23
0.
03

7
0.
01

06

Pa
tte

rn
m
at
ch
in
g

0.
00

91
0

0.
00

03
0.
03

0.
00

28
0.
04

18
0.
00

93

R
eu
se

m
ec
ha
ni
sm

s
0.
04

95
0

0.
00

77
0.
05

42
0.
06

93
0.
09

43
0.
00

21

T
ra
ce
ab
ili
ty

0.
07

78
0.
04

64
0.
00

00
1

0.
07

14
0.
02

1
0.
07

6
0.
02

23

123

Page 41 of 55 52

Empirical Software Engineering (2024) 29:52

Ta
bl
e
5

O
ve
rv
ie
w
of

m
od

er
at
io
n
ef
fe
ct
s
of

m
od

el
si
ze

C
om

pr
eh
en
si
bi
lit
y

E
as
e
of

w
ri
tin

g
E
xp
re
ss
iv
en
es
s

To
ol

su
pp
or
t

M
ai
nt
ai
na
bi
lit
y

Pr
od
uc
tiv

ity
R
eu
sa
bi
lit
y

B
id
ir
ec
tio

na
lit
y

0.
1

0.
06

6
0.
03

6
0.
04

8
0.
03

0.
06

9
0.
01

2

In
cr
em

en
ta
lit
y

0.
06

5
0.
14

0.
01

9
0.
03

6
0.
03

1
0.
05

2
0.
00

9

M
ap
pi
ng

s
0.
08

5
0.
03

3
0.
07

6
0.
04

2
0.
03

2
0.
08

3
0.
00

3

M
od

el
m
an
ag
em

en
t

0.
36

0.
08

9
0.
05

9
0.
02

3
0.
04

7
0.
07

9
0.
04

M
od
el
na
vi
ga
tio

n
0.
07
4

0.
00
7

0.
04

0.
05
3

0.
05

0.
07
2

0.
01
1

M
od

el
tr
av
er
sa
l

0.
12

5
0.
06

9
0.
03

8
0.
04

8
0.
03

1
0.
10

4
0.
00

8

Pa
tte

rn
m
at
ch
in
g

0.
13

3
0.
05

2
0.
03

8
0.
05

6
0.
02

4
0.
03

6
0.
01

4

R
eu
se

m
ec
ha
ni
sm

s
0.
09

6
0.
00

00
9

0.
02

9
0.
00

5
0.
11

0.
09

3
0.
03

6

T
ra
ce
ab
ili
ty

0.
07

8
0.
17

3
0.
02

0.
04

8
0.
09

6
0.
10

8
0.
01

6

123

52 Page 42 of 55

Empirical Software Engineering (2024) 29:52

Ta
bl
e
6

O
ve
rv
ie
w
of

m
od
er
at
io
n
ef
fe
ct
s
of

tr
an
sf
or
m
at
io
n
si
ze

C
om

pr
eh
en
si
bi
lit
y

E
as
e
of

w
ri
tin

g
E
xp
re
ss
iv
en
es
s

To
ol

su
pp
or
t

M
ai
nt
ai
na
bi
lit
y

Pr
od
uc
tiv

ity
R
eu
sa
bi
lit
y

B
id
ir
ec
tio

na
lit
y

0.
1

0.
15

0
0.
27

0.
03

3
0.
09

7
0.
04

4

In
cr
em

en
ta
lit
y

0.
08

6
0.
00

75
0.
00

86
0.
33

0.
04

3
0.
09

2
0.
05

0

M
ap
pi
ng

s
0.
13

0.
00

55
0

0.
17

0.
04

2
0.
16

0.
03

4

M
od

el
m
an
ag
em

en
t

0.
32

0.
09

4
0.
02

1
0.
23

0.
01

2
0.
13

0.
05

6

M
od
el
na
vi
ga
tio

n
0.
15

0.
05
8

0.
00
22

0.
25

0.
04
9

0.
13

0.
06
4

M
od

el
tr
av
er
sa
l

0.
06

9
0.
04

5
0.
00

38
0.
21

0.
06

1
0.
15

0.
01

5

Pa
tte

rn
m
at
ch
in
g

0.
16

0.
05

5
0.
04

0
0.
28

0.
07

5
0.
12

0.
05

5

R
eu
se

m
ec
ha
ni
sm

s
0.
21

0.
01

9
0.
00

77
0.
16

0.
27

0.
23

0.
08

7

T
ra
ce
ab
ili
ty

0.
11

0.
11

0
0.
25

0.
06

7
0.
12

0.
04

0

123

Page 43 of 55 52

Empirical Software Engineering (2024) 29:52

Ta
bl
e
7

O
ve
rv
ie
w
of

m
od

er
at
io
n
ef
fe
ct
s
of

th
e
am

ou
nt

of
bi
di
re
ct
io
na
lu

se
-c
as
es

C
om

pr
eh
en
si
bi
lit
y

E
as
e
of

w
ri
tin

g
E
xp
re
ss
iv
en
es
s

To
ol

su
pp
or
t

M
ai
nt
ai
na
bi
lit
y

Pr
od
uc
tiv

ity
R
eu
sa
bi
lit
y

B
id
ir
ec
tio

na
lit
y

0.
06

7
0.
01

1
0.
13

6
0.
10

1
0.
02

6
0.
09

2
0.
01

0

In
cr
em

en
ta
lit
y

0.
03

6
0.
00

5
0.
12

0
0.
11

5
0.
00

3
0.
09

9
0.
01

9

M
ap
pi
ng

s
0.
02

9
0.
03

4
0.
06

5
0.
08

4
0.
00

2
0.
07

2
0.
00

1

M
od

el
m
an
ag
em

en
t

0.
14

3
0.
04

8
0.
17

5
0.
06

6
0.
01

0
0.
05

3
0.
01

4

M
od
el
na
vi
ga
tio

n
0.
05
8

0.
00
3

0.
15
5

0.
04
9

0.
03
7

0.
07
1

0.
02
0

M
od

el
tr
av
er
sa
l

0.
02

4
0.
06

8
0.
14

2
0.
07

1
0.
02

3
0.
11

7
0.
01

2

Pa
tte

rn
m
at
ch
in
g

0.
04

5
0.
00

6
0.
11

0
0.
09

2
0.
00

2
0.
05

8
0.
00

2

R
eu
se

m
ec
ha
ni
sm

s
0.
04

0
0.
02

6
0.
13

0
0.
22

0
0.
10

0
0.
19

0
0.
01

3

T
ra
ce
ab
ili
ty

0.
06

5
0.
12

0
0.
15

0
0.
16

0
0.
06

0
0.
15

0
0.
01

2

123

52 Page 44 of 55

Empirical Software Engineering (2024) 29:52

Ta
bl
e
8

O
ve
rv
ie
w
of

m
od

er
at
io
n
ef
fe
ct
s
of

de
ve
lo
pe
r
ex
pe
ri
en
ce

C
om

pr
eh
en
si
bi
lit
y

E
as
e
of

w
ri
tin

g
E
xp
re
ss
iv
en
es
s

To
ol

su
pp
or
t

M
ai
nt
ai
na
bi
lit
y

Pr
od
uc
tiv

ity
R
eu
sa
bi
lit
y

B
id
ir
ec
tio

na
lit
y

0.
05

8.
4E

-0
6

0.
01

1
0.
08

0.
03

7
0.
08

4
0.
03

3

In
cr
em

en
ta
lit
y

0.
04

5
0.
00

03
0.
00

7
0.
08

3
0.
03

2
0.
05

5
0.
04

6

M
ap
pi
ng

s
0.
00

03
2

0
0.
00

13
0.
07

2
0.
05

2
0.
1

0.
03

9

M
od

el
m
an
ag
em

en
t

0.
15

0.
02

5
0.
03

2
0.
08

5
0.
05

0.
07

3
0.
03

4

M
od
el
na
vi
ga
tio

n
0.
05
3

0.
04
3

0.
01
3

0.
08

0.
03
2

0.
07
4

0.
05

M
od

el
tr
av
er
sa
l

0.
04

5
0.
00

08
0.
01

1
0.
1

0.
02

4
0.
14

0.
05

4

Pa
tte

rn
m
at
ch
in
g

0.
01

3
0.
02

4
0.
00

52
0.
08

1
0.
03

2
0.
07

8
0.
04

8

R
eu
se

m
ec
ha
ni
sm

s
0.
04

7
0

0.
00

15
0.
08

0.
07

7
0.
05

5
0.
02

2

T
ra
ce
ab
ili
ty

0.
07

2
0.
01

7
0.
01

1
0.
05

5
0.
04

2
0.
06

6
0.
04

123

Page 45 of 55 52

Empirical Software Engineering (2024) 29:52

Ta
bl
e
9

O
ve
rv
ie
w
of

m
od
er
at
io
n
ef
fe
ct
s
of

th
e
se
m
an
tic

ga
p
be
tw
ee
n
in
pu
ta
nd

ou
tp
ut

C
om

pr
eh
en
si
bi
lit
y

E
as
e
of

w
ri
tin

g
E
xp
re
ss
iv
en
es
s

To
ol

su
pp
or
t

M
ai
nt
ai
na
bi
lit
y

Pr
od
uc
tiv

ity
R
eu
sa
bi
lit
y

B
id
ir
ec
tio

na
lit
y

0.
01

0.
03

3
0.
00

8
0

0.
08

9
0.
05

6
0.
04

1

In
cr
em

en
ta
lit
y

0.
00

6
0.
06

7
0.
00

9
0

0.
11

9
0.
04

6
0.
04

5

M
ap
pi
ng

s
0.
01

3
0.
03

3
0.
00

2
0

0.
05

3
0.
04

9
0.
04

3

M
od

el
m
an
ag
em

en
t

0.
1

0.
02

3
0.
02

1
0.
00

9
0.
16

3
0.
05

2
0.
05

4

M
od
el
m
av
ig
at
io
n

0.
02
7

0.
01

0.
00
1

0.
00
7

0.
11
2

0.
1

0.
04
3

M
od

el
tr
av
er
sa
l

0.
02

3
0.
03

2
0

0.
00

2
0.
19

4
0.
06

7
0.
02

9

Pa
tte

rn
m
at
ch
in
g

0.
03

2
0.
03

3
0

0.
02

9
0.
23

9
0.
09

6
0.
03

2

R
eu
se

m
ec
ha
ni
sm

s
0.
01

6
0.
03

3
0.
00

8
0.
00

7
0.
23

7
0.
06

8
0.
03

3

T
ra
ce
ab
ili
ty

0.
03

2
0.
02

7
0.
00

03
0.
01

2
0.
18

4
0.
05

8
0.
03

8

123

52 Page 46 of 55

Empirical Software Engineering (2024) 29:52

Ta
bl
e
10

O
ve
rv
ie
w
of

m
od
er
at
io
n
ef
fe
ct
s
of

th
e
sa
ni
ty

of
in
vo
lv
ed

m
et
a-
m
od
el
s

C
om

pr
eh
en
si
bi
lit
y

E
as
e
of

w
ri
tin

g
E
xp
re
ss
iv
en
es
s

To
ol

su
pp
or
t

M
ai
nt
ai
na
bi
lit
y

Pr
od
uc
tiv

ity
R
eu
sa
bi
lit
y

B
id
ir
ec
tio

na
lit
y

0.
2

0.
00

01
0.
00

00
2

0.
03

5
0.
02

5
0.
07

4
0.
04

5

In
cr
em

en
ta
lit
y

0.
06

0.
06

0.
00

1
0.
03

0.
01

3
0.
09

7
0.
04

7

M
ap
pi
ng

s
0.
09

0.
03

0.
03

0.
07

0.
00

5
0.
07

4
0.
05

9

M
od

el
m
an
ag
em

en
t

0.
21

0.
02

0.
02

0.
00

6
0.
03

0.
08

6
0.
07

3

M
od
el
na
vi
ga
tio

n
0.
11

0.
12

0.
00
2

0.
06

0.
04

0.
09
9

0.
04
4

M
od

el
tr
av
er
sa
l

0.
1

0.
08

0
0.
08

0.
02

0.
13

0.
06

9

Pa
tte

rn
m
at
ch
in
g

0.
09

0
0.
01

0.
05

0.
01

0.
07

0.
08

1

R
eu
se

m
ec
ha
ni
sm

s
0.
11

0
0.
00

8
0.
03

0.
05

0.
09

4
0.
05

9

T
ra
ce
ab
ili
ty

0.
11

0.
00

1
0

0.
05

0.
05

0.
14

0.
07

9

123

Page 47 of 55 52

Empirical Software Engineering (2024) 29:52

Ta
bl
e
11

O
ve
rv
ie
w
of

m
od

er
at
io
n
ef
fe
ct
s
of

th
e
am

ou
nt

of
in
cr
em

en
ta
lu

se
-c
as
es

C
om

pr
eh
en
si
bi
lit
y

E
as
e
of

w
ri
tin

g
E
xp
re
ss
iv
en
es
s

To
ol

su
pp
or
t

M
ai
nt
ai
na
bi
lit
y

Pr
od
uc
tiv

ity
R
eu
sa
bi
lit
y

B
id
ir
ec
tio

na
lit
y

0
0.
06

0.
03

9
0.
00

45
0.
03

4
0

0.
00

03
1

In
cr
em

en
ta
lit
y

0
0.
00

06
7

0.
01

2
0.
00

42
0.
07

9
0

0.
00

6

M
ap
pi
ng

s
0

0.
01

7
0.
07

9
0.
00

18
0.
06

1
0.
00

72
0.
01

7

M
od

el
m
an
ag
em

en
t

0.
13

0.
02

7
0.
06

8
0.
01

6
0.
06

2
0.
00

03
8

0.
03

9

M
od
el
na
vi
ga
tio

n
0

0.
24

0.
06
6

0.
03
7

0.
09
8

0.
03
3

0.
02
3

M
od

el
tr
av
er
sa
l

0
0.
04

7
0.
02

5
0.
02

8
0.
08

3
0

0.
00

91

Pa
tte

rn
m
at
ch
in
g

0.
05

2
0

0.
02

4
0.
00

04
8

0.
07

3
0.
03

2
0.
03

4

R
eu
se

m
ec
ha
ni
sm

s
0.
04

7
0

0.
02

4
0.
00

36
0.
14

0.
05

1
0.
03

4

T
ra
ce
ab
ili
ty

0.
05

9
0

0.
08

8
0.
00

5
0.
13

0
0.
02

9

123

52 Page 48 of 55

Empirical Software Engineering (2024) 29:52

Ta
bl
e
12

O
ve
rv
ie
w
of

m
od

er
at
io
n
ef
fe
ct
s
of

th
e
ch
oi
ce

of
la
ng

ua
ge

C
om

pr
eh
en
si
bi
lit
y

E
as
e
of

w
ri
tin

g
E
xp
re
ss
iv
en
es
s

To
ol

su
pp
or
t

M
ai
nt
ai
na
bi
lit
y

Pr
od
uc
tiv

ity
R
eu
sa
bi
lit
y

B
id
ir
ec
tio

na
lit
y

0
0

0.
04

5
0

0.
02

2
0

0

In
cr
em

en
ta
lit
y

0
0

0.
05

8
0

0.
00

35
0

0

M
ap
pi
ng

s
0

0.
00

63
0.
04

3
0

0.
00

47
0.
00

52
0

M
od

el
m
an
ag
em

en
t

0.
08

0
0

0.
00

50
0.
00

84
0.
00

77
0.
00

58
0

M
od
el
na
vi
ga
tio

n
0

0.
03
1

0.
05
1

0.
02
2

0.
03
8

0.
02
7

0.
00
15

M
od

el
tr
av
er
sa
l

0
0.
00

08
1

0.
04

9
0.
00

75
0.
04

0
0

0

Pa
tte

rn
m
at
ch
in
g

0.
02

8
0.
00

08
1

0.
01

8
3.
4E

-0
5

0.
01

9
0.
00

76
0.
00

65

R
eu
se

m
ec
ha
ni
sm

s
0.
03

7
6.
2E

-0
9

0.
04

2
0.
00

15
0.
10

2
0.
02

7
0.
02

9

T
ra
ce
ab
ili
ty

0.
03

6
0.
02

2
0.
00

42
0.
02

6
0.
02

4
0

0.
04

1

123

Page 49 of 55 52

Empirical Software Engineering (2024) 29:52

Ta
bl
e
13

O
ve
rv
ie
w
of

m
od
er
at
io
n
ef
fe
ct
s
of

th
e
ex
pe
ri
en
ce

in
th
e
us
ed

la
ng
ua
ge
s

C
om

pr
eh
en
si
bi
lit
y

E
as
e
of

w
ri
tin

g
E
xp
re
ss
iv
en
es
s

To
ol

su
pp
or
t

M
ai
nt
ai
na
bi
lit
y

Pr
od
uc
tiv

ity
R
eu
sa
bi
lit
y

B
id
ir
ec
tio

na
lit
y

0
0

0
0

0.
00

06
0

0

In
cr
em

en
ta
lit
y

0
0

0.
00

86
0

0
0

0

M
ap
pi
ng

s
0

2.
4E

-1
7

4E
-0
7

0
0

0.
00

06
0

M
od

el
m
an
ag
em

en
t

0.
09

0
0

0.
02

1
0.
02

4
0

0.
00

12
0

M
od

el
na
vi
ga
tio

n
0

0.
00

8
0.
00

22
0.
00

88
0.
00

14
0.
04

3
0.
01

5

M
od

el
tr
av
er
sa
l

0
0.
00

08
0

0.
00

65
0.
00

01
0

0

Pa
tte

rn
m
at
ch
in
g

0.
00

05
1.
5E

-1
9

4.
4E

-0
5

0.
00

04
9

0.
00

06
9

0.
00

11
0.
00

65

R
eu
se

m
ec
ha
ni
sm

s
0.
00

56
0.
00

14
0.
00

77
0.
00

71
0.
01

8
0.
02

5
0.
00

22

T
ra
ce
ab
ili
ty

0.
02

2
2E

-1
7

4E
-0
6

0.
02

8
0.
01

4
0

0.
01

6

123

52 Page 50 of 55

Empirical Software Engineering (2024) 29:52

BMail Templates

Dear ${Author Name},
We found your contact information while conducting a structured literature search on

model-to-model transformations. We seek your expertise on that topic.
We invite you to participate in our study ‘The Impact of Model Transformation Language

Capabilities on the Perception of Language Quality Properties‘ (see below for the URL). It
will only take about 20-25min to complete our online survey. We believe your answers can
provide meaningful insights and help drive the field further.

Our survey is based on a large-scale interview study that qualitatively assessed what the
community believes to be the main factors that drive the advantages and disadvantages of
Model TransformationLanguages formodel-to-model transformations.Our results have been
published in the Empirical Software Engineering journal https://doi.org/10.1007/s10664-
022-10194-7

Our survey now quantifies our results to provide a clear picture of which of our identified
factors are most important. The methodology for this survey has been peer reviewed at the
Registered Reports track at ESEM’22 and is available under https://doi.org/10.48550/arXiv.
2209.06570

The survey is available at
https://sp2.informatik.uni-ulm.de/limesurvey/index.php/112652?lang=en
It will be open till January 15, 2023.
All responses are completely anonymous.
Many thanks for supporting our research!
Best regards
Stefan Höppner

C Data Privacy Agreement

To invite people to participate in this survey, we used author information (first name, last
name and email address) from published academic papers in the domain of model driven
software engineering. We will delete your personal information 2 months after you received
the invitation.

The participation in this online survey is anonymous. Your name and email address are
only used to invite you.

For future publications, we will publish and further process the anonymous raw data
collected in this survey. This includes aggregating and statistical analysis of answers provided
by participants. We will perform this in a way that does not allow inferring the identity of
individual participants (e.g., by stripping free text answers of information that could identify
a participant). Contact Information

If you have any questions about this survey or the data you provided, please contact us:
Stefan Höppner

stefan.hoeppner@uni-ulm.de
Institute of Software Engineering and Programming Languages,
Ulm University,
James-Franck-Ring, 89069 Ulm, Germany

Funding Open Access funding enabled and organized by Projekt DEAL.

123

Page 51 of 55 52

https://doi.org/10.1007/s10664-022-10194-7
https://doi.org/10.1007/s10664-022-10194-7
https://doi.org/10.48550/arXiv.2209.06570
https://doi.org/10.48550/arXiv.2209.06570
https://sp2.informatik.uni-ulm.de/limesurvey/index.php/112652?lang=en

Empirical Software Engineering (2024) 29:52

Declarations

Conflicts of interest The authors have no competing interests to declare that are relevant to the content of this
article.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Anastasakis K, Bordbar B, Georg G, Ray I (2007) UML2Alloy: A Challenging Model Transformation. In:
BerlinWeil F (ed) EngelsG,OpdykeB, SchmidtDC.ModelDrivenEngineeringLanguages andSystems.
Springer, Berlin Heidelberg, pp 436–450 (ISBN:978-3-540-75209-7)

Anjorin A, Buchmann T, Westfechtel B(2017) The Families to Persons Case. In: TTC’17
Arendt T, Biermann E, Jurack S, Krause C, Taentzer G (2010) Henshin: advanced concepts and tools for

in-place EMF model transformations. In: Model driven engineering languages and systems. MODELS
2010. https://doi.org/10.1007/978-3-642-16145-2_9

Baker P, Loh S,Weil F (2005)Model-Driven Engineering in a Large Industrial Context –Motorola Case Study.
In: Briand L, Williams C (eds) Model driven engineering languages and systems. Berlin, Heidelberg:
Springer , pp. 476–491

Balogh A, Varró D (2006) Advanced model transformation language constructs in the VIATRA2 framework.
In: Proceedings of the 2006 ACM symposium on applied computing. SAC ’06. https://doi.org/10.1145/
1141277.1141575

Benelallam A, Gómez A, Tisi M, Cabot J (2015) Distributed model-to-model transformation with ATL on
MapReduce. In: Proceedings of the 2015 ACMSIGPLAN international conference on software language
engineering, pp. 37–48

Bézivin J (2004) In search of a basic principle for model driven engineering. In: Novatica Journal, Special
Issue 5.2, pp. 21–24

Biermann E, Ermel C, Taentzer G (2010) Lifting parallel graph transformation concepts to model transforma-
tion based on the eclipse modeling framework. In: Electronic communications of the EASST 26

Brambilla M, Cabot J, Wimmer M (2017) Model-Driven Software Engineering in Practice. Springer Interna-
tional Publishing. https://doi.org/10.1007/978-3-031-02549-5

Brown AW, Conallen J, Tropeano D (2005) Introduction: models, modeling, and model-driven architec-
ture (mda). In: Model-Driven software development. Springer, pp. 1–16. https://doi.org/10.1007/3-540-
28554-7_1

Buckler F, Hennig-Thurau T (2008) Identifying hidden structures in marketing’s structural models through
universal structure modeling. In: Marketing ZFP 30.JRM 2, pp. 47–66

Cabot LBJ, Gérard S (2019) The future of model transformation languages: an open community discussion.
In: Journal of object technology. https://doi.org/10.5381/jot.2019.18.3.a7

Chechik M, Famelis M, Salay R, Strüber D (2016) Perspectives of Model Transformation Reuse. In: Ábrahám
E, Huisman M (eds) Integrated Formal Methods. Springer International Publishing, Cham, pp 28–44

Cuadrado JS, Molina JG, Tortosa MM (2006) RubyTL: A Practical, Extensible Transformation Language. In:
Model Driven Architecture - Foundations and Applications. ECMDA-FA 2006. https://doi.org/10.1007/
11787044_13

Czarnecki K, Helsen S (2006) Feature-based survey of model transformation approaches. In: IBM Systems
Journal. https://doi.org/10.1147/sj.453.0621

Evora J, Hernandez JJ, Hernandez M (2014) Advantages of model driven engineering for studying complex
systems. In: Natural computing 14.1, pp. 129–144. https://doi.org/10.1007/s11047-014-9469-y

Fowler M (2011) Domain-specific languages. Addison-Wesley, p. 597
Fuchs C, Diamantopoulos A (2009) Using single-item measures for construct measurement in management

research: Conceptual issues and application guidelines. In: Die Betriebswirtschaft 69.2, p. 195

123

52 Page 52 of 55

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-642-16145-2_9
https://doi.org/10.1145/1141277.1141575
https://doi.org/10.1145/1141277.1141575
https://doi.org/10.1007/978-3-031-02549-5
https://doi.org/10.1007/3-540-28554-7_1
https://doi.org/10.1007/3-540-28554-7_1
https://doi.org/10.5381/jot.2019.18.3.a7
https://doi.org/10.1007/11787044_13
https://doi.org/10.1007/11787044_13
https://doi.org/10.1147/sj.453.0621
https://doi.org/10.1007/s11047-014-9469-y

Empirical Software Engineering (2024) 29:52

George L, Wider A, Scheidgen M (2012) Type-safe model transformation languages as internal DSLs in
scala. In: Theory and practice of model transformations. ICMT 2012. https://doi.org/10.1007/978-3-
642-30476-7_11

Gerpheide CM, Schiffelers RRH, Serebrenik A (2016) Assessing and improving quality of QVTo model
transformations. In: Software quality journal 24.3, pp. 797–834. https://doi.org/10.1007/s11219-015-
9280-8. ISSN: 1573-1367

Götz S, Tichy M (2020) Investigating the origins of complexity and expressiveness in ATL transformations.
In: J Object Technol 19.2, pp. 12–1

GraziotinD, Lenberg P, Feldt R,Wagner S (2021) Psychometrics in behavioral software engineering: amethod-
ological introductionwith guidelines”. In:ACMTransSoftwEngMethodol 31.1. https://doi.org/10.1145/
3469888

Groner R, Juhnke K, Götz S, Tichy M, Becker S, Vijayshree V, Frank S (2021) A survey on the
relevance of the performance of model transformations. In: J Object Technol 20.2. OPEN REGU-
LAR ISSUE, 2:1–27.https://doi.org/10.5381/jot.2021.20.2.a5. http://www.jot.fm/contents/issue_2021_
02/article5.html. ISSN:1660-1769

Götz S, TichyM, Groner R (2021) Claimed advantages and disadvantages of (dedicated) model transformation
languages: a systematic literature review. In: Software and systems modeling 20.2, pp. 469–503. https://
doi.org/10.1007/s10270-020-00815-4

Hebig R, Seidl C, Berger T, Pedersen JK, Wasowski A (2018) Model transformation languages under a
magnifying glass: a controlled experiment with Xtend, ATL, and QVT”. In: Proceedings of the 2018 26th
ACM joint meeting on european software engineering conference and symposium on the Foundations of
Software Engineering. ESEC/FSE 2018. https://doi.org/10.1145/3236024.3236046

Hermans F, Pinzger M, van Deursen A (2009) Domain-specific languages in practice: a user study on the
success factors”. In: Model driven engineering languages and systems. MODELS 2009. ISBN: 978-3-
642-04425-0. https://doi.org/10.1007/978-3-642-04425-0_33

Hinkel G (2016) NMF: A Modeling Framework for the. NET Platform, KIT
Hinkel G, Burger E (2019) Change propagation and bidirectionality in internal transformation DSLs. In:

Software & systems modeling. https://doi.org/10.1007/s10270-017-0617-6
Horn T (2013) Model querying with FunnyQT. In: Duddy K, Kappel G (eds) Theory and Practice of Model

Transformations. Springer Berlin, Heidelberg, pp. 56–57. ISBN: 978-3-642-38883-5
Höppner S, Haas Y, Tichy M, Juhnke K (2022) Advantages and disadvantages of (dedicated) model trans-

formation languages. In: Empirical Software Engineering 27.6, p. 159. https://doi.org/10.1007/s10664-
022-10194-7. ISSN: 1573-7616

Höppner S, Kehrer T, Tichy M (2021) Contrasting dedicated model transformation languages versus general
purpose languages: a historical perspective onATLversus Java based on complexity and size. In: Software
and systems modeling. https://doi.org/10.1007/s10270-021-00937-3. ISSN: 1619-1374

Höppner S, Tichy M (2022) The impact of model transformation language features on quality properties of
MTLs: a study protocol. https://doi.org/10.48550/ARXIV.2209.06570

Höppner S, Tichy M (2023) The impact of model transformation language capabilities on the perception of
language quality properties: survey overview”. en. In: https://doi.org/10.18725/OPARU-50274

Hutchinson J, RouncefieldM,Whittle J (2011).Model-driven engineering practices in industry. In: Proceedings
of the 33rd international conference on software engineering. ICSE ’11. Waikiki Honolulu HI, USA:
Association for Computing Machinery, 633–642. . https://doi.org/10.1145/1985793.1985882. ISBN:
9781450304450

Hutchinson J, Whittle J, Rouncefield M (2014) Model-driven engineering practices in industry: social, organi-
zational and managerial factors that lead to success or failure. In: Science of computer programming 89.
Special issue on success stories inmodel driven engineering, pp. 144–161. https://doi.org/10.1016/j.scico.
2013.03.017. https://www.sciencedirect.com/science/article/pii/S0167642313000786. issn: 0167-6423

Hutchinson J, Whittle J, Rouncefield M, Kristoffersen S (2011) Empirical assessment of MDE in industry. In:
Proceedings of the 33rd international conference on software engineering. ICSE ’11. https://doi.org/10.
1145/1985793.1985858

Jakumeit E et al (2014) A survey and comparison of transformation tools based on the transformation tool
contest. In: Science of computer programming. https://doi.org/10.1016/j.scico.2013.10.009

Johannes J, Zschaler S, Fernández MA, Castillo A, Kolovos DS, Paige RF (2009) Abstracting complex lan-
guages through transformation and composition. In: Model driven engineering languages and systems.
MODELS 2009. https://doi.org/10.1007/978-3-642-04425-0_41

Jouault F, Allilaire F, Bézivin J, Kurtev I, Valduriez P (2006) ATL: a QVT-like transformation language. In:
Companion to the 21stACMSIGPLANsymposiumon object-oriented programming systems, languages,
and applications. OOPSLA ’06. https://doi.org/10.1145/1176617.1176691

123

Page 53 of 55 52

https://doi.org/10.1007/978-3-642-30476-7_11
https://doi.org/10.1007/978-3-642-30476-7_11
https://doi.org/10.1007/s11219-015-9280-8
https://doi.org/10.1007/s11219-015-9280-8
https://doi.org/10.1145/3469888
https://doi.org/10.1145/3469888
https://doi.org/10.5381/jot.2021.20.2.a5
http://www.jot.fm/contents/issue_2021_02/article5.html
http://www.jot.fm/contents/issue_2021_02/article5.html
https://doi.org/10.1007/s10270-020-00815-4
https://doi.org/10.1007/s10270-020-00815-4
https://doi.org/10.1145/3236024.3236046
https://doi.org/10.1007/978-3-642-04425-0_33
https://doi.org/10.1007/s10270-017-0617-6
https://doi.org/10.1007/s10664-022-10194-7
https://doi.org/10.1007/s10664-022-10194-7
https://doi.org/10.1007/s10270-021-00937-3
https://doi.org/10.48550/ARXIV.2209.06570
https://doi.org/10.18725/OPARU-50274
https://doi.org/10.1145/1985793.1985882
https://doi.org/10.1016/j.scico.2013.03.01
https://doi.org/10.1016/j.scico.2013.03.01
https://www.sciencedirect.com/science/article/pii/S0167642313000786
https://doi.org/10.1145/1985793.1985858
https://doi.org/10.1145/1985793.1985858
https://doi.org/10.1016/j.scico.2013.10.009
https://doi.org/10.1007/978-3-642-04425-0_41
https://doi.org/10.1145/1176617.1176691

Empirical Software Engineering (2024) 29:52

Kahani N, Bagherzadeh M, Cordy JR, Dingel J, Varró D (2019) Survey and classification of model transfor-
mation tools. In: Software & systems modeling. https://doi.org/10.1007/s10270-018-0665-6

Kernighan BW, Pike R (1984) The Unix Programming Environment. Prentice Hall, Inc. ISBN: 0-13-937699-2
Ko J-W, Chung K-Y, Han J-S (2015) Model transformation verification using similarity and graph comparison

algorithm. In: Multimedia tools and applications 74.20, pp. 8907–8920. https://doi.org/10.1007/s11042-
013-1581-y. ISSN: 1573-7721

Kolovos DS, Paige RF, Polack FAC (2008) The epsilon transformation language. In: Theory and practice of
model transformations. ICMT 2008. https://doi.org/10.1007/978-3-540-69927-9_4

Kramer ME, Hinkel G, Klare H, Langhammer M, Burger E (2016) Controlled experiment template for eval-
uating the understandability of model transformation languages. In: Goulao M (ed) 2nd International
workshop on human factors in modeling, HuFaMo 2016; Saint Malo; France;4 October 2016 through.
vol. 1805. CEUR Workshop Proceedings, CEUR Workshop Proceedings, pp. 11–18

Kuckartz U (2014) Qualitative text analysis: a guide to methods, practice and using software. Sage. ISBN:
978-1-4462-6774-5

Kusel A, Schönböck J, Wimmer M, Kappel G, Retschitzegger W, Schwinger W (2015) Reuse in model-to-
model transformation languages: are we there yet? In: Software & systems modeling 14.2, pp. 537–572.
https://doi.org/10.1007/s10270-013-0343-7. ISSN: 1619-1374

Lano K, Clark T, Kolahdouz-Rahimi S (2015) A framework for model transformation verification. In: Formal
aspects of computing 27.1, pp. 193–235

Liebel G, Marko N, Tichy M, Leitner A,Hansson J (2016) Model-based engineering in the embedded systems
domain: an industrial survey on the state-of-practice. In: Software & systems modeling 17.1, pp. 91–113.
https://doi.org/10.1007/s10270-016-0523-3

Mens T, Gorp PV 2006) A taxonomy of model transformation. In: Electronic notes in theoretical computer
science (GraMoT 2005). https://doi.org/10.1016/j.entcs.2005.10.021

Metzger A (2005) A systematic look at model transformations. In: Model-driven software development.
Springer, pp. 19–33. https://doi.org/10.1007/3-540-28554-7_2

Mohagheghi P, DehlenV (2008)Where Is the Proof? - AReview of Experiences fromApplyingMDE in Indus-
try. In: Schieferdecker I, Hartman A (eds) Model Driven Architecture – Foundations and Applications.
Springer, Berlin, Heidelberg, pp 342–443

Mohagheghi P, Gilani W, Stefanescu A, Fernandez MA (2013a) An empirical study of the state of the practice
and acceptance of model-driven engineering in four industrial cases. In: Empirical software engineering.
https://doi.org/10.1007/s10664-012-9196-x

Mohagheghi P, GilaniW, StefanescuA, FernandezMA,NordmoenB, FritzscheM (2013b)Where doesmodel-
driven engineering help? Experiences from three industrial cases. In: Software & systems modeling 12.3,
pp 619–639. https://doi.org/10.1007/s10270-011-0219-7. ISSN:1619-1374

Mooney CZ, Mooney CF, Mooney CL, Duval RD, Duvall R (1993) Bootstrapping: A nonparametric approach
to statistical inference. 95. sage

OMG (2002) Meta Object Facility(MOF)
OMG (2014) Object Constraint Language (OCL). https://www.omg.org/spec/OCL/2.4/PDF
OMG (2016) Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification.

urlhttps://www.omg.org/spec/QVT/About-QVT/
Raggett D, Le Hors A, Jacobs I et al (1999) HTML 4.01 Specification. In: W3C recommendation
SAEMobilus (2004) Architecture Analysis and Design Language (AADL)
Sanchez Cuadrado J, Burgueno L, Wimmer M, Vallecillo A (2020) Efficient execution of ATL model transfor-

mations using static analysis and parallelism. In: IEEE Transactions on software engineering, pp. 1–1.
https://doi.org/10.1109/TSE.2020.3011388

Schmidt D (2006a) Guest Editor’s Introduction: Model-Driven Engineering. In: Computer-IEEE Computer
Society. https://doi.org/10.1109/MC.2006.58

Schmidt D (2006b) Guest editor’s introduction: model-driven engineering. In: Computer - IEEE Computer
Society. https://doi.org/10.1109/MC.2006.58

Selic B (2003) The pragmatics of model-driven development. In: IEEE Software 20.5, pp.19–25. https://doi.
org/10.1109/MS.2003.1231146

Sendall S, Kozaczynski W (2003) Model transformation: the heart and soul of model-driven software devel-
opment. In: IEEE Software. https://doi.org/10.1109/MS.2003.1231150

Sprinkle J, Mernik M, Tolvanen J, Spinellis D (2009) Guest Editors’ introduction: what kinds of nails need a
domain-specific hammer? In: IEEE Software 26.4, pp. 15–18. https://doi.org/10.1109/MS.2009.92

Stachowiak H (1973) Allgemeine Modelltheorie. Springer. isbn: ISBN 3-211-81106-0
StaronM (2006) Adopting model driven software development in industry – a case study at two companies. In:

Model driven engineering languages and systems. MODELS 2006. https://doi.org/10.1007/11880240_5

123

52 Page 54 of 55

https://doi.org/10.1007/s10270-018-0665-6
https://doi.org/10.1007/s11042-013-1581-y
https://doi.org/10.1007/s11042-013-1581-y
https://doi.org/10.1007/978-3-540-69927-9_4
https://doi.org/10.1007/s10270-013-0343-7
https://doi.org/10.1007/s10270-016-0523-3
https://doi.org/10.1016/j.entcs.2005.10.021
https://doi.org/10.1007/3-540-28554-7_2
https://doi.org/10.1007/s10664-012-9196-x
https://doi.org/10.1007/s10270-011-0219-7
https://www.omg.org/spec/OCL/2.4/PDF
https://doi.org/10.1109/TSE.2020.3011388
https://doi.org/10.1109/MC.2006.58
https://doi.org/10.1109/MC.2006.58
https://doi.org/10.1109/MS.2003.1231146
https://doi.org/10.1109/MS.2003.1231146
https://doi.org/10.1109/MS.2003.1231150
https://doi.org/10.1109/MS.2009.92
https://doi.org/10.1007/11880240_5

Empirical Software Engineering (2024) 29:52

Steinberg D, Budinsky F, Merks E, Paternostro M (2008). EMF: eclipse modeling framework. Pearson Edu-
cation

Strüber D, Anjorin A (2016) Comparing reuse mechanisms for model transformation languages: design for
an empirical study. In: HuFaMo@ MoDELS. Citeseer, pp. 27–32

Tehrani SY, Zschaler S, Lano K (2016) Requirements engineering in model-transformation development: An
interview-based study. In: International conference on theory and practice of model transformations.
Springer, pp 123–137. https://doi.org/10.1007/978-3-319-42064-6_9

Van Deursen A, Klint P (2002) Domain-specific language design requires feature descriptions. In: Journal of
computing and information technology. https://doi.org/10.2498/cit.2002.01.01

Weiber R, Mühlhaus D (2021) Strukturgleichungsmodellierung: Eine anwendungsorientierte Einführung in
die Kausalanalyse mit Hilfe von AMOS, SmartPLS und SPSS. 3rd ed. Springer-Verlag. https://doi.org/
10.1007/978-3-658-32660-9

Whittle J, Hutchinson J, Rouncefield M, Burden H, Heldal R (2013) Industrial adoption of model-driven
engineering: are the tools really the problem? In: Model-driven engineering languages and systems.
MODELS 2013. https://doi.org/10.1007/978-3-642-41533-3_1

Wilke CO (2019) Fundamentals of data visualization: a primer on making informative and compelling figures.
O’Reilly Media. isbn: 978-1492031086

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Authors and Affiliations

Stefan Höppner1 ·Matthias Tichy1

Matthias Tichy
matthias.tichy@uni-ulm.de

1 Ulm University, James-Franck-Ring 1, 89081 Ulm, Germany

123

Page 55 of 55 52

https://doi.org/10.1007/978-3-319-42064-6_9
https://doi.org/10.2498/cit.2002.01.01
https://doi.org/10.1007/978-3-658-32660-9
https://doi.org/10.1007/978-3-658-32660-9
https://doi.org/10.1007/978-3-642-41533-3_1
http://orcid.org/0000-0001-7028-131X

	Traceability and reuse mechanisms, the most important properties of model transformation languages
	Abstract
	1 Introduction
	2 Background
	2.1 Models & Model-driven Engineering
	2.2 Domain-specific Languages
	2.3 Model Transformation Concepts and Languages
	2.3.1 External and Internal Transformation Languages
	2.3.2 Transformation Rules
	2.3.3 Rule Application Control: Location Determination
	2.3.4 Directionality
	2.3.5 Incrementality
	2.3.6 Tracing
	2.3.7 Dedicated Model Navigation Syntax

	2.4 MTL Quality Properties
	2.5 Structural Equation Modelling and (Universal) Structural Equation Modelling

	3 Methodology
	3.1 Survey Design
	3.1.1 Questionnaire
	3.1.2 Pilot Study
	3.1.3 Target Subjects & Distribution

	3.2 Data Analysis
	3.3 Privacy and Ethical Concerns

	4 Demographics
	4.1 Experience in Developing Model Transformations (ξ12)
	4.2 Languages Used for Developing Model Transformations (ξ10) and Experience Therein (ξ11)
	4.3 Sizes (ξ12,ξ14)
	4.4 Conceptual Distance Between Meta-models (ξ16)
	4.5 Meta-model Quality (ξ17)

	5 Results
	5.1 RQ1: Which of the Hypothesised Interdependencies Withstands a Test of Significance? & RQ4: What Additional Interdependencies Arise from the Analysis that were not Initially Hypothesised?
	5.2 RQ2: How Strong are the Influences of Model Transformation Language Capabilities on the Properties Thereof?
	5.3 RQ3: How Strong are Moderation Effects Expressed by the Contextual Factors Use-case, Skills & Experience and MTL Choice?
	5.4 Summary of Results

	6 Discussion
	6.1 Implications of Results
	6.1.1 Suggestions for Further Empirical Evaluation Studies
	6.1.2 Suggestions on Language Development
	6.1.3 Suggestions for Transformation Development

	6.2 Interesting Observations Outside of USM
	6.3 Critical Assessment of the Used Methodology

	7 Threats to Validity
	7.1 Internal Validity
	7.2 External Validity
	7.3 Construct Validity
	7.4 Conclusion Validity

	8 Related Work
	8.1 Studies on Model Driven Software Engineering
	8.2 Studies on the Properties of Model Transformation Languages
	8.3 Empirical Studies on Model Transformation Languages

	9 Conclusion
	Appendix
	A USM Results for Moderation Effects
	B Mail Templates
	C Data Privacy Agreement

	References

