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Abstract
Context The readability of source code is key for understanding and maintaining software
systems and tests. Although several studies investigate the readability of source code, there
is limited research specifically on the readability of test code and related influence factors.
Objective In this paper,we aim at investigating the factors that influence the readability of test
code from an academic perspective based on scientific literature sources and complemented
by practical views, as discussed in grey literature.
Methods First, we perform a SystematicMapping Study (SMS) with a focus on scientific lit-
erature. Second,we extend this study by reviewing grey literature sources for practical aspects
on test code readability and understandability. Finally, we conduct a controlled experiment
on the readability of a selected set of test cases to collect additional knowledge on influence
factors discussed in practice.
Results The result set of the SMS includes 19 primary studies from the scientific literature
for further analysis. The grey literature search reveals 62 sources for information on test
code readability. Based on an analysis of these sources, we identified a combined set of 14
factors that influence the readability of test code. 7 of these factors were found in scientific
and grey literature, while some factors were mainly discussed in academia (2) or industry
(5) with only limited overlap. The controlled experiment on practically relevant influence
factors showed that the investigated factors have a significant impact on readability for half
of the selected test cases.
Conclusion Our review of scientific and grey literature showed that test code readability is
of interest for academia and industry with a consensus on key influence factors. However, we
also found factors only discussed by practitioners. For some of these factors we were able to
confirm an impact on readability in a first experiment. Therefore, we see the need to bring
together academic and industry viewpoints to achieve a common view on the readability of
software test code.
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1 Introduction

Software Tests encode important knowledge about typical usage scenarios and inputs, corner
cases, exceptional situations as well as the intended output and behavior of the software
system. Consequently, test cases play an important role for assuring software quality and also
for the evolution of software systems as a knowledge source that supports communication in
the team and with customers Latorre (2014) and for specification and documentation (Ricca
et al. 2009). At the same time, the evolution of software systems requires that test cases are
frequently updated and extended, resulting in effort for corresponding test case evolution and
maintenance activities (Moonen et al. 2008; Zaidman et al. 2011).

Test Code Garousi and Felderer (2016), i.e., the form in which executable automated tests
are commonly available, is the basis for many downstream activities such as maintaining
and refactoring tests, locating faults, debugging, analyzing and comprehending test results,
repairing broken tests, or dealing with flakiness (Garousi and Felderer 2016). In all these
scenarios, developers and testers have to repeatedly read and understand test code – a usually
time-consuming manual task, which makes readability and understandability critical factors
when it comes to the quality of a project’s test cases (Kochhar et al. 2019; Setiani et al.
2021a).

Readability as well as legibility and understandability of source code have already been
subject to a series of empirical studies,whichwere recently examined in a systematic literature
review by Oliveira et al. (2020). Test code has many properties in common with source code
of software programs, and tests are often written using the same programming languages
as the system under test. Nevertheless, the development of test code also shows significant
differences when compared to other code. There exist dedicated frameworks and patterns for
implementing test code (Meszaros 2007) and, furthermore, tools for generating tests (e.g.,
Evosuite, Randoop, IntelliTest) are becoming increasingly popular (Ramler et al. 2018).

In this paper, we focus on investigating the readability of software test code by com-
bining scientific and practical views.

In a first step, we build on a Systematic Mapping Study (SMS) approach (Petersen et al.
2015) to identify characteristics, influence factors, and assessment criteria that have an impact
on the readability of test code. In a second step, we complement the mapping study with grey
literature to include practical views. Based on identified influence factors, we conducted a
controlled experiment (Wohlin et al. 2012) to investigate the perception of readability and
understandability in academic environment.

In an initial mapping study (Winkler et al. 2021) we reviewed the scientific literature
dedicated to the readability of test code, exploring (a) the demographics of the body of
knowledge, (b) the characteristics of the studied test code, and (c) the factors that have shown
to impact readability. We analyzed 19 scientific studies filtered from several hundred search
results and identified a set of 9 influence factors that have been investigated in academic
work either individually or as part of comprehensive readability models. Our mapping study
covers the topic of test code readability specifically from the viewpoint of work published
in the scientific literature. However, test code readability is of high practical relevance and
the topic is therefore also frequently covered in magazine articles, books on testing, and
online blogs. These sources are typically referred to as grey literature (Garousi et al. 2019).
Based on previous work (Winkler et al. 2021), the goal of this work is to extend the topic
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by exploring test code readability in it’s entire scope by combining the scientific and the
practical viewpoint. We therefore conducted an additional grey literature survey to identify
influence factors commonly discussed in practice, we mapped the results to the findings from
the previous scientific literature study. Finally, we investigated the newly identified factors in
a controlled experiment (Wohlin et al. 2012) comparing the readability of different versions
of a selected set of test cases. The main contribution of the paper includes:

1. Identified influence factors for the readability of software test code based on a systematic
mapping study (SMS) as a combination of academic and practical views, derived from
academic and grey literature. Detailed analysis results are available online (Winkler et al.
2023)1.

2. Setup and results of a controlled experiment to investigate influence factors of a
selected set of test cases in an academic environment (Winkler et al. 2023).

Consequently, the remainder of this paper is structured as follows: Section 2 describes
background and related work on test code quality and code readability. Section 3 defines
our research questions, followed by three sections explaining the setup, process and results
of the systematic mapping study (Section 4), the grey literature survey (Section 5), and the
concluding experiment (Section 6) in context of the respective research questions. Finally,
Section 7 summarizes the finding, discusses implications for academia and practitioners and
limitations, and identifies future work.

2 Background

The readability of test code is associated to two areas of related research: First, the area of test
quality or, more specifically, the quality of code of automated tests (cf. Section 2.1). Second,
the related research on source code readability (cf. Section 2.2).

2.1 Software Test Code Quality

In context of software evolution and maintenance, changes made to the software due to bug
fixes, extensions, enhancements, and improvements, also require subsequent adaptations
of the corresponding tests (Yusifoğlu et al. 2015).Thereby, similar to code quality being
an important factor for supporting evolution and maintenance, test code quality is critical
for evolving and maintaining tests. Consequently, in test code engineering (Yusifoğlu et al.
2015), the two leading activities are quality assessment and co-maintenance of test-code with
production code.

Engineering test code, much like engineering production code, is a challenging process
and prone to all kinds of design and coding errors. Hence, test code also contains bugs, which
may either cause false alarms (i.e., a test fails although the production code is correct) or
whichmay cause “silent horrors" (i.e., a test passes although the production code is incorrect).
Both kind of bugs have been found to be prevalent in practice (Vahabzadeh et al. 2015). The
latter kind of bugs are also considered a result of “rotten green tests" (Delplanque et al. 2019),
which are tests that pass green but do so by inadequately validating the required properties
of the system under test.

Apart from bugs in tests, a widely reported problem related to test code quality are test
smells (Garousi and Küçük 2018; Spadini et al. 2018; Tufano et al. 2016). Test smells are the

1 Winkler et al. (2023): https://doi.org/10.48436/w4q8v-28695
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equivalent to code smells (Lacerda et al. 2020) (or anti-patterns) in production code,which are
symptoms of an underlying problem in the code (e.g., a design problem) that may not cause
the software to fail now but bears the risk of causing additional problems and actual bugs in
future. Hence, test smells can be considered as poorly-designed tests (similar to rotten green
tests) and their presence may negatively affect test suites with respect to the maintainability
and even the correctness of the tests (Bavota et al. 2015; Spadini et al. 2018). Although test
smells are a popular concept that is frequently investigated in scientific literature, a recent
study by Panichella et al. (2022) suggests a mismatch between the definition of test smells
and real problems in the tests. To tackle this mismatch they update definitions of test smells
and investigate issues which are currently not covered well by the existing smells.

Since the upcoming of test code generators like Evosuite, which aim to generate test suites
covering the whole system under test, there is a continuous discussion on improvements and
practical usefulness of these tools. For example McMinn et al. (2012) leverage web search
engines for generating test data of type String. This approach can improve the coverage of
the resulting test suites and the use ofmore realistic input strings could improve the readability
of the test code. Various studies (Fraser et al. 2013; Ceccato et al. 2015; Shamshiri et al. 2018)
investigate the usefulness of test code generators in debugging activities and also highlight
shortcomings of generated test code which relate to the high number of assertions, absence
of explanatory comments or documentation, quality of identifiers and in general unrealistic
test scenarios. Hence, similar to the quality of automatically generated code (Yetistiren et al.
2022; Al Madi 2022), the quality of generated test code is a critical aspect that requires
additional consideration and investigation.

2.2 Readability of Source Code

Reading and understanding source code is an elementary activity in software maintenance
and development (Minelli et al. 2015). Hence, code readability has been subject to a wealth of
empirical studies; e.g., Oliveira et al. (2020) examining 54 papers on code readability in their
literature review. In these studies, a wide range of different factors influencing readability
have been investigated, including code formatting and indentation, identifier naming, line
length, complexity of expressions, complexity of the control flow, use of code comments,
presence of code smells, and many others.

Buse and Weimer (2008) developed a model combining aforementioned factors to auto-
matically estimate code readability. They trained their model on small source code snippets
extracted from open-source projects and tagged as readable or non-readable by human anno-
tators. Following this approach, generalized and extended code readability models have been
developed in subsequent works, e.g., by Posnett et al. (2011) and Scalabrino et al. (2017).

Buse et al. define readability as “a human judgment of how easy a text is to under-
stand" (Buse and Weimer 2008). However, no generally accepted definition for the term
readability has been established in the literature and, thus, readability is often used in com-
bination with or as synonym for the related terms legibility and understandability. The term
legibility is rather related to the visual appearance of the source code affecting the ability
to identify individual elements (Oliveira et al. 2020), while the term understandability is
mainly related to semantic aspects of the code. Scalabrino et al. (2017) even developed a
model specifically dedicated to the understandability of source code, arguing that program
understanding is a non-trivial mental process that requires building high-level abstractions
from code to understand its purpose, relationships between code entities, and the latent
semantics, which all cannot be sufficiently captured by readability metrics alone.
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Fig. 1 Concept of readability as used in context of our study

Based on the terms and definitions commonly used in related work, we adopt a broader
view on the concept of readability embracing all three terms – readability, legibility and
understandability – in our work in context of test code readability. Hence, in the remainder
of this paper, we use the term readability subsuming all related notations since it is the most
commonly used term in the software engineering literature.

Figure 1 depicts this view and the distinction between factors (e.g., test case length)
influencing readability as well as upstream activities (e.g., test case maintenance) being
affected by readability. The underlying concept is related to activity-based quality modeling
as proposed in Quamoco approach (Wagner et al. 2015, 2012) and used, e.g., for modeling
maintainability (Deissenboeck et al. 2007) or requirements quality (Femmer et al. 2015).
Readability is described by more fine-grained factors that can be assessed (manually or
automatically) and it has an observable impact on the activities performed by stakeholders
related to a specific entity. In our context, the entity of interest is the test code, shown as a
subset of source code.

3 Research Questions

Based on the goal of this article to investigate the readability of software test code by combin-
ing scientific and practical views, we identified three groups of research questions, with focus
on (a) influence factors in academia, (b) influence factors in practice, and (c) an investigation
of combined influence factors on a selected set of test cases in a controlled experiment.

3.1 Influence Factors in Academia

Based on our previous work, an initial Systematic Mapping Study (SMS) Winkler et al.
(2021), we extended themapping study by introducing additional analysis criteria. Therefore,
we identified the first research question (RQ1) and two sub-research questions to (a) identify
influence factors (RQ1.1) and (b) to explore methods (RQ1.2) used in scientific studies. We
applied the Systematic Mapping Study (SMS) approach, proposed by Petersen et al. (2015).
Section 4 describes the research protocol and the results of the mapping study.

RQ1. Influence factors on test code readability in scientific literature?
RQ1.1 Which influence factors are analyzed in scientific literature?
RQ1.2 Which methods are used in scientific studies?
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3.2 Influence Factors in Practice

To systematically capture influence factors, discussed in industry and practice, we extended
and complemented themapping studies with grey literature. The results will show similarities
and differences of academia and industry in context of the readability of software test code.
For investigating grey literature,we followed the guidelines proposed byGarousi et al. (2019).
Section 5 presents the research protocol and the results.

RQ2. Influence factors on test code readability discussed in practice?
RQ2.1 Which influence factors are discussed in grey literature?
RQ2.2 What is the difference between influence factors in scientific literature and
grey literature?

3.3 Investigating Influence Factors in a Controlled Experiment

Based on identified factors, we conducted a controlled experiment in academic environment
to investigate the perception of readability and understandability of a selected set of test
cases (derived from open source projects). We build on the guidelines, proposed by Wohlin
et al. (2012) for planning, executing, and reporting on the controlled experiment. Section 6
presents the experiment setup and reports on the results.

RQ3. What is the influence on the test code readability of discussed factors?
RQ3.1 Do factors discussed in practice show an influence on readability when

scientific methods are used?

4 Systematic Mapping Study

To investigate the Influence Factors on Readability in Scientific Literature, we conducted a
Systematic Mapping Study (SMS) based on Petersen et al. (2015).

In this section, we summarize the study protocol and the results from the systematic
mapping study (SMS) (Winkler et al. 2023). We present influence factors and study types
with focus on research methods used.

4.1 Study Protocol and Process

This section summarizes the study protocol with focus on the systematic mapping study of
scientific publications.

An integral part of systematic mapping studies as proposed by Petersen et al. (2015) is
the thorough documentation of the process to make the results traceable. Figure 2 provides
an overview of the whole process. After the initial search (Step 1) and filtering (Step 2), we
apply back- and forward snowballing (Step 3) and filter (Step 4) to obtain our final set of
studies. We repeat the steps 3 and 4, the back- and forward snowballing, until exhaustion,
i.e., they add no new relevant studies to the result set. In our case, no additional publications
were identified in the second iteration. The following subsections provide details on each of
these steps.
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Fig. 2 Systematic mapping study process and amount of received publications

Step 1: Apply Search Based on the research questions (cf. Section3, RQ1), we defined the
following keywords: test, code, model, readability, understandability, legibility and smell.
We used them to build the Search Strings shown in Table 1. The queries were performed
on established sources for scientific literature, i.e., Scopus, IEEE and ACM, and we filtered
the studies based on title, abstract and keywords. In the ACM search we enclosed the term
“understandability" in double quotes in the abstract filter to enforce exact matching, because
ACM’s fuzzy matching leads to a high number of irrelevant results. For ACM we searched
in the ACM Guide to Computing Literature which offers a larger search space than the
ACM Full-Text Collection. The search was conducted at the end of November 2021 without
limiting the publication year and returned a total of 1232 raw results (Scopus: 460, IEEE:
231, ACM:541). Based on the merged results, we proceeded to the next step.

Step 2: Deduplicate & Filter Results We first deduplicated the raw results based on the
digital object identifier (DOI) and title, which removed 281 studies. Next, we imported the
result set into a spreadsheet solution for applying inclusion and exclusion criteria.

Inclusion Criteria. We included a study if both of the following criteria were fulfilled:

– Conference papers, journal/magazine articles, or PhD theses (returned by ACM)
– Readability, understandability or legibility of test code is an object of the study

Exclusion Criteria.We excluded a study if one of the following criteria is applicable:

Table 1 Search strings in different databases

Database Search string

Scopus SUBJAREA (COMP) TITLE-ABS-KEY(((code) AND (test* OR model) AND (readability
OR understandability OR legibility)) OR ((“test” OR “code”) AND (smell) AND (readab* OR
understandab* OR legib*)))

IEEE ((“All Metadata”: code) AND (“All Metadata”: test* OR “All Metadata”: model) AND (“All
Metadata”: readability OR “All Metadata”: understandability OR “All Metadata”: legibility))
((“All Metadata”: “test” OR “All Metadata”: “code”) AND (“All Metadata”: smell) AND (“All
Metadata”: readab* OR “All Metadata”: understandab* OR “All Metadata”: legib*))

ACM ((Title:(code) AND Title:(test* model) AND Title:(readability understandability legibility))
OR (Keyword:(code)ANDKeyword:(test*model) ANDKeyword:(readability understandabil-
ity legibility)) OR (Abstract:(code) AND Abstract:(test* model) AND Abstract:(readability
“understandability” legibility))) OR ((Abstract:(“test” “code”) AND Abstract:(smell) AND
Abstract:(readab*understandab* legib*))OR (Keyword:(“test” “code”)ANDKeyword:(smell)
AND Keyword:(readab* understandab* legib*)) OR (Title:(“test” “code”) AND Title:(smell)
AND Title:(readab* understandab* legib*)))
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– Not written in English
– Conference summaries, talks, books, master thesis
– Duplicate or superseded studies
– Studies not identifying factors that influence test code readability

The criteria were evaluated based on title and abstract of the results by at least one of the
authors. When in doubt about including or excluding, the evaluated study was discussed with
a second evaluator. This step left us with 11 scientific publications.
Backward & Forward Snowballing - First Iteration Based on the initial iteration, we
executed backward & forward snowballing to identify relevant studies that have not been
identified in the initial search.

– Step 3: Backward & Forward Snowballing. Since relevant literature might refer to
further important studies, we used the references included in the 11 studies for backward
snowballing via Scopus. The 11 studies might also be cited by other relevant studies,
hence we also performed forward snowballing, by using Scopus to find studies, which
cite one of the initial 11 studies. This increased the result set by 330 from backward
snowballing and 174 from forward snowballing to a total of 515 studies.

– Step 4: Deduplicate & Filter Results. By comparing these 515 studies with the initial
result set we found and removed 83 duplicates. Similar to step 2, one of the authors of this
paper applied the inclusion and exclusion criteria. Additionally, after a full text reading,
all studies were discussed and reevaluated by the author team. With this, we reduced the
result set by 496 and obtained a final result of 19 studies.

Backward & Forward Snowballing - Second Iteration We performed a second iteration of
back- and forward snowballing via Scopus with these 19 studies as input. This returned a
raw result of 825, which we reduced to 357 studies by removing duplicates. We applied in-
and exclusion criteria on the remaining studies, which removed all 357 studies. Therefore,
this second iteration did not add any new relevant studies to the results set of 19 studies.

Studies Not Included In the following, we provide four exemplary cases filtered out in
step 2 and the rationale why these studies did not meet the criteria for inclusion in the final
publication set after discussion by all authors: Grano et al. (2020) focus on semi-structured
interviews with five developers from industry and a confirmatory online survey to synthesize
which factors matter for test code quality. Although readability is seen as a critical factor by
all participants, the analysis of readability and influencing factors was not in the scope of
this work. Tran et al. (2019) investigated general factors for test quality by interviewing 6
developers from a company. Quality factors are discussed with natural language tests brought
by the participants. Since our work has its specific focus on test code, readability of natural
language tests was not considered further. Bavota et al. (2015) report on four lab experiments
with an overall number of 49 students and 12 practitioners and effects on maintenance tasks
fromeight test smells. These test smells occur frequently in software systems.While thiswork
clearly shows that test smells negatively affect correctness and effort for specificmaintenance
tasks, a connection between test smells and readability is not shown. Deiß (2008) reports
on a case study about semi-automatic conversion and refactoring of a TTCN-2 test suite
to TTCN-3. Discussed improvements included reducing complicated or unnecessary code
artifacts generated by the automatic conversions that are also supposed to increase readability.
We excluded this study since the focus was the migration from TTCN-2 to TTCN-3 and the
study did not investigate the improvements on the readability of test code.
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Table 2 Final set of publications based on the search process

Idx Title Authors Venue Year Study Type

[A17] Developer’s Perspectives
on Unit Test Cases Under-
standability

Setiani N. et al. ICSESS 2021 Experiment + Sur-
vey (hum)

[A16] DeepTC-Enhancer:
Improving the Read-
ability of Automatically
Generated Tests

Roy D. et al. ASE 2020 Experiment + Sur-
vey (hum)

[A18] Test case understandabil-
ity model

Setiani N. et al. IEEE Access 2020 Experiment (hum)

[A13] On the quality of identi-
fiers in test code

Lin B. et al. SCAM 2019 Survey (hum)

[A3] What Factors Make SQL
Test Cases Understand-
able for Testers? AHuman
Study of Automated Test
Data Generation Tech-
niques

Alsharif A. et al. ICSME 2019 Experiment + Sur-
vey (hum)

[A10] Fluent vs basic asser-
tions in Java: An empirical
study

Leotta M. et al. QUATIC 2018 Experiment (hum)

[A9] An empirical investiga-
tion on the readability of
manual and generated test
cases

Grano G. et al. ICPC 2018 Experiment

[A12] Aiding comprehension
of unit test cases and test
suites with stereotype-
based tagging

Li B. et al. ICPC 2018 Experiment + User
Study (hum)

[A7] Specification-Based test-
ing in software engineer-
ing courses

Fisher G. and Johnson C. SIGCSE 2018 Experiment + Sur-
vey (hum)

[A2] An industrial evaluation of
unit test generation: Find-
ing real faults in a financial
application

Almasi M. et al. ICSE-SEIP 2017 Experiment + Sur-
vey (hum)

[A6] Generating unit tests
with descriptive names
or: Would you name
your children thing1 and
thing2?

Daka E. et al. ISSTA 2017 Experiment + Sur-
vey (hum)

[A4] How Good Are My Tests? Bowes D. et al. WETSoM 2017 Concept paper
(hum)

[A14] Automatic test case gen-
eration: What if test code
quality matters?

Palomba F. et al. ISSTA 2016 Experiment

[A11] Automatically Document-
ing Unit Test Cases

Li B. et al. ICST 2016 User study (hum)
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Table 2 continued

Idx Title Authors Venue Year Study Type

[A15] The impact of test case
summaries on bug fixing
performance: An empiri-
cal investigation

Panichella S. et al. ICSE 2016 Experiment (hum)

[A19] Towards automatically
generating descriptive
names for unit tests

Zhang B. et al. ASE 2016 Prototype and User
Study (hum)

[A5] Modeling readability to
improve unit tests

Daka E. et al. ESEC/FSE 2015 Experiment + Sur-
vey (hum)

[A1] Evolving readable string
test inputs using a natural
language model to reduce
human oracle cost

Afshan S. et al. ICST 2013 Experiment (hum)

[A8] Exploiting common object
usage in test case genera-
tion

Fraser G. and Zeller A. ICST 2011 Experiment

4.2 Systematic Mapping Study Results

This section summarizes the findings in context of influence factors on readability found in
scientific literature (Table 2).

4.2.1 Which influence factors are analyzed in scientific literature (RQ1.1)?

In RQ1, we explore the factors that have been found to impact readability of test code.
Influence factors have been derived by one of the authors based on the content of the paper.

Other authors and testing experts have reviewed the initially identified factors. Deviations
have been discussed by all authors to come to a consensus. Table 3 maps candidate factors
to the studies that investigate them. Two approaches of how influence factors are considered
in the primary studies can be distinguished. Studies either (a) investigate the impact of one
or more individual factors, often related to the attempt to improve readability with a specific
approach or tool, or (b) they target readability models constructed from a combination of
many factors. The majority of the primary studies (see Table 3a) consider individual factors.
Readability models were subject to study only in three instances (Table 3b), although such
models are commonly used in the general research on source code readability.

We identified a total of 9 unique influence factors in the scientific literature as shown in
Tables 3a and b. In the following, we briefly explain these factors. The number in brackets
shows the number of primary studies including the particular factor combining counts from
both tables.
Test names (6) The name of the test method or test case. Not only generated tests have poor
names but also names provided by humans often convey few useful information. Therefore,
several studies propose different solutions on automatic test renaming e.g., Zang et al. [A19]
Roy et al. [A16] or Daka et al. [A6]. In studies from e.g. Setiani et al. [A17], Bowes et al. [A4]
or Panichella et al. [A15] participants agree on the importance of test names for readability.
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Assertions (5) This factor relates to the amount of assertions in a test case as well as to
assertionmessages.Although assertions are an integral part of test codeDaka et al. [A5] report
minor influence on readability coming from the amount of assertions in a test. Nevertheless
the amount of assertions is still used in their readability model and also in the model from
Setiani et al. [A18]. In the survey from Setiani et al. [A17] assertions are mentioned to have
an influence, but other factors like naming are deemed more important. In Almasi et al. [A2]
developers issued concerns on generated assertions. Leotta et al. [A10] find no significant
effects on readability when AssertJ assertions are used instead of basic JUnit assertions,
although other positive effects could be observed.

Identifier names (5) Naming of variable names in test cases. Especially Lin et al. [A13]
investigate this factor thoroughly and also provide characteristics of good and bad identifier
names based on a survey. Roy et al. [A16] propose an automatic way for identifier renaming
in test cases. In studies from e.g. Setiani et al. [A17] and Bowes et al. [A4] participants
agree on the importance of identifier names for readability. Fisher and Johnson [A7] attribute
differences between generated and manually written tests to differences in naming.

Test structure (2+3) Structural features are found in studies investigating individual factors
(2 times) as well as in readability models (3 times). They include strucural features of test
methods like maximum line length, number of identifiers, length of identifiers, number of
control structures (e.g., branching as mentioned in Bowes et al. [A4], test length, etc. Partici-
pants in the study from Setiani et al. [A17] agree on the importance of the amount of lines of
code in the tests. These features are also used in combination by automatic readability raters,
e.g., from Daka et al. [A9], who propose a rater especially for test cases, Grano et al. [A9]
or Setiani et al. [A18].

Test data (4) Testers often have to evaluate data used in assertions to decide if a test has
truly failed or if there is a fault in the test. Afshan et al. [A1] investigates this topic and shows
that readable string test data helps humans predicting correct outcome. Alsharif et al. [A3]
and Almasi et al. [A2] highlight the importance of meaningful test data. Furthermore, in the
workshop study fromBowes et al. [A4] developers, amongst others, state thatmagic numbers
are detrimental to readability.

Test summaries (4) Documentation describing the whole test case support understanding
what the tests do, for example as Javadoc like in Roy et al. [A16] or Li et al. [A11] or
interleaved with test code like in Panichella et al. [A15]. Li et al. [A12] reduce the amount
of generated description, by only adding test stereotypes as tags.

Dependencies (3) The number of classes a single test case depends on, as proposed by
Fraser et al. [A8], or if a test is truly a unit test and therefore independent from other parts
of the system as reported by Setiani et al. [A17]. Test coupling and cohesion discussed by
Palomba et al. [A14] describe dependencies between tests and are included in this factor.

Comments (2) Single comments in test code providing useful information. According to
Fisher and Johnson [A7], one of the differences between their generated tests and human
tests is the lack of explanatory comments. In Setiani et al. [A17], survey participants also
mention comments being to some degree important to readability.
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Textual features (1) Textual features focus on natural language properties part of test cases
like consistency of identifiers or identifiers present in a dictionary. These features can be easily
computed and are therefore frequently used in readability models and automatic readability
raters like in Scalabrino et al. (2016).

RQ1.1 Findings. Which influence factors are analyzed in scientific literature? A total
of 9 influence factors have been found in the scientific literature, which can be grouped
into individual factors and readability models. The three most frequently mentioned
individual factors are test names, assertions, and identifier names. Readability models
combine several individual factors related to test structure or textual features.

4.2.2 Which research methods are used in scientific studies (RQ1.2)?

In RQ1.2, we give an overview on the study types and the usedmethods. This analysis is based
on the classification of established empirical research methods involving human participants
Wohlin et al. (2012). Although software tools for investigating the readability of software
code exist, the readability of software tests is not in the main focus of these approaches.

Concerning the utilized types shown in Table 2, most studies (15) report an experiment
which is combined with a survey in 7 studies. Human involvement is quite common, in 16
from 19 studies humans take part in experiments, surveys or play another role as participants
of the study. Next, we present details on the individual types of studies.
Experiment (15) 12 of 15 studies evaluate the effect of an approach with humans by either
asking participants to answer questions to a given test case or code snippet without knowing
the origin like in Roy et al. [A16] or Daka et al. [A6] or participants have to choose between
two versions (forced choice) like in Setiani et al. [A17] or Daka et al. [A5]. Alsharif et al. [A3]
enhance their experiment by letting some participants vocalize their thoughts while filling out
a questionnaire in a Think Aloud Study. Li et al. [A12] do not fit in this categorisation. They
use an indirect approach to measure the effect of generated tags by letting one group write
summaries of test caseswith andwithout treatment.Another group then rates these summaries
according to a scheme. The difference in the ratings shows the effect of the treatment. For
analysing the experiments results, eight from 15 studies use a form of the Wilcoxon test,
most commonly theWilcoxon rank sum test. Furthermore, these studies report the effect size
with the Vargha-Delaney ( Â12) statistic or Cliff’s Delta. Three of these studies also use the
Shapiro-Wilk test for normal distribution to decide if a parameterized test can be applied.
Alsharif et al. [A3] use a Fisher’s Exact test on their results. The remaining studies interpret
the results without statistical tests.

Survey (8) Five out of eight studies use online questionnaires, one uses an off-site question-
naire and for one study the kind of survey could not be extracted. In the surveys six out of
eight studies use Likert scales often for rating readability. Free text answers are also common
for optionally elaborating on a rating or as a mitigation against random readability ratings
like in Daka et al. [A6].

User study and Prototype (3) The three studies of these types use surveys with Likert scale
in Lin et al. [A13], forced choice questions with opportunity to elaborate on the rating in
Zhang et al. [A19] or a mixture of multiple- and binary-choice and open questions in Li et
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al. [A12]. Zhang et al. [A19] use the Wilcoxon test for comparing the results of a prototype
tool with other tools after a test on normality with the Shapiro-Wilk test.

Concept Paper (1) Bowes et al. [A4] brainstorm and discuss quality evaluation of soft-
ware tests with industry partners. Afterwards they merge the result with their own teaching
experience and relevant scientific literature and books on software testing.

RQ1.2 Findings. Which research methods are used in scientific studies? For gathering
humans opinion on readability online questionnaires with Likert scales and free text
answers are common. The dominant result analysis consists of a statistical analysis with
a Wilcoxon test after an optional test on normality with the Shapiro-Wilk test.

5 Grey Literature Review

In this section, we first describe the study protocol and process for the grey literature analysis
followed by presentation of the results including a discussion of the respective research
questions. The data set is available online (Winkler et al. 2023).

5.1 Study Protocol and Process

The process for conducting the review of grey literature (Fig. 3) is similar to the scientific
literature review, except that there is no backward snowballing. The guidelines and recom-
mendations by Garousi et al. (2019) were used as input for this part of our work. We decided
to add grey literature to this work, because testing is frequently performed by practition-
ers, and we assume that for them the internet is one of the first places used for information
gathering and sharing.
Step 1: Apply Search Based on the research questions and knowledge obtained from the
previous literature search we used the search strings “test code" readability and “test code"
understandability. We performed these queries separately on Google using a script for
extracting all results. The script mimics a search without being logged in with a Google
account. Therefore personalized search results should be reduced to some degree. In contrast
to Googles prediction of hundreds of thousands of results, it returned 146 results for "test

Fig. 3 Grey literature review process and amount of received grey sources
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code" readability, 101 for "test code" understandability and 167 for "test code" legibility
(total: 414) in mid-February 2022.

Step 2: Deduplicate & Filter Results We first deduplicate the results by comparing the
links which removed 18 sources. The result set was imported into a spreadsheet for applying
inclusion and exclusion criteria.

Inclusion Criteria. We included a study if the following criterion was fulfilled:

– Readability or understandability of test code is a relevant part of the source. This is the
case if the length of the content on readability is sufficient and if the source contains
concrete examples of factors influencing readability.

Exclusion Criteria.We excluded a study if one of following criteria applied:

– Not written in English
– Literature indexed by ACM, Scopus, IEEE
– Duplicates, videos, dead links

The criteria were evaluated based on the contents of the source. This step left us with 62
results ready for further analysis and extraction of influence factors.

Excluded Sources. Similar to the scientific literature search, we provide some examples
and rationale for sources that where excluded when applying the defined criteria: Source
Karhik 2 is a blog entry, which is relatively short and primarily lists features of AssertJ.
Although the entry mentions readability improvement by using AssertJ in one sentence, it
gives no explanation for this claim. Source Karlo Smid3 discusses the DRY-principle (don’t
repeat yourself) in context of unit testing. However, the blog entry is very short and primarily
references to another source already present in the result set [G59]. Although the collaborative
sourceOpenstack4 has a reasonable size and it also has a section on readability, the statements
are too generic and do not contain a concrete influence factor on readability. Finally there
are also many sources which are off-topic, e.g, because they discuss general code readability
or quality, they describe advantages of unit testing, or they are documentation pages of test
frameworks.

5.2 Grey Literature Analysis Results

In the following, we present the results from our further analysis of the grey literature sources
with regard to factors influencing readability, and we provide answers to the research ques-
tions RQ2.1 and RQ2.2.

Infuence factors. We identified 12 types of influence factors in the analysis of the gray
literature. The factors are related to test structures (Str), test names (TeN), assertions (Asse),
helper structures (Help), dependencies (Dep), identifier names (IdN), fixtures (Fix), DRY
principle (DRY), test data (TeD), comments (Com), domain specific language (DSL), and
parameterized test (Par). A detailed description of each factor is provided in Section 5.2.1.

The influence factors were extracted from the literature sources by one of the authors
by tagging each source with keywords, which are mentioned in the context of test code

2 Karhik, Use AssertJ to improve your test code readability ... - Upnxtblog, https://www.upnxtblog.com/
index.php/2018/04/25/use-assertj-to-improve-your-test-code-readability-maintenance-of-tests-easier/
3 Karlo Smid, Kill The Unit Test - Tentamen Software Testing Blog, https://blog.tentamen.eu/kill-the-unit-
test/
4 TestGuide - OpenStack wiki, https://wiki.openstack.org/wiki/TestGuide
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Fig. 4 Types of analyzed selected grey sources

readability. Keyword mentioned in a different context were not included. For example, in
[G49] the use of “helper methods" is only mentioned in context of easier maintenance,
therefore this appearance of the factor helper methods is not counted. The results were cross-
checked and discussed by the other authors of the study.

In our analysis, we also investigated what types of gray literature sources we analyzed,
when the literature sources mentioning the influence factors were published, and in context
of what programming languages readability was discussed.

Source types. Figure 4 shows the identified types of grey literature source. From the 62
sources around 75% (46 in total) are identified as blog entries of various sizes. A source is also
identified as a blog when there is no clear indication that an editorial team is involved. The
types of the remaining 16 sources are spread across 5 books, 5 other types (stackoverflow,
quora, wiki, cheatsheet, podcast), 3 magazines, 2 presentations (slide shows), and 1 Phd
thesis.

Factor across years. Figure 5 shows the factors investigated by the blogs across the
years. The bottom line Sources per year gives the number of sources in a particular year
which investigated the factors above. Apart from parameterized tests, which appeared only
seven times in the years 2020 and 2021 and in fewer sources in 2017 and 2018, there are no
obvious fluctuations in the distribution of factors. Table 4 shows the selected sources ordered
by years descending and the investigated factors in detail, where these effects are also visible.

Programming languages.Concerning programming languages, 19 sources mention Java
or use Java code snippets, C# appears in 10, Java Script in nine sources and, Ruby in three
sources. Kotlin and Python each appear in two sources, Scala, Typescript, C++ and Go are
mentioned in one source each. Some sources do not mention a certain programming language
or do not use code snippets, because they provide general best practices for testing. This is
in accordance with the findings of our previous SMS (Winkler et al. 2021), where Java is the
dominant language used in studies on test code readability.

5.2.1 Which influence factors are discussed in grey literature (RQ2.1)?

In the following, each of the 12 influence factors identified in the gray literature analysis is
described in detail. The number in brackets shows how many of the 62 reviewed literature
sources mention the factor. They range from 28 (45%) to 8 times (13%). Table 4 lists the
analyzed grey literature sources (rows) and shows in which of these sources the identified
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Fig. 5 Factors investigated by grey literature. The bottom row gives the total number of sources per year,
which may cover multiple factors

influence factors (columns) are mentioned. For the sake of completeness, the table shows all
14 influence factors identified in the scientific as well as in the gray literature search, which
includes two factors not mentioned in the gray literature.
Test structure (28) (Str): 23 out of 28 sources suggest the use of patterns like Arrange, Act,
Assert [G31],Given, When, Then [G18] or Build, Operate, Check [G54]. Two sources ([G35]
and [G25]) suggest to group similar test cases to see differences more quickly. Other sources
[G52][G22] suggest to watch out for “eye-jumps", e.g., a variable, which is initialized many
line breaks away from its usage. The absence of logic, shortness, and coherent formatting of
test cases is also mentioned by several authors.

Test names (26) (TeN): All sources suggest coherent naming of test cases and most
of them suggest a concrete naming pattern like givenFooWhenBarThenBaz [G3] or sub-
ject_scenario_outcome [G57]. Three sources ([G31], [G13] and [G28]), explicitly suggest
to use spaces in test names, which is a practice also shown by others in code examples, e.g.,
[G57] and [G5]. Long names are explicitly okay for two sources, since these methods are
not called in other parts of the code. Different opinions exist on the inclusion of the name of
the concrete tested method in the test name. [G20], [G34] and [G52] suggest to include the
method name in the test name. Other sources like [G41], [G11] and [G9] do not recommend
to include the method name, because if the method name changes the test name has to change
too. Instead the tested behavior should be described.
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Table 4 Factors influencing readability mapped to sources from the grey literature search

Str TeN Asse Help Dep IdN Fix DRY TeD Com DSL Par TS TF

[G28] • • • • • • • •

[G15] • • • • • • • •

[G61] • • • • • • •

[G31] • • • • • • •

[G3] • • • • • • •

[G52] • • • • • • •

[G34] • • • • • • •

[G43] • • • • • •

[G5] • • • • • •

[G25] • • • • • •

[G21] • • • • • •

[G1] • • • • •

[G47] • • • • •

[G18] • • • • •

[G11] • • • • •

[G62] • • • • •

[G20] • • • • •

[G35] • • • • •

[G4] • • • •

[G56] • • • •

[G57] • • • •

[G22] • • • •

[G8] • • • •

[G27] • • • •

[G19] • • • •

[G37] • • • •

[G17] • • • •

[G10] • • • •

[G9] • • • •

[G26] • • •

[G54] • • •

[G46] • • •

[G41] • • •

[G40] • • •

[G60] • • •

[G45] • • •

[G44] • •

[G39] • •

[G53] • •

[G58] • •
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Table 4 continued

Str TeN Asse Help Dep IdN Fix DRY TeD Com DSL Par TS TF

[G30] • •

[G12] • •

[G2] • •

[G24] • •

[G49] • •

[G7] • •

[G6] • •

[G16] • •

[G36] • •

[G23] • •

[G29] •

[G55] •

[G50] •

[G42] •

[G59] •

[G38] •

[G14] •

[G13] •

[G51] •

[G32] •

[G48] •

[G33] •

Total 28 26 24 23 19 17 17 16 15 14 8 8 − −
New factors identified in the gray literature are shown in purple. Str: structure, TeN: test names, Asse:
assertions, Help: helper structures, Dep: dependencies, IdN: identifier names, Fix: fixtures, DRY: DRY
principle, TeD: test data, Com: comments, DSL: domain specific language, Par: parameterized test, TS: test
summaries, TF: textual features

Assertions (24) (Asse): The use of appropriate assertions or custom assertions is suggested
in eleven sources, e.g., [G9] and [G3]. Nine sources mention assertion libraries like AssertJ
(Java) or FluentAssertions (C#) since they enable a more natural language style for asserting
properties and contain additional assertions for collection types [G50][G18]. Four sources
stress the importance of assertion messages for debugging. Concerning the amount of asser-
tions, the rule “one assertion per test” is mentioned by, e.g., [G31] and [G25].

Helper structures (23) (Help): 13 sources recommend helper methods in order to hide
(irrelevant) details like creating objects or asserting properties [G27][G19]. The Builder
Pattern (or similar patterns) are used by six sources for creating the objects under test, e.g.,
[G45][G61]. Inheritance of test classes is seen critically by some authors, e.g., [G53][G62].

Dependencies (19) (Dep): All 19 sources agree that one test should only test one function-
ality or behavior. This affects readability positively, because the test stays short and the test
name can bemore descriptive, since only one behavior has to be described. Four sources high-
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light to only assert properties which are absolutely necessary for the functionality described
by the test name and to resist the urge to check additional properties.

Identifier names (17) (IdN): While nine sources only give generic information (e.g. should
have meaningful or intention revealing names), other sources provide detailed recommenda-
tions suggesting, e.g., to either prefix variables with expected and actual [G28] or use names
like testee, expected, actual [G11].

Fixtures (17) (Fix): Although 15 of the 17 sources use fixtures, sometimes in combination
with setup methods, two sources [G62][G52] argue against the use of fixtures, because they
are not visible in the test itself and may contain important information. Similarly, [G28]
points out that moving reusable test data into a fixture forces the reader to jump between two
locations. Finally, [G21] suggests that fixtures should only be used for infrastructure and not
for the system under test, and [G15] recommends to use them only for properties which are
needed in every test case.

DRY principle (16) (DRY): In the sources which mention theDon’t Repeat Yourself (DRY)
principle, there is an agreement that strict adherence to this principle hides away informa-
tion important for understanding test cases. Others favour the Descriptive And Meaningful
Phrases (DAMP) principle [G11] or to find a balance between these principles. As a combi-
nation of both, two sources [G36][G53] suggest to clearly show what a test does (DAMP),
but to hide how it is done in a helper method (DRY).

Test data (15) (TeD): Five authors suggest to avoid literal test data (a.k.a. magic values),
instead local variables, constants or helper functions should be used to provide additional
information, e.g., [G37][G34]. However, [G28] argues that declaring local variables for this
purpose can quickly increase the test size and the mapping between variable and actual value
has to be kept in mind when reading the test. Similarly, [G15] states that using literal values
instead of variables sometimes improves readability. Finally, test data should be production-
like and simple, and one author also recommends to highlight important data.

Comments (14) (Com): Eleven sources use comments in their snippets or mention them
in the text to highlight Arrange, Act, Assert or similar structures. However, this is not a
strict rule for every author, e.g., source [G57] uses empty lines as an alternative or [G18]
mentions to use comments with respect to the capabilities of the testing framework. If the
framework already provides such structural hints then comments are unnecessary. Common
code comments are mentioned by three sources with the general advice to avoid them, e.g.,
[G25].

Domain specific language (8) (DSL): In order to make tests more readable also for non
programmers, some sources, e.g., [G38][G42], suggest using helper functions or Gherkin
(applied in Behavior Driven Testing with Cucumber) as domain specific languages. Such
languages describe the executed behavior in natural language and, thus, hide the execution
details.

Parameterized test (8) (Par): Eight sources suggest to use parameterized tests (aka data-
driven or table-driven tests) to reduce code duplication. This is also suggested by authors
who are not in strict favor of the DRY principle, e.g., [G28].

123

53   Page 20 of 48



Empirical Software Engineering (2024) 29:53

RQ2.1 Findings. Which influence factors are discussed in grey literature? A total
of 12 influence factors were found in the gray literature. They were mentioned from
28 to 8 times in the 62 analyzed sources. The five most often mentioned factors are
related to test structures (28), test names (26), assertions (24), helper methods (23), and
dependencies (19).

5.2.2 What is the difference between influence factors in scientific literature and grey
literature (RQ2.2)?

From the total 12 factors identified in the grey literature review, 7 were already known from
the scientific literature, while 5 factors were only found in the grey literature. These factors
are new and did not appear in our previous white literature studyWinkler et al. (2021). In the
scientific literature review we identified a total of 9 factors. It included two factors, which
werementioned only in the scientific literature but not in the gray literature. In the description
below, the numbers in the brackets (A vs B) indicate how often a factor was found in the
scientific literature versus in the grey literature.

However, even if factors have been found in both sources, the specific view on a factor
can sometimes vary between white and gray literature. For example, quantifiable structural
properties like line length or number of identifiers tend to be in the focus of scientific literature,
whereas grey literature sources focus more on the semantic structure, e.g., the Arrange-Act-
Assert pattern. Table 5 provides an overview of the differences identified in our analysis.
Test structure (5 vs 28) (Str): Literature published in academic context tends to focus more
on countable properties like maximum line length, amount of control structures, etc. (see,
e.g., Grano et al. [A9], Daka et al. [A5] or Setiani et al. [A18]). In contrast, the authors of grey
literature sources focus on a semantic form of structure like the AAA pattern, which is also
discussed in another study by Setiani et al. [A17]. They report moderate positive influence
on readability from this Arrange, Act, Assert structure.

Test names (6 vs 26) (TeN): Like in the grey literature, scientific literature also mentiones
the use of naming patterns, e.g., when test cases are renamed. Zhang et al. [A19] or Daka et
al. [A6] use testSubjectOutcomeScenario where “Subject” is the method under test, although
outcome and scenario can be left out. The approach by Roy et al. [A16] generates test names
with a machine learning model based on the body of the test. According to examples given
in the paper, this approach does not seem that it has to include the concrete method under
test in the name. In other studies, e.g., Panichella et al. [A15] or Setiani et al. [A18], survey
participants highlight the importance of meaningful test names.

Assertions (5 vs 24) (Asse): Some grey sources suggest to apply the “one assertion per test”
rule. However, there is little evidence in scientific literature about the effect of assertions on
readability. Setiani et al. [A17] report low influence from assertion messages on readability.
Furthermore, Setiani et al. [A17] andDaka et al. report negligible influence from the amount of
assertions. Studies like Bai et al. (2022) or Panichella et al. (2022) from the field of test smells
confirm the negligible importance of assertionmessages and the number of assertions. Almasi
et al. [A2] report concerns from developers about themeaningfulness of generated assertions.
Leotta et al. [A10] report no significant influence on test comprehension when AssertJ is
used instead of basic JUnit assertions. This contradicts the voices from grey literature, which
suggest to improve readability with fluent assertions.
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Table 5 Differences in influence factors between scientific and grey literature

Scientific Literature Grey Literature

Test structure (5 vs 28)

Identifier length, line length

Constructor calls

Number of identifiers

Control structure Control structure

Length of test case Length of test case

Avoid eye jumps

Group similar test cases

Coherent formatting

Semantic structure (AAA, GWT, etc.)

Test names (6 vs 26)

Use of patterns Use of patterns

Consistent naming

Long names, spaces in names

Include method under test in name

Assertions (5 vs 24)

Number of assertions One assert per test

Fluent assertions Fluent assertions

Assertion messages Assertion messages

Appropriate assertions

Custom assertions

Helper structures (0 vs 23)

Builder pattern

Composition over inheritance (of test classes)

Methods for each step (given when then)

Page Objects

Dependencies (3 vs 19)

One test for one behavior One test for one behavior

Identifier names (5 vs 17)

Consistent Consistent

Concise Concise

Meaningful Meaningful

Use patterns Use patterns

Fixtures (0 vs 17)

Use setup methods, avoid fixture

No test data in fixtures

Avoid long fixtures

DRY principle (0 vs 16)

Not too DRY, violate if needed

Balance of DRY and DAMP
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Table 5 continued

Scientific Literature Grey Literature

Test data (4 vs 15

No magic values No magic values

Production like, typical, simple values Production like, typical, simple values

Hard coded expected values instead of computed

Highlight important data

Comments (2 vs 14)

Explanatory comments Avoid, can become outdated

Comments for structuring (e.g., AAA pattern)

Domain specific language (0 vs 8

Explanatory comments Avoid, can become outdated

Comments for structuring (e.g., AAA pattern)

Parameterized test (0 vs 8

Data driven tests to reduce code duplication

Test summaries (4 vs 0)

Use source code summarization techniques

Textual features (1 vs 0)

Natural language processing, dictionaries

(Overlapping aspects such as recommendations and discussions are highlighted.)

Helper structures (0 vs 23) (Help): This factor has been identified only in the grey literature.
In this context, the builder pattern and similar patterns are discussed, relating to practical
recommendations for good design.

Dependencies (3 vs 19) (Dep): The recommendation that one test should only test one
functionality or behavior is mentioned by Palomba et al. [A14].5 The participants from the
study of Setiani et al. [A17] to some extent agree that a unit test should only depend on one
unit, which reflects the opinion of this factor from grey literature.

Identifier names (5 vs 17) (IdN): The survey from Lin et al. [A13] shows the importance of
meaningful, concise and consistent identifiers. The renaming approach by Roy et al. [A16]
also suggests variable names like expected and result. Their deep learning model was trained
with software projects of a high level of quality. Therefore, it seems plausible that identifier
names as those mentioned in the grey literature sources are commonly used in tests of high
quality projects.

Fixtures (0 vs 17) (Fix): This factor has been identified only in the grey literature, which
discusses arguments for and against the use of test fixtures from a practical perspective.

DRY principle (0 vs 16) (DRY): This factor has been identified only in the grey literature,
n context of practical recommendations on how to apply this development principle to test
code.

5 The recommendation itself was proposed by Van Deursen et al. (2001).
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Test data (4 vs 15) (TeD): Participants of the workshop from Bowes et al. [A4] also rec-
ommend to avoid magic values. Almasi et al. [A2] and Afshan [A1] highlight importance of
meaningful or human-like test data.

Comments (2 vs 14) (Com): The usage of comments for highlighting the structure of the test
is not investigated in scientific literature. Fisher and Johnson [A7] explain different readability
ratings between generated tests and human tests also with the lack of explanatory comments.
Setiani et al. [A17] survey participants who also mention comments being to some degree
important to readability. These findings are to some extent contradicting the recommendation
in grey literature, which is generally to avoid such explanatory comments.

Domain specific language (0 vs 8) (DSL): This factor has been identified only in the grey
literature. It relates to test frameworks used in practice such as Gherkin.

Parameterized test (0 vs 8) (Par): This factor has been identified only in the grey literature.
It relates to practical suggestions to reduce code duplication by using parameterized tests.

Test summaries (4 vs 0) (TS): This factor has been identified only in the scientific literature.
It is related to the application of source code summarization techniques investigated in related
research as support for understanding test code.

Textual features (1 vs 0) (TF): This factor has been identified only in the scientific literature.
It is related to the application of natural language processing investigated in related research
for test cases.

RQ2.2 Findings. What is the difference between influence factors in scientific lit-
erature and grey literature? 9 factors were identified in the scientific and 12 factors
in the gray literature review, with an intersection of 7 factors identified in both. The
factors identified most often in the scientific literature were also most frequently found
in the grey literature: Test structures (5 and 28 times), test names (6 and 26 times), and
assertions (5 and 24 times). Scientific and grey literature sources sometimes focus on
different aspects of common factors.

6 Evaluation of Influence Factors

For the following experiment we take the results from the systematic mapping study (Sec-
tion 4) and the grey literature review (Section 5) and investigate a selection of identified
influence factors with focus on the perception of test case readability.

6.1 Experiment Setup and Procedure

The experiment follows an A/B testing approach. The participants rate readability of original
and altered test cases. Experiments based on A/B testing are a good approach for comparing
the effect of a treatment to a population. In our scientific literature reviewwe also found some
studies using this approach, e.g., Roy et al. (2020a) or Setiani et al. (2021a). Participants of a
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Fig. 6 Experiment process and amount of received responses

master course on software testing at TU Wien were invited to participate voluntarily in this
online experiment with the possibility of bonus points for the course as a reward. Figure 6
shows an overviewon the experiment process.We discuss the individual steps in the following
sections.

6.1.1 Select Tests

We searched open source repositories for test case that are related to the influence factors
we identified in our literature study, specifically test cases adhering or contradicting to these
factors. We selected 30 test cases covering different influence factors from 8 sources, which
also contain generated tests by Randoop and Evosuite. Table 6 shows influence factor, test
name and origin project.Most tests including the automatically generated tests come from the
open source project Apache Commons Lang3. Other sources include the Spring Framework,
IntelliJ, and Apache Flink. The last three tests with origin project “Student Solution" are
selected tests written by students for a course assignment.

The test cases we found in our search and which are used in the subsequent experiment
cover 7 out of the 14 influence factors (see Table 4 in Section 5.2 for a complete list of
influence factors), identified in the literature study, since we limited our selection to only
those test cases retrieved from real-world open source projects that can be clearly related to
individual influence factors. Therefore, we included test cases related to the influence factors
Structure (Str), Assertions (Asse), Dependencies (Depe), Test Data (TD), Comments (Co),
Fixtures (Fix), and Parametrized Tests (Para) and excluded test cases related to Test Names
(TeN), Identifyer Name (IdN), Test Summaries (TS), Textual Features (TF), Helper Structures
(Help), DRY Principle (DRY), and Domain Specific Language (DSL).

6.1.2 Apply Best Practices

For each test, we create an alternative version, following the findings from the literature study.
For example, long test cases (variant A) were modified by splitting them up into two or more
smaller test cases (variant B). This modification corresponds to the best practice suggested
in [G28]. Similarly, test cases using standard assertions (variant A) were modified by using
dedicated assertion frameworks such as AssertJ (variant B), as suggested in [G18].

Table 6 provides an overview of the covered influence factors from the literature study
and a short description on the differences between A and B version of the different tests in
column “Modification A/B".

Furthermore, we used three additional test cases (not shown in the table) without modifi-
cation as a control group. The purpose of these control tests is to verify that the participants
show a consistent rating behavior for A and B tests, which allows us to assert the internal
validity of the experiment.
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6.1.3 Create Survey

We created surveys containing a subset of 12 test cases out of the entire set of the 30 tests
listed in Table 6. Each survey contained an equal mix of A and B variants. In total we created
6 different surveys to provide full coverage of all 30 tests in each of the variants. The surveys
were randomly distributed to the participants taking part in the experiment,whowere unaware
of the covered influence factors and whether the included tests were modified or unmodified.

The participants were asked to rate the readability on a 5 point Likert scale from 1 (unread-
able) to 5 (easy to read) and to provide up to three free text reasons for their rating. Before
and after this main task of the experiment, there is a pre- and post-questionnaire for collection
information on the participants’ background and feedback about the experiment run.

We developed the questionnaires using google.forms, which provides an easy way for
creating surveys that can also be reused for future replications. The collected data can be
exported in various formats for processing and analysis. Beside the survey forms,we provided
the selected tests in a PDF and as plain text files as additional supporting materials for the
study participants.

6.1.4 Execute A/B Experiment

The online survey was open for two weeks and the participants were free to start and stop
their run at any time in this period. The duration for taking part in the experiment was about
one hour per participant. In total, 77 participants completed the survey.

6.1.5 Analysis

We use the software R to calculate the significance of the results with statistical tests on level
of α = 0.05%. According to an analysis with the Shapiro-Wilk test, the rating data does not
follow a normal distribution. Therefore, and since our data is unpaired, we use the Wilcoxon
Rank Sum test. When a significant difference between the distribution of the groups A and
B is found, we report the effect size with Cliff’s Delta (δ). Roy et al. (2020a) used the same
approach for their Likert scale data. Cliff’s Delta is interpreted according to Romano et al.
(2006) with |δ| < 0.147 “negligible", |δ| < 0.33 “small", |δ| < 0.474 “medium", otherwise
“large".

6.2 Experiment Results

This section presents the results of the experiment on the readability of the selected set of
test cases to investigate the related influence factors. Some factors influencing readability
appear more than once in Table 6 and the modifications have different goals. Therefore we
analyse the differences between groups A and B across these modifications. We discuss each
modification after an overview on the participants in the following sections.

Participants experience. To gather some information about our participants we asked for
their amount of experience in general and professional software development in years. They
could choose between0, 1-2, 2-5 and>5years. Table 7 shows results of both questions.Almost
45% of our participants have more than five years of experience in software development and
more than 50% have two to five years of experience. Concerning professional development
around 30% have either one to two or two to five years of experience. In total around 75%
have worked at least one year.
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Table 7 Information on participants experience

Years Absolute Percentage

(a) General Software Development Experience [years]

0 0 0%

1-2 2 2.6%

2-5 41 53.2%

>5 34 44.2%

Sum: 77 100.0%

(b) Professional Software Development Experience [years]

0 20 26.0%

1-2 24 31.2%

2-5 25 32.5%

>5 8 10.3%

Sum: 77 100.0%

6.2.1 Do factors discussed in practice show an influence on readability when scientific
methods are used (RQ3.1)?

Figure 7 shows the distribution of the aggregated readability ratings including boxplots for
the investigated modification mapping to influence factors. Table 8 shows the results from
the statistical analysis. The first column “Modification A/B (Influence Factor) maps to the
according columns in Table 6. We discuss each modification in the following sections. As a
reminder, we interpret Cliff’s Delta (δ) according to Romano et al. (2006) with |δ| < 0.147
“negligible", |δ| < 0.33 “small", |δ| < 0.474 “medium", otherwise “large",
Loops vs. Unrolled (Fig. 7a). In this modification the difference between A and B of the
aggregated results is significant with p = 0.02. The effect size δ = −0.35 is on the lower
end of a “medium" effect size. The analysis of the individual tests reveals that the whole
modification is significant, because of the last test with p = 0.01 and δ = −0.67 (“large"
effect). In this test the code contains two 2D arrays, nested loops to perform the test and
string concatenation for the assertion message. The modified version primarily consists of
assertions for all cases the loops generate, without assertion messages.

Try Catch vs. AssertThrows (Fig. 7b). Overall there is no significant difference in the
readability ratings between the original and the modified versions. Only in the second test
the difference between A and B is barely significant p = 0.04, although it has a “large”
effect size with δ = −0.54. One possible explanation for this result could be the relative
short size of this test in comparison to the other ones in this modification. Due to the short
length, there may be no possibility for other bad practices to mask the positive influence of
this modification.

Variable Re-Use (Fig. 7c). Neither the figure nor the statistical analysis show a significant
difference in the ratings.
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Fig. 7 Distribution and box plots of aggregated readability ratings per A/B modification. Ratings from a five-
point Likert scale range from 1 (not readable) to 5 (very readable). The numbers on the right hand side of the
histograms represent the amount of answers for this rating
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Table 8 Statistical analysis of experiment results using a two-sided Wilcoxon Rank Sum test (p) and Cliff’s
D (δ) for effect size

A B Compare
Modification A/B (Influence Factor) N med sd N med sd p δ

Loops vs. Unrolled Loops (Structure) 29 3 1.2 29 4 1.1 0.02 -0.35

testPrimitiveTypeClassSerialization 9 4 0.8 11 4 0.9 0.21

testReducedFraction 9 3 0.9 9 3 1.3 0.89

testContainsIgnoreCase_LocaleIndependence 11 2 1.2 9 4 0.9 0.01 -0.67

Try Catch vs. AssertThrows (Assertions) 27 2 0.9 28 2 1.1 0.31

test10 9 2 0.9 10 2 1.2 0.90

test2 9 2 0.8 9 3 1.1 0.04 -0.54

test303 9 2 1 9 2 0.9 0.89

Variable Reuse (Structure) 28 4 0.8 29 4 0.8 0.32

testInvert 9 4 0.7 11 3 0.9 0.54

testNegate 9 4 0.9 9 4 0.5 0.15

testAbs 10 4 0.7 9 4 0.9 0.78

Package Names, If-Structure,.. (Structure) 28 1 0.7 28 2 0.9 0.00 -0.59

test551 8 1 0.7 11 3 0.8 0.00 -0.82

test0074 9 1 0.9 8 2 0.8 0.16

test1113 11 1 0.5 9 2 0.4 0.03 -0.51

Remove Comments (Comments) 28 4 1.1 28 3 0.8 0.02 0.36

testContainsRange 9 4 0.9 10 4 0.7 0.43

testFactory_double 9 5 1.1 9 3 0.7 0.08

testWrap_StringIntStringBooleanString 10 4 1.4 9 2 0.9 0.15

Loops vs. Parameterized (Parameterized) 45 2 1.4 44 4 1.2 0.00 -0.34

testPrimitiveTypeClassSerialization 14 4 1.1 15 4 0.9 0.85

testReducedFraction 14 2 1.4 14 2 1.2 0.77

testContainsIgnoreCase_LocaleIndependence 17 1 0.8 15 4 1.1 0.00 -0.84

Split Up Tests (Dependencies) 45 4 1.3 48 4 0.8 0.00 -0.33

testAllNullBooleans 14 4 1.4 17 4 0.7 0.08

testSerializeAndParse 15 4 1.3 16 4 0.9 0.60

testSetContentObject 16 3 1.2 15 4 0.8 0.01 -0.50

Specific Assertion (Assertions) 44 3 1.2 48 2 1.1 0.93

testFourElement2 16 3 1 17 2 1.2 0.44

showsAllStsGaDownloads 14 3 1.2 16 3 0.8 0.73

indexedReadAndIndexedWriteMethods 14 2 1.3 15 3 1.1 0.47

Unnecessary Try Catch (Structure) 47 3 1.1 48 3 1.3 0.12

testChoicesWithValidDefaultValue 16 4 0.9 17 4 1.1 0.90

testApplyToMovesValuePassedOnShortName... 15 2 1.1 16 2 1.1 0.90

testApplyToWithMultipleTypes 16 2.5 1.1 15 4 1.2 0.01 -0.53

Remove Fixture (Fixture, Test Data) 46 4 1.1 46 4 0.9 0.87

Student Example 03 16 4 1.3 16 4 1.1 0.54

Student Example 02 15 4 0.9 15 5 0.7 0.17

Student Example 01 15 5 0.9 15 4 0.8 0.10

δ is only shown for p < 0.05
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Structure (Fig. 7d). Overall there is a clear difference between the groups of thismodification
with p = 0.0 and a “large” effect, δ = −0.59. Only for one of the three tests the difference
between groups is not significant with p = 0.16.

Comments (Fig. 7e). Although none of the individual tests has a significant difference
between A and B, the aggregated result is significantly different with p = 0.02 and has a
lower “medium” effect size with δ = 0.36. Since we removed comments in the original
versions of the tests, the A version contains more information than B. A look at Fig. 7e and
the median values in the Table 8 shows that the participants gave the A version better ratings.
This is also reflected by the positive sign of the effect size. The comments do not highlight the
structure of the test, they are of the nature “explanatory comments”. This is a confirmation
of the positive influence of comments on readability found by scientific literature.

Loops vs Parameterized (Fig. 7f). Like in Loops vs. Unrolled the difference of the complete
modification between groups A and B is significant with p = 0.00 and δ = −0.34, a lower
“medium” effect size, because of the last test. The original version is the same as in Loops
vs. Unrolled but the modified version extracts the test case data into an inlined CSV as
input for the parameterized test case. The other forms of parameterized tests did not lead
to significant changes in the readability ratings. In pursuit of the hypothesis from Section
7.2 we also compare the ratings of this A group with the A group from Loops vs. Unrolled.
When looking at the median values the hypothesis seems to hold, because the values from
this modification are lower in two of three tests. However, the Wilcoxon test does not detect
a significant difference in the ratings with p = 0.11.

Split Up (Fig. 7g). There is a clearly significant difference between A and B with p = 0.0
but only a “small” effect size, although with δ = −0.33 it is on the edge to a “medium”
effect size. In detail there is one significant test p = 0.01 with δ = −0.50, a large effect
size. When looking at the median values and the figures, we see that both versions are quite
readable but the modified tests have few to no ratings in the lower part of the readability
scale.

Assertions (JUnit, Hamcrest, AssertJ) (Fig. 7h). There is no significant difference in read-
ability when using standard JUnit assertions compared to assertions with Hamcrest or AssertJ
assertions. This result confirms findings from Leotta et al. (2018a).

Unnecessary Try Catch (Fig. 7i). One test shows a significant difference with p = 0.01
and δ = −0.53, a “large” effect size. With medians of 0.75 the first test is almost very
readable in both versions. However, we accidentally introduced an error in the modified
version (we declared a variable twice, which is not allowed in Java). In the comments the
participants noticed this error, therefore this error might mask the positive effect of the
intended modification. The second test with medians of 0.25 has a very long test name which
the participants criticise. This again might mask the positive effect of the modification.

Fixture (Fig. 7j). We do not see a significant difference between the two versions neither in
the figure nor in the table. The tests all have a quite good rating, which is could be caused by
the participants knowledge about the system under test.
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RQ3.1 Findings. Do factors discussed in practice show an influence on readability
when scientific methods are used? Applying industry best practices is no silver bullet
for improving the readability of test code. In the scientific experiments, themodifications
showed a statistically significant positive influence on the readability of the tests for 50%
of the factors, i.e., in five out of ten cases.

7 Summary, Threats to Validity, and FutureWork

This section summarizes the findings, validity, presents implications for research and practi-
tioners, and provides discusses limitations and threats to validity, and provides future research
directions.

7.1 Summary

Themain goal of this paper was to combine scientific and practical views on the readability of
software test code. We have conducted a Systematic Mapping Study (SMS) to cover relevant
publications from academia to capture the scientific view on the readability of software test
code. We have complemented the results of the SMS by taking into consideration practical
views based on grey literature. Based on identified influence factors on test code, we con-
ducted a controlled experiment in academic setting to explore the perception of software test
code readability with a set of 77 participants.

We have identified unique readability factors in scientific literature that include readabil-
ity models, application of code summaries used on test code that have been proposed and
evaluated (see Section 4.2.1).

Individual Influence Factors have been evaluated in scientific literature by using scien-
tific methods, such as online questionnaires with Likert scales and statistical analysis (see
Section 4.2.2).

Differences in scientific and grey literature. In contrast to scientific literature grey literature
provides a wide spectrum of best practices and guidelines concerning the influence factors of
readability of test code. There is large overlap between science and grey literature, however
in the overlapping factors we observed different views in the interpretations. (see Section
5.2.2).

Unique readability factors in grey literature. Furthermore we found five additional factors
exclusive to grey literature, e.g. helper structures, test fixtures. Concerning these factors
there exist different views and even conflicting opinions, often related to the used/applied
technology, testing framework, and test level/approach (see Section 5.2.1).

Empirical study of influence factors widely discussed in practice. For half of the inves-
tigated modifications (Loops vs. Unrolled Loops; Package Names, If-Structures; Remove
Comments; Loops vs. Parameterized and; Split Up Tests), which map to readability factors,
we could show a statistical significant influence in test code readability. (see Section 6.2.1).
Other factors are less clear, which can be attributed to the nature of best practices, which
are sometimes only applicable in specific contexts and not in general (e.g., modification Try
Catch vs. AssertThrows; (see Section 6.2.1).
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7.2 Limitations and Threats to Validity

In this section, we summarize important limitations and threats to validity in context of the
literature review (i.e., scientific and grey literature) and the empirical study.
Internal Validity
– In context of the Systematic Mapping study, the keyword, search string, analysis items,
and the data extraction and analysis has been executed by one of the authors and inten-
sively reviewed and discussed within the author team and external experts.

– The controlled experiment setup has been initially executed in a pilot run to ensure
consistency of the experiment material. We have used a cross-over design of test case
samples to avoid any bias of the experiment participants.

– Three unmodified test cases were used as control groups in A/B testing. The Wilcoxon
Rank Sum test does not suggest a significant difference between ratings provided by
participants, when comparing groups with the same questionnaire. However, there is
a significant effect when comparing control groups of different questionnaires. These
results confirm a consistent rating behavior within groups and the significant differences
between groups is as expected due to the independent ratings of participants fromdifferent
groups.

External Validity
– We have conducted a literature reviews based on the guidelines of Petersen et al. (2015)
complemented by a systematic analysis of grey literature (Garousi et al. 2019). Therefore,
the analysis results identified most prominent research directions in scientific literature
complemented by practical discussions in non-academic sources (such as blogs). This
approach enabled us to identify similar and/or different key topics in academia and
industry.

– Experiment participants were recruited on a voluntary basis from three classes of a
master course on software testing at TUWien.We captured background knowledge of the
participants to identify participant experience. Most of the participants work in industry
and can be considered as “junior professionals”. Therefore, the results are applicable for
industry applications.

– We used real-world test cases from open source projects as well as results from software
testing exercises to ensure close to industry test cases.

Construct Validity
– We build on best-practices for the literature review for academic publications (Petersen
et al. 2015) and grey literature (Garousi et al. 2019) and followed experimentation guide-
lines, proposed by Wohlin et al. (2012) for conducting the empirical study.

– For the controlled experiment, we captured individual test case assessments for A-B tests
(i.e., original tests taken from existing projects and slightly modified test cases) based on
a 5-point Likert scale.

– To avoid a bias introduced by the order of questions for the experiment, we reversed the
question ordering for half of the experiment groups.

– To avoid random readability ratings, we asked participants to give reasons for their ratings
as free text. Furthermore, the participants were told that their reward (bonus points) is
coupled with active participation in the challenge.
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– We tried to select test cases for A/B testing in our experiment, which could be clearly
related to individual influence factors. Since the test cases we used were retrieved from
real world projects instead of constructed examples, which could limit the relevance of
our results, we only covered 7 out of the 14 influence factors identified in the literature
search. Nevertheless, a certain amount of fuzziness with respect to influence factors
may still be present, e.g., as discussed in the results for the modification Try Catch vs.
AssertThrows (see Section 6.2.1).

Conclusion Validity
– We used the Shapiro-Wilk test for testing for normality, which would allow us to use
a parametric statistical test. This approach is also used by Roy et al. (2020a) whose
methodology is similar to ours.

– We used the non parametric Wilcoxon Rank Sum test, because our groups are unpaired
and the Shapiro-Wilk test does not suggest a normal distribution of our result data.

– We report the effect size with Cliff’s Delta, because it allows an interpretation of the
magnitude of difference between two groups. It is also used by other studies in this field
like Grano et al. (2018a).

7.3 Implications for Research and Practitioners

This section summarizes the main implications of the SMS (Section 4), the grey literature
study (Section 5), and the experiment (Section 6).
Implications for Research
– For the Software Testing community, we identified influencing factors, observed only in
grey literature, that could initiate additional research initiatives with focus on topics that
are of interest for practitioners with limited attention of researchers.

– Researchers in Software Engineering and/or Software Testing can take up the results from
literature review with focus on replicating and extending the presented research work.

– TheEmpirical Research community can build on the the SMSprotocol, the grey literature
protocol, and the study design to replicate and extend the study protocol in different
context.

– We selected a representative set of test cases that could be used by researchers to (i)
design and develop a method and or tool to semi-automatically assess the readability of
test code and (ii) to apply the test code set for evaluation purposes in different contexts.

– In the Software Testing communities, factors, such as Setup methods/Fixtures, Helper
Methods, DRYness are widely discussed in the domain of practitioners. Considering
these in test code generation could be useful for generating more readable tests. In a
recent study Panichella et al. (2022) also suggest to include capabilities for complex
object instantiation into test suite generators.

– Finally, the findings of the study can be used as input for researchers from Software Engi-
neering communities to improve softwaremaintenance tasks that benefit from readability
assessments.
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Implications for Practitioners
– For Software and System Engineering organizations, results of this work can support
software testers and developers to improve test code readability based on guidelines and
identified influencing factors.

– Project and Quality Managers can use the results to setup organization specific devel-
opment guidelines to support software development, software testing, and software
maintenance and evolution by a team of software experts. Applied best practices might
help to improve the quality of test cases and reduce effort and cost for maintenance
activities.

– Factors with similar views from practitioners and academia include Test Names, Identifier
Names, and Test Data. For test and identifier names both domains agree on the use of
naming patterns in order to achieve consistency across the test suite. For test data also
both domains agree on the use of realistic and simple values and avoiding magic values.

– However, the experiment results show that application of best-practices is no guarantee
for improved readability.

7.4 FutureWork

The main goal of this article was to Investigate the readability of Software Test Code
by combining scientific and practical views. We applied a systematic mapping study for
analyzing scientific literature complemented by grey literature. Furthermore, we executed a
controlled experiment in a Software Testing Master Course on academic level to investigate
practical implications of a selected but typical set of test cases.

In the future, we plan to replicate the experiment to increase the external validity of the
study in academia, complemented by industry participants. Furthermore, we plan to develop
and evaluate amaturitymodel for the readability of test cases that could help qualitymanagers,
software test engineers, and software developer in better assessing the quality of test cases
(from readability perspective) to improve software maintenance and evolution.

A) Sources of Grey Literature for Systematic Mapping
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