
https://doi.org/10.1007/s10664-022-10215-5

FindICI: Using machine learning to detect linguistic
inconsistencies between code and natural language
descriptions in infrastructure-as-code

Nemania Borovits1 · Indika Kumara1 ·Dario Di Nucci2 ·Parvathy Krishnan3 ·
Stefano Dalla Palma1 · Fabio Palomba2 ·Damian A. Tamburri3 ·
Willem-Jan van den Heuvel1

Accepted: 15 July 2022 /
© The Author(s) 2022

Abstract
Linguistic anti-patterns are recurring poor practices concerning inconsistencies in the
naming, documentation, and implementation of an entity. They impede the readability,
understandability, and maintainability of source code. This paper attempts to detect lin-
guistic anti-patterns in Infrastructure-as-Code (IaC) scripts used to provision and manage
computing environments. In particular, we consider inconsistencies between the logic/body
of IaC code units and their short text names. To this end, we propose FINDICI a novel auto-
mated approach that employs word embedding and classification algorithms. We build and
use the abstract syntax tree of IaC code units to create code embeddings used by machine
learning techniques to detect inconsistent IaC code units. We evaluated our approach with
two experiments on Ansible tasks systematically extracted from open source repositories for
various word embedding models and classification algorithms. Classical machine learning
models and novel deep learning models with different word embedding methods showed
comparable and satisfactory results in detecting inconsistent Ansible tasks related to the
top-10 used Ansible modules.

Keywords Infrastructure as code · Linguistic anti-patterns · Word embedding ·
Machine learning · Deep learning

Communicated by: Foutse Khomh, Gemma Catolino and Pasquale Salza

This article belongs to the Topical Collection: Machine Learning Techniques for Software Quality
Evaluation (MaLTeSQuE)

� Nemania Borovits
n.borovits@tilburguniversity.edu

1 Jheronimus Academy of Data Science, Tilburg University, Tilburg, The Netherlands
2 University of Salerno, Salerno, Italy
3 Jheronimus Academy of Data Science, Technical University Eindhoven, Eindhoven,

The Netherlands

Published online: 20 September 2022

Empirical Software Engineering (2022) 27:178

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-022-10215-5&domain=pdf
http://orcid.org/0000-0002-3861-1902
mailto: n.borovits@tilburguniversity.edu

1 Introduction

The software development cycle is becoming shorter every day. Therefore, development
and IT operation teams are increasingly cooperating as DevOps teams, relying massively
on automation at both development and operations levels. The software code driving such
automation is collectively known as Infrastructure-as-Code (IaC), a model for provision-
ing and managing a computing environment using the explicit definition of the desired
state of the environment in source code and applying software engineering principles,
methodologies, and tools (Morris 2016).

Although IaC is a relatively new research area, it attracted an ever-increasing number of
scientific works in recent years (Rahman et al. 2019). Although most research on IaC inves-
tigated its tools, adoption, and testing (Rahman et al. 2019), only a few studies explored its
code quality. The first steps in this direction focused on applying the well-known concept
of software defect prediction (Hall et al. 2011) to infrastructure code defining defect predic-
tion models (Rahman and Williams 2018, 2019a; Dalla Palma et al. 2021) to identify pieces
of infrastructure that may be defect-prone and need more inspection. In this perspective,
previous works mainly focused on the identification of structural code properties that corre-
late with defective infrastructure code scripts and the detection of various smells. However,
defects are only a possible issue given that problems with the source code lexicon can neg-
atively affect code comprehensibility and maintainability (Lawrie et al. 2007; Takang et al.
1996). Linguistic anti-patterns are common code lexicon problems, i.e., recurring poor prac-
tices concerning inconsistencies between the naming, documentation, and implementation
of entities (Arnaoudova et al. 2016,2013) Linguistics anti-patterns can also be exhibited in
IaC programs. While the existing literature mainly focuses on structural characteristics of
defective IaC scripts, none exists that analyze linguistic issues to the best of our knowledge.
This motivation led to the research goal of this work:

Can we accurately detect mismatches between IaC code units and their short natural
language descriptions using a learning-based approach?

Boosted by the emerging trend of learning-based approaches and word embedding in
the software engineering research (Sulistya et al. 2020; Pradel and Sen 2018; Liu and et al
2019; Omri and Sinz 2020; Li et al. 2020), we propose FINDICI, a novel approach to detect
linguistic anti-patterns in IaC, focusing on name-body inconsistencies in IaC code units. We
formulate name-body inconsistency detection as a binary classification problem and train a
classifier that distinguishes between consistent and inconsistent code units. We use Ansible
as the IaC language, which is one of the widely-used IaC languages (Guerriero et al. 2019),
where a task is a unit of provisioning and configuration logic. A task has a name and a
body. The task name is essentially a short text that communicates the purpose of the task.
Our approach leverages the word embedding models to produce distributed representations
(feature vectors for the classifiers) of task names and bodies, respectively. We evaluated
the effectiveness of our approach on a dataset composed of Ansible tasks for the top 10
used Ansible modules from 38 open source repositories using machine learning and neural
networks trained using different word embedding representations.

Our experiments show that various learning algorithms can successfully detect inconsis-
tent IaC code units with high performance in MCC, AUC-ROC, and accuracy. Similarly, all
word embedding models also showed good performance in terms of the evaluation metrics
MCC, AUC-ROC, and accuracy for most Ansible modules. We deem our approach can con-
tribute to the current research by tackling IaC Defect Prediction from a different perspective
and providing a solid baseline for future studies focusing on linguistic issues.

Empir Software Eng (2022) 27:178178 Page 2 of 30

In this paper, we extend our previous work (Borovits et al. 2020) by making the following
additional contributions:

1. We compare the performance of six machine Learning algorithms for inconsistency
detection: Random Forest, Support Vector Machine, eXtreme Gradient Boosting,
Convolutional Neural Networks, Short-Term Memory Networks, and Multi-layer Per-
ceptron.

2. We analyze the impact of different word embedding techniques on the performance of
the considered classifiers.

3. We provide a fully comprehensive online appendix1 consisting of the FINDICI source
code, the raw data, and the scripts to replicate our results.

Structure of the paper Section 2 describes background. Section 3 details our approach
to identify name-body inconsistencies in IaC programs. Section 4 defines the empirical
evaluation of the proposed approach, which results are described in Section 5. We discuss
the threats to validity in Section 6. Section 7 summarizes the related work in the field and
highlights our research contributions. Finally, Section 8 concludes the paper and outlines
future works.

2 Infrastructure-as-Code and their Linguistic Inconsistencies

This section provides a brief overview of IaC and Ansible, the learning algorithms, and the
word embedding models that we used.

2.1 Infrastructure-as-Code and Ansible

Infrastructure-as-Code (IaC) is a model for provisioning and managing computing environ-
ments based on the definition of the desired state using source code. IaC relies on software
engineering principles, methodologies, and tools. On the one hand, IaC Domain-Specific
Languages enable defining the environment state as a software program. On the other hand,
IaC tools enable managing the environment based on such programs. In this study, we con-
sider the Ansible IaC language, one of the most popular languages amongst practitioners,
according to our previous survey (Guerriero et al. 2019).

In Ansible, a playbook defines an IT infrastructure automation workflow as a set of
ordered tasks over one or more inventories consisting of managed infrastructure nodes. A
module represents a unit of code that a task invokes and serves a specific purpose, such as
creating a configuration file from a file template, copying a file, and installing a software
package. The definition of a task is essentially a configuration of the module used by the
task. A role can be used to group a cohesive set of tasks and resources that together accom-
plish a specific goal, such as installing and configuring JBoss server, and creating a MySQL
database instance.

Figure 1 shows an Ansible snippet for configuring a JBoss server instance and iptables.
The first two tasks use the Ansible modules template and copy to generate the JBoss con-
figuration file from a template, and to copy the JBoss initialization script, respectively. The
third task employs the module template to create and add firewall rules for the Linux ipta-
bles utility. Besides, each module contains parameters (or arguments), for example, src and

1https://github.com/nboro/FindICI

Empir Software Eng (2022) 27:178 Page 3 of 30 178

https://github.com/nboro/FindICI

Fig. 1 A snippet of an Ansible role, showing three tasks

dest, that describe the desired state of the system and can be used to manage operations
provided by that module.

2.2 Linguistic Inconsistencies in Ansible Tasks

Figure 2 shows some excerpts of commit messages, highlighting inconsistencies and fixes
from real-world word Ansible projects collected for our experiments. Although the rec-
ommended best practice is to provide a meaningful name to a task,2 as shown in Fig. 2a,
developers strive to follow this best practice. In the two tasks examples, their names con-
tradict or inaccurately represent what they actually do. For example, if the value of the
parameter state of the module homebrew is “absent”, then, the package composer is unin-
stalled. Furthermore, as shown in Fig. 2b, the mismatches between task names and task body
may be a good indicator of an erroneous task. For example, the first task installs the pack-
age nginx instead of the package supervisor, but the name of the task says that the package
should be supervisor. Thus, this name-body inconsistency indicates a buggy task.

The aforementioned inconsistencies in task names and bodies can be considered lin-
guistic anti-patterns (Arnaoudova et al. 2013). The presence of linguistic anti-patterns can
mislead developers as they can make wrong assumptions about the code behavior or spend
unnecessary time and effort to clarify it when understanding source code for their pur-
poses (Arnaoudova et al. 2016). Therefore, highlighting their presence is essential for
producing easy-to-understand code. Our goal is to develop an approach to detect name-
body inconsistencies in Ansible tasks. Although there may exist inconsistencies between
code documentation (task or role level comments) and tasks, we could only find a few task
examples with comments. Thus, we solely focus on name-body inconsistencies in this study.

In Ansible, the name and body of a task differ from those of a regular method in general
programming languages. The task name is a complete sentence or a fragment, and the task
body is a configuration of a specific Ansible module. A task only uses a single module,
while the tasks using the same module mostly differ in terms of module parameters used
and their values. In contrast, the body of a regular method can include arbitrary complex

2Ansible Best Practices: https://docs.ansible.com/ansible/2.8/user guide/playbooks best practices.html

Empir Software Eng (2022) 27:178178 Page 4 of 30

https://docs.ansible.com/ansible/2.8/user_guide/playbooks_best_practices.html

Fig. 2 Examples of inconsistent task names and bodies in IaC.

logic, use many APIs (analogous to Ansible modules), and define comments for each line
of the code.

3 FindICI: A Framework for Learning to Detect Code-Description
Inconsistencies in Infrastructure Codes

This section presents FINDICI, our approach to identifying inconsistencies between natural
language descriptions and logic/bodies in IaC code units and, in particular, in Ansible tasks.
Figure 3 illustrates the workflow of FINDICI as a set of steps, which can be summarized as
follows. Finding a sufficient number of real buggy task examples containing inconsisten-
cies is challenging. Therefore, FINDICI applies code transformations to generate a corpus
of inconsistent Ansible tasks. Both task names and bodies are tokenized and converted into
their vector representations that a learning algorithm can use. Afterward, FINDICI trains and
evaluates binary classifiers using different machine learning and deep learning algorithms

Fig. 3 Overview of the FindICI approach

Empir Software Eng (2022) 27:178 Page 5 of 30 178

and stores them in a model repository. The classifiers can then predict name-body incon-
sistencies of unseen Ansible tasks based on the module at hand, where the unseen Ansible
tasks are tokenized and converted to vectors in the same way as the ones used for training.
The following section provides more details about each step.

3.1 Generating Training and Test Data

Our linguistic anti-pattern detection is a binary supervised classification task. Thus, we
need a dataset that includes correct (name-body consistent) and potentially buggy (name-
body inconsistent) task examples. As Ansible is a relatively new domain-specific language,
it is non-trivial to collect a sufficient number of buggy examples from real-world cor-
pus. Inspired by the training data generation in the defect prediction literature (Pradel and
Sen 2018; Li et al. 2020), we use simple code transformations to generate the buggy task
examples from a given corpus of likely correct task examples by applying simple code trans-
formations. In particular, we swap the body of a given task with another randomly selected
task to create inconsistencies. We consider two cases: (i) tasks using the same module (e.g.,
two tasks with the template module) and (ii) tasks using different modules (e.g., one task
with the template module and another with the copy module). Consider the three tasks in
Fig. 1: swapping the bodies of Task 1 and Task 3 is an example for the first case; replacing
the bodies of Task 1 and Task 3 with the body of Task 2 is an example for the second case.

3.2 Tokenization of Names and Bodies

This step converts the Ansible task descriptions (i.e., task names and task bodies) to a stream
of tokens consumed by the learning algorithms. On the one hand, task names are generally
short texts in natural language. Therefore, we tokenize them into words. On the other hand,
the body of a task has a structured representation. Hence, we use the abstract syntax tree
(AST) of the task body to generate the token sequences while preserving the code seman-
tic. In the research literature, ASTs are commonly used for representing code snippets as
distributed vectors (Liu and et al 2019; Alon et al. 2019). A task body defines an Ansible
module’s configuration and instance as a set of parameters (name-value pairs). The tasks
can also specify notify actions, conditionals, and loops. The notify actions are to inform
other tasks and handlers about the changes to the state of a resource managed by a module.
We create an AST model to capture the key information of a task body.

Figure 4 shows a snippet of the generated AST model for the task example in Fig. 1.
AST node types capture the semantic information such as modules and their parameters
and notify action, and the raw code tokens capture the raw text values. The token stream
generated from the AST will be [AnsibleTaskBody, Module, Name, template, Parameter,
src, datadog.yaml.j2,, Notify, restart datadog-agent].

Fig. 4 AST model for a task using template module

Empir Software Eng (2022) 27:178178 Page 6 of 30

3.3 Creating Vector Representations

To feed the learning algorithms, the token sequences have to be transformed into vectors.
Therefore, we rely on word embedding learning models for generating the vector represen-
tation from the Ansible task names and the task bodies. We create a sequence of tokens
for each task containing its name and body. We provide this sequence as input of the word
embedding model, which takes a set of token string sequences as inputs and produces a
map between string tokens and numerical vectors (Mikolov et al. 2013). We generate a
corresponding feature vector per word embedding technique for every word in the input
task. Word embeddings embed tokens into numerical vectors and place semantically similar
words in adjacent locations in the vector space. As a result, the semantic information from
the input text is preserved in the corresponding vector representation. Before applying word
embeddings, we remove all special characters (e.g., symbols and punctuation) and merge
the token sequences for task names and bodies (per task). These steps enable us to build a
single vector space for each task as successfully done by previous work on code-comment
inconsistency detection for each source code method (Corazza et al. 2018; Pradel and Sen
2018).

3.4 Training and Tuning PredictionModels

We use the learning algorithms to build our binary classifier to categorize the tasks into
name-body consistent or not. The embedded token vectors of Ansible tasks generated by the
word embedding models are used as input for the classifier. Section 4 provides an overview
of the hyperparameter settings used in our experiments. Before feeding the input token
vectors into the classifiers, we padded them as appropriate to comply with the fix-width
input representations of the classifiers. Motivated by Wang et al. (Wang et al. 2016), we
appended zero vectors at the end of the token sequences to reach the size of the longest
token sequence of the input tasks. To compute the maximum length of the input sequences
s we used the equation: max lengths = means + standard deviations . To avoid long
sequences with many padded zeros, we set the max length of the input sequences within
two standard deviations of the mean (Moore et al. 2015). This way, we filtered outliers by
reducing noise from the padded zeros, and only the 3% of the input token sequences were
affected by this operation.

3.5 Inconsistency Identification

Inconsistency identification is a binary classification task since the test data are labeled in
two classes: inconsistent and consistent, which are the positive and negative classes in this
work. Once the binary classifier is trained with a sufficiently large amount of training data,
we can query it to predict whether unseen Ansible tasks (e.g., unseen test data sets) have
name-body inconsistencies.

3.6 Implementation

To parse Ansible tasks and build ASTs for them, we developed a custom python tool. We
tokenized and lemmatized the task names using the NLTK library3. We used the Word2vec,

3http://www.nltk.org/

Empir Software Eng (2022) 27:178 Page 7 of 30 178

http://www.nltk.org/

Doc2vec, and FastText implementations available in the gensim library to generate vectors
from tokens. We implemented Machine Learning and Deep Learning models using Ten-
sorFlow4 and Keras5. We used PyGithub6 and PyDriller (Spadini et al. 2018) to locate
repositories that contain Ansible IaC scripts. The complete prototype implementation of
FindICI, including data set and evaluation results is available on GitHub7. It has been inte-
grated into the SODALITE8 toolchain that supports guided model-driven engineering of
IaC for deploying and managing complex heterogeneous applications (Di Nitto et al. 2020;
Kumara et al. 2021).

4 Empirical Study Definition and Design

This section describes the design of the empirical study we performed to verify the extent
to which FindICI can detect textual inconsistencies in Infrastructure-as-Code. In detail, we
aim at understanding whether Machine Learning and Deep Learning classifiers can be used
to detect such inconsistencies when trained using word embeddings.

4.1 Research Questions

We set the following research questions:

RQ1. To what extent can Machine Learning be employed to detect linguistic inconsisten-
cies in IaC?

RQ2. To what extent can word embedding representations affect the performance?
RQ3. To what extent can the approach find linguistic inconsistencies in real-world IaC

scripts?

In the first research question, we fixed the word embedding representation to Word2vec
using Continuous Bag of Words (i.e., Word2vec-CBOW) and empirically evaluated and com-
pared six machine-learning models, namely Random Forest (RF), Support Vector Machine
(SVM), and eXtreme Gradient Boosting (XGBoost), Multi-Layer Perceptron (MLP), Con-
volutional Neural Networks (CNNs), and Long-Short Term Memory (LSTM). We selected
the Word2Vec-CBOW method as it was one of the two best performing models across clas-
sifiers. There are several alternatives to Word2vec-CBOW, and we empirically compared
these embedding techniques to check their impact on the performance of the classifiers in
RQ2.

All experiments were performed on a machine with an Intel Core i7-9750H CPU, 16GB
of memory, and a single NVIDIA Quadro P2000 GPU.

4.2 Data Collection

To answer RQ1 and RQ2, we evaluated FindICI on a real-world corpus of Ansible tasks
mined from GitHub. To ensure the quality of the data collected, we used the following
criteria adapted from Rahman and Williams (2018) and Dalla Palma et al. (2021).

4https://www.tensorflow.org/
5https://keras.io/
6https://github.com/PyGithub/PyGithub
7https://github.com/nboro/FindICI
8https://www.sodalite.eu/

Empir Software Eng (2022) 27:178178 Page 8 of 30

https://www.tensorflow.org/
https://keras.io/
https://github.com/PyGithub/PyGithub
https://github.com/nboro/FindICI
https://www.sodalite.eu/

Table 1 Size of the collected instances per each module

Module shell command set fact template file copy gather facts service debug fail

Tasks 2,126 1,702 1,246 1,198 1,151 773 752 569 484 395

Criterion 1 - At least 11% of the files belonging to the repository must be IaC scripts.
Criterion 2 - The repository has at least 10 contributors.
Criterion 3 - The repository must have at least two commits per month.
Criterion 4 - The repository is not a fork.

These criteria were used by previous works to collect IaC scripts (Dalla Palma et al. 2021;
Rahman and Williams 2018). In particular, criterion 1 represents a cut-off to ensure that
only repositories with a sufficient amount of IaC scripts and commit history are analyzed.
Indeed, Jiang and Adams (2015) observed that in open-source repositories a median of 11%
of the files are IaC scripts.

We found 38 GitHub repositories that met the above criteria. We extracted 18,286 Ansi-
ble tasks from them. As we trained the corresponding ML and DL models for each Ansible
module, our experiments only considered the 10 most used modules, which account for
10,396 tasks in the collected data set. Table 1 shows the distribution of the data samples
for each module type in the collected dataset. We applied the transformations described in
Section 3.1 to create our dataset. Thus, the resulting dataset comprises 20,792 observations
with a balanced number of instances for each label.

To answer RQ3, we focused on the data collected by Dalla Palma et al. (2021) for defect
prediction of Ansible code. The dataset provides over 180k observations of defect-prone and
defect-free IaC blueprints collected from 85 open-source GitHub repositories based on the
Ansible language. From the Ansible files present in the dataset, we extracted 14,116 tasks
that we use to validate the best performing model. In addition, we ensured that there is not
any information leakage between this dataset and ours by filtering out any common tasks.
Table 2 shows statistics about the most recurring modules.

4.3 Classifiers Selection

To address the first research question, we relied on six classification algorithms, namely
Random Forest (RF) (Ho 1995), Support Vector Machine (SVM) (Cortes and Vapnik 1995),
eXtreme Gradient Boosting (XGBoost) (Chen and Guestrin 2016), Multi-Layer Perceptron
(MLP) (Haykin 1998), Convolutional Neural Networks (CNNs) (Matsugu et al. 2003), and
Long-Short Term Memory (LSTM) (Cheng et al. 2016), as they have been widely used for
text classification and defect prediction (Fakhoury et al. 2018; Li et al. 2020; Liu and et al
2019; Minaee et al. 2021; Omri and Sinz 2020; Pradel and Sen 2018).

More specifically, we selected RF for its robustness to noise and correlated variables and
low proneness to overfitting (Ho 1995). Likewise, SVM was selected for its low proneness
to overfitting and its ability to handle non-linear data (Cortes and Vapnik 1995). On the other

Table 2 Size of the collected instances per module for the external dataset

Module file shell set fact command template copy service fail debug gather facts

Tasks 2,617 2,297 2,236 2,200 2,025 1,111 791 503 245 91

Empir Software Eng (2022) 27:178 Page 9 of 30 178

hand, XGBoost allows for loss function customization and it is less biased by unbalanced
datasets (Chen and Guestrin 2016). Concerning the neural network based algorithms, we
selected MLP as a baseline neural network for its simplicity (Haykin 1998), and CNNs
and LSTM to verify whether their more complex nature provides better performance for
detecting inconsistency (Cheng et al. 2016; Matsugu et al. 2003).

4.4 Model Selection

The model selection was guided by a grid search on the models’ parameters9 through a
stratified k-folds cross-validation. Grid search is an exhaustive search algorithm through a
manually-specified subset of parameters, while stratified k-folds cross-validation is a widely
used validation method that ensures that every observation from the dataset has the chance
of appearing in the training and test set (James et al. 2013). It randomly partitions the data
into ten folds of equal size, applying a stratified sampling (e.g., each fold has the same
proportion of inconsistencies). A single fold is used as the test set, while the remaining ones
are used as the training set. The process was repeated ten times, using each time a different
fold as the test set. Then, the model performance was reported using the mean achieved over
the ten runs. Please consider that we could not employ this strategy for CNNs and LSTM as
it was too computationally expensive. Therefore, we manually calibrated the classifiers and
we applied hold-out validation (James et al. 2013). We split the dataset into three sets (i.e.,
60% training, 20% validation, and 20% test) with the same distribution of inconsistencies.

4.5 Model Validation

The built models are used to predict task-body inconsistencies. As usual in machine
learning, there are four possible prediction outcomes:

– True Positive (TP): when the actual class is inconsistent and the predicted class is also
inconsistent.

– False Negative (FN): when the actual class is inconsistent but the predicted class is
consistent.

– True Negative (TN): when the actual class is consistent and the predicted class is also
consistent.

– False Positive (FP): when the actual class is consistent but the predicted class is
inconsistent.

To evaluate the performance of the trained models, we used the common metrics used
in binary classification problems, namely accuracy, precision, recall, F1 score, MCC
(Matthews Correlation Coefficient), and AUC-ROC (Area Under the Receiver Operating
Characteristic curve).

Accuracy = T P + T N

T P + T N + FP + FN

Precision = T P

T P + FP

Recall = T P

T P + FN

9Given the number of classifiers and hyper-parameters, we preferred reporting the latter in the online
appendix.

Empir Software Eng (2022) 27:178178 Page 10 of 30

F1 − score = precision × recall

precision + recall

MCC = T P × T N − FP × FN√
(T P + FP)(T P + FN)(T N + FP)(T N + FN)

AUC measures the entire two-dimensional area underneath the entire ROC (receiver
operating characteristic curve), which plots true positive rate and false positive rate. A good
classifier has an AUC closer to 1, whereas, a poor model has an AUC near to 0. Please con-
sider that we used AUC to tune the models when applying cross-validation. To analyze the
classifiers’ performance we reported the following evaluation measures: the performance is
analyzed in terms of mean and standard deviation.

Afterwards, to compare performance across classifiers and word embedding techniques,
we followed the recommendations in Demšar (2006). In particular, first, we applied the
Friedman test (Friedman 1940) with a significance level equal to 0.05 to reject the null
hypothesis. Once we have established a statistical difference between the classifiers’ perfor-
mance, we applied the pairwise posthoc analysis recommended by Benavoli et al. (Benavoli
et al. 2016), where the average rank comparison is replaced by a Wilcoxon signed-rank
test (Wilcoxon 1992) with Holm’s alpha correction (Holm 1979). To statistically com-
pare the performance of multiple classifiers and multiple word embedding methods over
multiple Ansible modules, we plotted the results using several critical difference (CD) dia-
grams (Demšar 2006), which visualize the results of the Wilcoxon-Holm post hoc test. In a
CD diagram, the positions of the treatments (e.g., classification or word embedding meth-
ods) represent their average ranks across all outcomes of the observations. Two or more
treatments are connected with each other with a thick horizontal line if they are not signif-
icantly different in terms of the considered metric. To perform this statistical analysis and
draw CD diagrams, we relied on the implementation provided by Ismail Fawaz et al. (2019).

We also perform a qualitative analysis of classification outcomes. We employ the t-
Distributed stochastic neighbor embedding (t-SNE) (Van der Maaten and Hinton 2008) to
visualize in the dimension space the words of a predicted true positive task and a false posi-
tive task. The t-SNE is a dimensionality reduction technique that has been widely used in the
Natural Language Processing (NLP) literature to project the relationship between words in
a corpus in the two-dimensional space (Wattenberg et al. 2016; Van Der Maaten 2014; Gis-
brecht et al. 2015). In our study, we created a distributed vector representation of size 100
for each word using the corresponding word embedding techniques. Thus, we used t-SNE
to reduce the dimensionality of the vectors and project the learned relationships between the
words in the two-dimensional space. The words used for consistent tasks should be placed
relatively closer in the feature space than the corresponding words of the inconsistent task.
Particularly, we expect the words forming the task name to be placed close to the words of
the task body of the consistent task. On the other hand, we expect the words that compose
the task name to be placed relatively further from those that constitute the task body for the
inconsistent task.

4.6 Word Embedding Selection

To answer RQ2, we chose three widely used word embedding learning models,
Word2vec (Mikolov et al. 2013), Doc2vec (Le and Mikolov 2014), and FastText (Joulin
et al. 2016). These embedding models are used by software engineering research for learn-
ing representations source codes and method names (Pradel and Sen 2018; Liu and et al
2019; Li et al. 2020; Fakhoury et al. 2018), and other natural language texts (Sulistya et al.

Empir Software Eng (2022) 27:178 Page 11 of 30 178

2020). Word2vec is a two-layer neural network that processes text by creating vector rep-
resentations from words. Word2vec can use either continuous bag-of-words (CBOW) or
continuous skip-gram to learn a distributed representation of the words. CBOW enables pre-
dicting a single word from a fixed window size of context words (or surrounding words),
whereas Skip-gram predicts several context words from a single input word. Doc2Vec learns
fixed-length feature representations from variable-length pieces of texts, such as sentences,
paragraphs, and documents. It extends Word2vec by considering the ordering and semantics
of the words within blocks of texts. Doc2vec can use two model architectures: Distributed
Bag of Words of Paragraph Vector (PV-DBOW) and Distributed Memory of Paragraph Vec-
tor (PV-DM), which are analogous to Skip-gram and CBOW implemented by Word2vec.
Doc2vec generates a single vector representation for every word among all documents in
the corpus by considering the additional context of the document. In addition to this vec-
tor, it generates a vector per document. However, to maintain the compatibility of Doc2vec
with the rest of our word embedding models, we did not use such a document-level vector.
Finally, FastText improves on Word2vec by taking word parts (e.g., prefixes, roots, and suf-
fixes) into account, enabling the embedding training on smaller datasets and generalizing to
unknown words.

In a recent study, Sulistya et al. (2020) compared different word embedding learn-
ing methods for finding software-relevant tweets. Following their guidelines, we used the
same hyper-parameter settings for each word embedding learning model (i.e., Word2vec,
Doc2Vec, and FastText). We choose the following key parameters: context window size (6)
and vector size (100). The context window defines the number of words that are used to
determine the context of each word. As the Ansible tasks are short texts, we use a window
size of 6. The vector size is the dimensionality of vector embeddings to be learned. Accord-
ing to the previous studies (Pennington et al. 2014; Mikolov et al. 2013), 100-400 is the
most frequently used setting, and the best accuracy is achieved with 300 tokens. However,
since the corpus and the vocabulary (the number of unique words) is small, we choose 100
tokens, which is also the default value used by our implementation (i.e., gensim), to prevent
overfitting.

5 Results of the Empirical Study

This section reports the results of the empirical study previously defined.

Table 3 Results for all considered metrics achieved on the 10 most used modules in Ansible using Support
Vector Machine

shell command set fact template file gather facts copy service debug fail

AUC 0.99 0.97 1.00 0.99 0.99 0.99 0.99 1.00 1.00 1.00

MCC 0.94 0.89 0.95 0.95 0.96 0.95 0.97 0.94 0.94 0.96

Accuracy 0.97 0.94 0.98 0.98 0.98 0.97 0.99 0.97 0.97 0.98

F1 score 0.97 0.95 0.97 0.98 0.98 0.97 0.99 0.97 0.97 0.98

Precision 0.96 0.93 0.98 0.96 0.97 0.95 0.99 0.96 0.96 0.97

Recall 0.98 0.97 0.97 0.99 0.99 1.00 0.99 0.98 0.98 0.99

Empir Software Eng (2022) 27:178178 Page 12 of 30

Table 4 Results for all considered metrics achieved on the 10 most used modules in Ansible using Random
Forest

shell command set fact template file gather facts copy service debug fail

AUC 0.98 0.97 0.99 0.98 0.99 0.99 0.98 0.99 0.99 0.99

MCC 0.87 0.84 0.86 0.89 0.92 0.92 0.84 0.92 0.93 0.92

Accuracy 0.94 0.92 0.93 0.95 0.96 0.96 0.92 0.96 0.96 0.96

F1 score 0.94 0.93 0.93 0.95 0.96 0.96 0.92 0.96 0.96 0.96

Precision 0.94 0.92 0.91 0.92 0.95 0.94 0.92 0.98 0.96 0.95

Recall 0.93 0.93 0.95 0.98 0.97 0.98 0.92 0.95 0.97 0.97

5.1 RQ1. To what extent canMachine Learning be employed to detect linguistic
inconsistencies in IaC?

Tables 3, 4, 5, 6, 7 and 8 summarize the performance of the selected classifiers to detect lin-
guistic inconsistency on the 10 most used modules in Ansible. Figure 5 depicts the boxplots
for the MCC, AUC-ROC, and accuracy metrics.

Overall, we can observe that all ML models perform similarly with the best results
achieved by SVM. This classifier yields an accuracy ranging from 0.94 to 0.99, MCC from
0.89 to 0.97, and AUC from 0.97 to 1. It detects inconsistent tasks with F1 score ranging
from 0.95 to 0.99, recall from 0.97 to 1, precision from 0.93 to 0.99. Among the neural-
network based classifiers, the MLP classifier performed the better in terms of all evaluation
metrics and the CNN model is the worst performer. MLP yielded an accuracy ranging from
accuracy from 0.95 to 0.99, MCC from 0.90 to 0.97, and AUC from 0.98 to 1.

On the other hand, it finds inconsistent tasks with F1 score ranging from 0.95 to 0.98,
recall from 0.96 to 0.99, precision from 0.93 to 0.99.

Figure 6 depicts the result of the statistical analysis we conducted on all the considered
ML classifiers. Looking at Support Vector Machine, eXtreme Gradient Boosting, and Ran-
dom Forest, we can notice that although the former is the best-performing classifier over
eight Ansible modules in terms of the metrics MCC, AUC-ROC, and accuracy. For both
accuracy and MCC metrics, there is no difference between RF and XGBoost models. Fur-
thermore, considering the AUC-ROC metric, SVM and RF perform similarly. The results
also show that the differences between the performance of the three neural networks-based
classifiers are statistically significant (there is no a think line connecting the classifiers).
Although in a different context (extracting entities from textual medical records using

Table 5 Results for all considered metrics achieved on the 10 most used modules in Ansible using eXtreme
Gradient Boost

shell command set fact template file gather facts copy service debug fail

AUC 0.95 0.93 0.96 0.94 0.97 0.98 0.93 0.96 0.95 0.96

MCC 0.90 0.86 0.93 0.88 0.93 0.93 0.86 0.91 0.91 0.91

Accuracy 0.95 0.93 0.96 0.94 0.97 0.97 0.93 0.96 0.95 0.96

F1 score 0.95 0.94 0.96 0.94 0.97 0.97 0.93 0.96 0.95 0.95

Precision 0.95 0.92 0.95 0.93 0.96 0.96 0.93 0.97 0.96 0.95

Recall 0.95 0.95 0.97 0.97 0.98 0.97 0.93 0.95 0.95 0.96

Empir Software Eng (2022) 27:178 Page 13 of 30 178

Table 6 Results for all considered metrics achieved on the 10 most used modules in Ansible using Multi-
Layer Perceptron

shell command set fact template file gather facts copy service debug fail

AUC 0.98 0.98 0.99 0.99 0.99 0.98 0.99 1.00 1.00 0.99

MCC 0.91 0.90 0.94 0.92 0.94 0.95 0.94 0.96 0.97 0.95

Accuracy 0.96 0.95 0.97 0.96 0.97 0.97 0.97 0.98 0.98 0.97

F1 score 0.96 0.95 0.97 0.96 0.97 0.97 0.97 0.98 0.98 0.97

Precision 0.95 0.93 0.96 0.95 0.96 0.96 0.95 0.98 0.99 0.97

Recall 0.96 0.98 0.97 0.98 0.98 0.99 0.99 0.98 0.98 0.97

Table 7 Results for all considered metrics achieved on the 10 most used modules in Ansible using Long-
Short Term Memory

shell command set fact template file gather facts copy service debug fail

AUC 0.86 0.93 0.81 0.939 0.948 0.84 0.89 0.87 0.76 0.70

MCC 0.73 0.85 0.65 0.88 0.90 0.70 0.79 0.74 0.55 0.40

Accuracy 0.85 0.93 0.82 0.94 0.95 0.84 0.89 0.87 0.76 0.70

F1 score 0.84 0.93 0.85 0.93 0.95 0.83 0.87 0.86 0.78 0.74

Precision 0.95 0.94 0.78 0.90 0.95 0.93 0.98 0.90 0.69 0.69

Recall 0.75 0.92 0.93 0.97 0.95 0.75 0.79 0.82 0.90 0.80

Fig. 5 Boxplots depicting MCC, AUC-ROC, and accuracy for each classifier

Empir Software Eng (2022) 27:178178 Page 14 of 30

Fig. 6 Critical Difference diagram based on the Wilcoxon-Holm test to detect pairwise significance between
the performance achieved by the considered classifiers: MCC, AUC-ROC, and accuracy metrics

word embeddings and neural networks), our results are similar to those previously shown
by Dudchenko and Kopanitsa (2019).

Figure 7 shows the t-SNE results for the classification results depicted in Fig. 8. We
used the SVM classifier, which is the best-performing model. We observed that the words
of the task name are positioned relatively closer to the words of the task body for the pre-
dicted false positive task compared to the corresponding word positioning for the predicted
true positive task. For example, the words Save, iptables are relatively closer to the words
iptables-save, /etc/sysconfig/iptables, and become in the false-positive example. In contrast,
the words Get, file descriptors, total limit are positioned relatively far from the words open-
shift cli, get, and project in the true positive example. Please note that the scales are different
in the two figures. However, all words of task names and bodies are relatively closer in case
of false positives than true positives.

The explanation for the erroneous classification for the false positive observation lies
within the collected Ansible tasks. Most of the misclassified tasks contain words of low
occurrence frequency in the rest of the tasks. Thus, these observations are too few for

Fig. 7 The t-SNE visualizations of the words of a true positive predicted observation and a false positive
predicted observation of the SVM ML model

Empir Software Eng (2022) 27:178 Page 15 of 30 178

Fig. 8 Ansible tasks used in the t-SNE visualizations of Fig. 7

the classifier to learn to predict them accurately. For example, for the demonstrated false-
positive task illustrated in Figs. 7 and 8, the combination of the words Save and iptables
does not exist in any other task in the dataset. Therefore, such observations are treated as
outliers that lead to wrong predictions. This pattern is observed for most of the misclassi-
fied observations. Finally, the rest of the misclassifications occur because some words in
the tasks of the test set do not exist in the corpus of words of the word embedding model
used during the training phase. As a result, the classifiers miss feature representations of
some words and erroneously classify the tasks. To reduce these misclassification errors in
the future, we will need a bigger Ansible tasks corpus to train the ML models to perform
the classification task accurately.

We also qualitatively analyzed the classification results of a deep learning model, namely
the CNN model. Analyzing the visualizations in Fig. 9 for the classified tasks in Fig. 10, we
can observe the same pattern for the word positioning between the predicted true positive
example and the false positive example as remarked above. Namely, the words contained
in the false-positive example are placed closer in the dimension space than the correspond-
ing words of the true positive example. This observation indicates that the task was indeed
falsely classified as inconsistent. The reasoning for the occurring misclassifications is the

Fig. 9 The t-SNE visualizations of the words of a true positive predicted observation and a false positive
predicted observation for the CNN deep learning model

Empir Software Eng (2022) 27:178178 Page 16 of 30

Fig. 10 Ansible tasks used in the t-SNE visualizations of Fig. 9

same as above, leading to the lower performance of the DL models compared to the corre-
sponding performance of the ML models. DL models require a large text corpus to make
high-quality predictions (Roberts 2016). Consequently, tasks with no vector representations
or word combinations that do not occur in other tasks will ultimately result in erroneous
predictions.

RQ1 summary:Machine learning classifiers can be successfully employed to detect lin-
guistic inconsistency in Infrastructure-as-Code, confirming previous findings (Fakhoury
et al. 2018). Among them, deep learning models should be carefully considered given
their low resource efficiency and high computational cost at training time, as previously
shown in other contexts (Fu and Menzies 2017; Fakhoury et al. 2018).

5.2 RQ2. ToWhat Extent canWord Embedding Representations Affect
the Performance?

Figures 11, 12 and 13 show the boxplots for the MCC, AUC-ROC, and accuracy values
obtained by applying different word embedding techniques with the six classifiers over
eight Ansible modules. The online appendix includes the detailed experimental results of
the six classifiers for each embedding method. Generally, all models have high performance
in terms of the considered metrics. However, the models based on Word2vec and FastText

Fig. 11 Boxplots representing the MCC values obtained by the word embedding methods for Ansible name-
body inconsistency detection

Empir Software Eng (2022) 27:178 Page 17 of 30 178

Fig. 12 Boxplots representing the AUC-ROC values obtained by the word embedding methods for Ansible
name-body inconsistency detection

achieve the best results, and their variants based on Skip-gram have a smaller performance
variance. Looking at Doc2vec, the model based on PV-DM, which is analogous to Word2vec
CBOW, performs better than the ones based on PV-DBOW which is analogous to Word2vec
Skip-gram.

The results are confirmed by the statistical analysis, which results are depicted in
Figs. 14, 15 and 16. Generally, the word embedding models Word2vec and FastText achieve
the best results in terms of the considered metrics, and the Doc2vec model is the worst per-
former. All the embedding models except the Doc2vec PV-DBOW model perform similarly
over eight modules in terms of the AUC-ROC and accuracy metrics. There are no statisti-
cally significant differences among FastText and Word2vec models in terms of MCC. Our
results confirm previous work (Sulistya et al. 2020; Mikolov et al. 2013) which assessed the
superiority of Word2vec and FastText in a different context (i.e., text mining). In addition,

Fig. 13 Boxplots representing the accuracy values obtained by the word embedding methods for Ansible
name-body inconsistency detection

Empir Software Eng (2022) 27:178178 Page 18 of 30

Fig. 14 Critical Difference diagram based on the Wilcoxon-Holm test to detect pairwise significance
between the AUC-ROC achieved by the considered techniques for word embedding

our work agrees with the findings of previous work (Lau and Baldwin 2016) suggesting
that Doc2vec creates document embeddings which align with lower frequency words when
the documents are short and the corpus is relatively small. The maximum index of our cor-
pus consists of 9,651 unique words and the average size of our task sequences is 22 token
sequences. Both numbers are relatively low compared to the corresponding numbers of the
benchmark NLP task used for the evaluation of the Doc2vec model (Le and Mikolov 2014).

RQ2 summary: The models trained using Word2vec and FastText exhibit better per-
formance than those trained using Doc2vec. Although the models based on Skip-gram
seem to be superior to those trained on Continuous Bag of Words, this difference is not
statistically significant.

5.3 RQ3. ToWhat Extent can the Approach Find Linguistic Inconsistencies
in Real-World IaC Scripts?

To evaluate the effectiveness of our IaC inconsistency detectors, we applied them to unmod-
ified real-world Ansible tasks and manually inspected the reported inconsistencies to assess
their precision. We used the best detector, which is the SVM model with Word2vec.

5.3.1 Results

To evaluate the best-performing model on a real-world dataset, the first three authors of
this paper manually assessed whether the predicted label for a task is correct or not. We
addressed all the discrepancies through discussions. Cohen’s Kappa coefficient was 0.786,
indicating a substantial agreement. Since the number of tasks in the real-world dataset was
relatively high (i.e., 14,116), we examined only a statistically significant sample of 380
tasks selected from the dataset by considering a 95% confidence level and a 5% margin of
error. All tasks in the real-world sample had an inconsistent predicted label. This way, we
could evaluate the performance of our model based on the number of the predicted false
positives. The results suggest that our model correctly detected inconsistency for 193 tasks
while falsely predicting 187 tasks. These results are comparable to the results reported in

Fig. 15 Critical Difference diagram based on the Wilcoxon-Holm test to detect pairwise significance
between the MCC achieved by the considered techniques for word embedding

Empir Software Eng (2022) 27:178 Page 19 of 30 178

Fig. 16 Critical Difference diagram based on the Wilcoxon-Holm test to detect pairwise significance
between the accuracy achieved by the considered techniques for word embedding

a previous study (Pradel and Sen 2018), which motivated our work regarding the argument
swapping transformation for the creation of the inconsistent set.

5.3.2 Qualitative Analysis of Inconsistencies and False Positives

Our best-performing model contains vector representations for 9,651 words, which com-
prise the Ansible tasks during the training phase. The statistically significant sample of the
real-world dataset consisted of 4791 unique words. The relevantly average performance
of our model can be explained by the fact that only 1,316 common words existed in the
pre-trained corpus of our model. In other words, our model knew the features (vector pre-
sentations) for only 27% of the words of the real-world dataset. We deem this amount
insufficient to predict effectively whether a task is consistent or not since our model did
not contain the corresponding vector representations for most of the words in the real-world
dataset.

We qualitatively assessed the result for a predicted true positive task and a predicted false
positive task by analyzing Fig. 17 and the corresponding tasks on Fig. 18 that confirm the
findings reported in the two previous sections. Particularly, we observed that the distances
between the words of the false-positive task are closer than those of the true-positive task.
For example, regarding the false positive task, the task name words such as reload and
systemd are positioned closer to the corresponding task body words such as daemon-reload,
systemctl and when. This result implies that the pre-trained embedding model based on our

Fig. 17 The t-SNE visualizations of the words of a true positive predicted observation and a false positive
predicted observation for the real-world dataset

Empir Software Eng (2022) 27:178178 Page 20 of 30

Fig. 18 Ansible tasks used in the t-SNE visualizations of Fig. 17

dataset could successfully detect the relationships between the words in the unseen real-
world set even with a relatively small number of common words. However, our classifier is
unable to predict the correct labels. Therefore, this confirms our findings from the previous
sections, which suggest that the classifiers lack performance when there are missing word
representations in the feature space. Finally, given the small number of common words
between the tasks of our dataset and the real-world dataset, we note that the sets contain a
significant number of unique tasks. This result suggests that to improve the performance of
our model, we need to collect and include a higher number of tasks in the training phase.

RQ3 summary: Our approach can yield effective defect predictors that find linguistic
inconsistencies in real-world Infrastructure-as-Code scripts.

6 Threats to Validity

We present the potential threats to the internal, external, and construct validity of our
findings.

6.1 Threats to Construct Validity

The collected repositories may not be relevant for the problem at hand. We mitigated this
threat by applying the criteria used in previous works on IaC smell detection to ensure the
quality of the collected data set. Another threat to construct validity concerns the muta-
tion of scripts employed to generate inconsistent cases, which may not represent real-world
inconsistent tasks. Please consider that we created datasets in which consistent and incon-
sistent programs are equally represented. However, this assumption could not hold, leading
to a different class distribution compared to real settings. Nevertheless, we tried to mitigate
this threat by applying the existing approaches that have successfully used mutation to gen-
erate the training data (Li et al. 2020; Pradel and Sen 2018). We plan to further mitigate this
threat by gathering more real-cases of inconsistent Ansible tasks. As discussed in Section
4.6, we leveraged the configurations employed by previous studies for word embedding
models. While the selected parameters performed well, experiments with different config-
urations would have provided some insights into the effectiveness of the word embedding
methods.

Empir Software Eng (2022) 27:178 Page 21 of 30 178

Table 8 Results for all considered metrics achieved on the 10 most used modules in Ansible using
Convolutional Neural Networks

shell command set fact template file gather facts copy service debug fail

AUC 0.85 0.76 0.77 0.84 0.89 0.80 0.84 0.85 0.84 0.68

MCC 0.70 0.52 0.54 0.69 0.77 0.61 0.70 0.71 0.70 0.39

Accuracy 0.85 0.76 0.76 0.84 0.88 0.80 0.85 0.85 0.84 0.69

F1 score 0.84 0.76 0.77 0.86 0.88 0.82 0.87 0.86 0.85 0.73

Precision 0.90 0.72 0.72 0.80 0.93 0.81 0.82 0.79 0.77 0.66

Recall 0.79 0.80 0.84 0.92 0.84 0.84 0.93 0.94 0.95 0.83

6.2 Threats to Internal Validity

The choice of the features used to train the classifiers could influence linguistic anti-patterns
detection. We mitigated this threat by training the model using several features (obtained by
transforming each task to a vector space of words) extracted from more than ten thousand
Ansible tasks. The feature engineering for the classification task depends on the quality of
the code base, including naming conventions, typos, and abbreviations. This aspect poses a
threat to validity, and advanced NLP techniques can be employed to overcome this.

6.3 Threats to External Validity

The conclusions are derived only from a subset of modules in Ansible (i.e., the ten most
used), which might not be reproducible for other modules and languages. However, we used
both generic modules (such as command modules) and more specific modules. Specific
modules (e.g., the copy module) do focus works, but general modules can execute ad-hoc
OS commands. We believe that using a mix of generic and specific modules may mitigate,
at least partially, this threat. Finally, we analyzed only Ansible projects, and the results
could not generalize to other IaC languages (e.g., Chef, Puppet). Extending our approach to
these languages is part of our agenda. We validated our approach with a real-world dataset
manually validated by the first three authors. We addressed all the discrepancies through
discussions and achieved a percentage of agreement of 89%, with Cohen’s kappa equal
to 0.786, which indicates a substantial agreement. Nevertheless, manual analyses present
intrinsic bias that could have affected the generalizability of the results.

7 RelatedWork

In this section, we first discuss the existing studies on IaC, which we ground on a recent
mapping study on IaC research (Rahman et al. 2019). Then, we overview the linguistic
anti-patterns literature for other programming languages.

7.1 Empirical Studies related to IaC

According to the mapping study, IaC has been used to support the automated provision-
ing and deployment of applications on different infrastructures and implement DevOps and
continuous deployment. Several empirical studies focus on testing and quality assurance
and the evolution of IaC artifacts to analyze how practitioners adopt this technology. IaC

Empir Software Eng (2022) 27:178178 Page 22 of 30

has been used to support the automated provisioning and deployment of applications on dif-
ferent infrastructures and implement DevOps and continuous deployment. Guerriero et al.
(2019) identified further insights on the challenges related to the IaC development and test-
ing in industrial contexts by surveying 44 practitioners. Sandobalı́n et al. (2020) focused on
the effectiveness of IaC tools, while Rahman et al. (Islam Shamim et al. 2020; Hasan et al.
2020) on testing and security practices mined from grey literature. With similar goals, the
latter analyzed the development practices that contributed to defective IaC scripts (Rahman
et al. 2020) and replicated previous studies (Rahman et al. 2021). Finally, Opdebeeck et al.
(2020) analyzed the adoption of semantic versioning in Ansible roles, while Kokuryo et al.
(2020) examined the usage of imperative modules in the same language.

7.2 IaC Quality and Defect Prediction

Most of the previous works describe infrastructure code quality in terms of smelliness (Fol-
wer 1999) and defects-proneness of Chef and Puppet infrastructure components. From a
smelliness perspective, Schwarz et al. (2018), Spinellis et al. (Sharma et al. 2016), and Rah-
man et al. (2019) applied the well-know concept to IaC, and identified code smells that can
be grouped into four groups: (i) Implementation Configuration such as complex expres-
sions and deprecated statements; (ii) Design Configuration such as broken hierarchies and
duplicate blocks; (iii) Security Smells such as admin by default and hard-coded secrets;
(iv) General Smells such as long resources and too many attributes. From a defect predic-
tion perspective, Rahman and Williams (2019b) identified ten source code measures that
significantly correlate with defective infrastructure as code scripts such as properties to exe-
cute bash and/or batch commands, to manage file permissions, and more. Dalla Palma et
al. (2020a, b, 2021) proposed a set of tools to calculate quality metrics for Ansible scripts
and projects and use them for predicting defective scripts. Kumara and et al (2020) pro-
posed a tool to detect smells in TOSCA scripts using an ontology-based approach. Cito et
al. (Schermann et al. 2018) detected violations of Docker best practices, while Dai et al.
(2020) leveraged static code analysis and rule-based reasoning to detect risky IaC arti-
facts. Finally, Sotiropoulos et al. (2020) crafted a tool to identify missing dependencies and
notifiers in Puppet manifests by analyzing system call traces.

In this work, we step up this research line by proposing a novel automated approach
that employs word embeddings and learning techniques to detect linguistic anti-patterns,
focusing on short-text-name-body inconsistencies in IaC code units, in particular Ansible.
We focused on Ansible, rather than Puppet and Chef, because Ansible is the most used IaC
in the industry (Guerriero et al. 2019). We evaluated the effectiveness of our approach with
various machine learning models, deep learning models, and word embedding models.

7.3 Linguistic Anti-patterns Literature in Other Domains

Arnaoudova et al. (2013) coined the term “software linguistic anti-patterns” for the bad
practices about naming and documentation in source code. The authors proposed a catalog
of such anti-patterns for object-oriented programs and assessed the relevance and useful-
ness of the catalog with an empirical study with developers (Arnaoudova et al. 2016). They
also studied how linguistic anti-patterns can exacerbate design smells and consequently
increase the change and fault proneness of source code (Guerrouj et al. 2017). A user study
by Fakhoury et al. (2020) showed the negative impact on the cognitive load experienced
by developers when reviewing code containing linguistic anti-patterns. The authors also

Empir Software Eng (2022) 27:178 Page 23 of 30 178

developed anti-pattern detectors using deep neural networks and traditional machine learn-
ing (Fakhoury et al. 2018). The evaluation of the detectors with a dataset of Java programs
showed that machine learning could outperform deep neural networks. With a large scale
dataset of libraries (APIs), Java projects using the APIs, and StackOverflow questions con-
cerning the APIs, Aghajani et al. (2018) studied the impacts of linguistic inconsistencies
with the libraries on the chance of introducing bugs in the projects using those libraries.
They found a 29% increase in the likelihood of introducing bugs. Palma et al. (2017) pro-
posed a catalog of linguistic anti-patterns in RESTful APIs, which mainly consider bad
practices in designing and documenting RESTful APIs. Their anti-pattern detection tool
applies semantic similarity checking techniques to detect the inconsistencies between API
documentation and API URLs. We believe that our study is the first work that studies the
linguistic anti-patterns in IaC programs.

8 Conclusion and FutureWork

In this paper, we study to what extent machine learning can detect linguistic inconsistencies
in Infrastructure-as-Code (IaC). In particular, we propose FINDICI, a method to detects
linguistic inconsistencies between names and bodies of IaC code units by leveraging word
embedding and learning models for classification tasks.

To evaluate our method, first, we generate a synthetic dataset of inconsistencies by apply-
ing simple code transformations to create inconsistent tasks from likely consistent tasks.
Next, we generate the word embeddings from the tokenized names and bodies of consis-
tent and inconsistent tasks. We used word embedding to train the various binary classifiers
for inconsistency detection. We evaluated the effectiveness of our approach with an Ansi-
ble dataset composed of 38 open source repositories using six machine learning algorithms
(three of which are based on neural networks) and six word embedding models.

Our results confirm that both classical learning algorithms and novel deep learning
algorithms with various word embedding methods can be successfully applied to detect
linguistic inconsistencies in IaC scripts.

As part of our future agenda, we plan to extend FINDICI to detect additional linguis-
tic inconsistencies and misconfigurations in Ansible code scripts. We also aim to extend
FINDICI to detect such issues in other IaC languages. Finally, to simplify practitioners’
adoption of our approach, we aim to enhance the semantic representation of Ansible tasks
to overcome the limitation of training a model per Ansible module.

Funding This work is supported by the European Commission grant no. 825480 (SODALITE H2020) and
no. 825040 (RADON H2020). We thank all members of the SODALITE and RADON consortia for their
inputs and feedback to the development of this paper. Fabio gratefully acknowledges the support of the Swiss
National Science Foundation through the SNF Projects No. PZ00P2 186090. In addition, the work has been
partially supported by the EMELIOT national research project, which has been funded by the MUR under
the PRIN 2020 program (Contract 2020W3A5FY).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Empir Software Eng (2022) 27:178178 Page 24 of 30

http://creativecommons.org/licenses/by/4.0/

References

Aghajani E, Nagy C, Bavota G, Lanza M (2018) A large-scale empirical study on linguistic antipatterns
affecting apis. In: 2018 IEEE International conference on software maintenance and evolution (ICSME),
pp 25–35. https://doi.org/10.1109/ICSME.2018.00012

Alon U, Zilberstein M, Levy O, Yahav E (2019) Code2vec: Learning distributed representations of code.
Proc. ACM Program Lang, p 3

Arnaoudova V, Di Penta M, Antoniol G (2016) Linguistic antipatterns: What they are and how developers
perceive them. Empir Softw Eng 21(1):104–158

Arnaoudova V, Di Penta M, Antoniol G, Guéhéneuc YG (2013) A new family of software anti-patterns:
Linguistic anti-patterns. In: 2013 17Th european conference on software maintenance and reengineering,
pp 187–196. IEEE

Benavoli A, Corani G, Mangili F (2016) Should we really use post-hoc tests based on mean-ranks? J Mach
Learn Res 17(1):152–161

Borovits N, Kumara I, Krishnan P, Palma SD, Di Nucci D, Palomba F, Tamburri DA, van den Heuvel WJ
(2020) Deepiac: Deep learning-based linguistic anti-pattern detection in iac. In: Proceedings of the 4th
ACM SIGSOFT International workshop on machine-learning techniques for software-quality evaluation,
MaLTeSQuE 2020, pp 7–12. Association for computing machinery

Chen T, Guestrin C (2016) Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd ACM
SIGKDD International conference on knowledge discovery and data mining, KDD ’16, pp 785–794.
Association for computing machinery, New York, NY, USA. https://doi.org/10.1145/2939672.2939785

Cheng J, Dong L, Lapata M (2016) Long short-term memory-networks for machine reading. In: Proceedings
of the 2016 Conference on empirical methods in natural language processing, pp 551–561. Associa-
tion for computational linguistics, Austin, Texas. https://doi.org/10.18653/v1/D16-1053. https://www.
aclweb.org/anthology/D16-1053

Corazza A, Maggio V, Scanniello G (2018) Coherence of comments and method imple-
mentations: a dataset and an empirical investigation. Software Qual J 26(2):751–777.
https://doi.org/10.1007/s11219-016-9347-1

Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297
Dai T, Karve A, Koper G, Zeng S (2020) Automatically detecting risky scripts in infrastructure code. In:

Proceedings of the 11th ACM Symposium on Cloud Computing, SoCC ’20, pp 358–371. Association
for computing machinery

Dalla Palma S, Di Nucci D, Palomba F, Tamburri DA (2020a) Toward a catalog of software quality metrics
for infrastructure code. J Syst Softw 170:110726

Dalla Palma S, Di Nucci D, Palomba F, Tamburri DA (2021) Within-project defect prediction of
infrastructure-as-code using product and process metrics. IEEE Trans Softw Eng, pp 1–1

Dalla Palma S, Di Nucci D, Tamburri DA (2020b) Ansiblemetrics: A python library for measuring
infrastructure-as-code blueprints in ansible. SoftwareX 12:100633

Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30
Di Nitto E, Gorroñogoitia J, Kumara I, Meditskos G, Radolović D, Sivalingam K, González RS (2020) An

approach to support automated deployment of applications on heterogeneous cloud-hpc infrastructures.
In: 2020 22Nd international symposium on symbolic and numeric algorithms for scientific computing
(SYNASC), pp 133–140. https://doi.org/10.1109/SYNASC51798.2020.00031

Dudchenko A, Kopanitsa G (2019) Comparison of word embeddings for extraction from med-
ical records. International Journal of Environmental Research and Public Health 16(22).
https://doi.org/10.3390/ijerph16224360. https://www.mdpi.com/1660-4601/16/22/4360

Fakhoury S, Arnaoudova V, Noiseux C, Khomh F, Antoniol G (2018) Keep it simple: is deep learning
good for linguistic smell detection? In: 2018 IEEE 25Th international conference on software analysis,
evolution and reengineering (SANER), pp 602–611

Fakhoury S, Roy D, Ma Y, Arnaoudova V, Adesope O (2020) Measuring the impact of lexical and structural
inconsistencies on developers’ cognitive load during bug localization. Empir Softw Eng 25(3):2140–
2178. https://doi.org/10.1007/s10664-019-09751-4

Folwer M (1999) Refactoring: Improving the design of existing programs
Friedman M (1940) A comparison of alternative tests of significance for the problem of m rankings. Ann

Math Stat 11(1):86–92
Fu W, Menzies T (2017) Easy over hard: a case study on deep learning. In: Proceedings of the 2017 11th

joint meeting on foundations of software engineering, pp 49–60
Gisbrecht A, Schulz A, Hammer B (2015) Parametric nonlinear dimensionality reduction using kernel t-sne.

Neurocomputing 147:71–82

Empir Software Eng (2022) 27:178 Page 25 of 30 178

https://doi.org/10.1109/ICSME.2018.00012
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.18653/v1/D16-1053
https://www.aclweb.org/anthology/D16-1053
https://www.aclweb.org/anthology/D16-1053
https://doi.org/10.1007/s11219-016-9347-1
https://doi.org/10.1109/SYNASC51798.2020.00031
https://doi.org/10.3390/ijerph16224360
https://www.mdpi.com/1660-4601/16/22/4360
https://doi.org/10.1007/s10664-019-09751-4

Guerriero M, Garriga M, Tamburri DA, Palomba F (2019) Adoption, support, and challenges of
infrastructure-as-code: Insights from industry. In: 2019 IEEE International conference on software
maintenance and evolution (ICSME), pp 580–589. IEEE

Guerrouj L, Kermansaravi Z, Arnaoudova V, Fung BCM, Khomh F, Antoniol G, Guéhéneuc YG (2017)
Investigating the relation between lexical smells and change- and fault-proneness: an empirical study.
Softw Qual J 25(3):641–670. https://doi.org/10.1007/s11219-016-9318-6

Hall T, Beecham S, Bowes D, Gray D, Counsell S (2011) A systematic literature review on fault prediction
performance in software engineering. IEEE Trans Softw Eng 38(6):1276–1304

Hasan MM, Bhuiyan FA, Rahman A (2020) Testing practices for infrastructure as code. In: Proceedings
of the 1st ACM SIGSOFT International workshop on languages and tools for next-generation testing,
LANGETI 2020, pp 7–12. Association for computing machinery

Haykin S (1998) Neural networks: a comprehensive foundation, 2nd edn. Prentice Hall PTR, USA
Ho TK (1995) Random decision forests. In: Proceedings of 3rd international conference on document

analysis and recognition, vol 1, pp 278–282. IEEE
Holm S (1979) A simple sequentially rejective multiple test procedure. Scandinavian journal of statistics, pp

65–70
Islam Shamim MS, Ahamed Bhuiyan F, Rahman A (2020) Xi commandments of kubernetes security: a sys-

tematization of knowledge related to kubernetes security practices. In: 2020 IEEE Secure development
(secdev), pp 58–64

Ismail Fawaz H, Forestier G, Weber J, Idoumghar L, Muller PA (2019) Deep learning for time series
classification: a review. Data Min Knowl Disc 33(4):917–963

James G, Witten D, Hastie T, Tibshirani R (2013) An introduction to statistical learning, vol. 112 Springer
Jiang Y, Adams B (2015) Co-evolution of infrastructure and source code-an empirical study. In: 2015

IEEE/ACM 12Th working conference on mining software repositories, pp 45–55. IEEE
Joulin A, Grave E, Bojanowski P, Mikolov T (2016) Bag of tricks for efficient text classification.

arXiv:1607.01759
Kokuryo S, Kondo M, Mizuno O (2020) An empirical study of utilization of imperative modules in ansible.

In: 2020 IEEE 20Th international conference on software quality, reliability and security (QRS), pp
442–449

Kumara I, Mundt P, Tokmakov K, Radolović D, Maslennikov A, González RS, Fabeiro JF, Quattrocchi G,
Meth K, Di Nitto E et al (2021) Sodalite@rt: orchestrating applications on cloud-edge infrastructures. J
Grid Comput 19(3):1–23

Kumara I et al (2020) Towards semantic detection of smells in cloud infrastructure code. In: Proceedings of
the 10th International Conference on Web Intelligence, Mining and Semantics, WIMS 2020, pp 63–67.
Association for computing machinery, New York, NY, USA. https://doi.org/10.1145/3405962.3405979

Lau JH, Baldwin T (2016) An empirical evaluation of doc2vec with practical insights into document
embedding generation. arXiv:1607.05368

Lawrie D, Morrell C, Feild H, Binkley D (2007) Effective identifier names for comprehension and memory.
Innov Syst Softw Eng 3(4):303–318

Le Q, Mikolov T (2014) Distributed representations of sentences and documents. In: International conference
on machine learning, pp 1188–1196. PMLR

Li G, Liu H, Jin J, Umer Q (2020) Deep learning based identification of suspicious return statements. In: 2020
IEEE 27Th international conference on software analysis, evolution and reengineering, pp 480–491

Li N, Shepperd M, Guo Y (2020) A systematic review of unsupervised learning techniques for software
defect prediction. Inf Softw Technol 122:106287. https://doi.org/10.1016/j.infsof.2020.106287. https://
www.sciencedirect.com/science/article/pii/S0950584920300379

Liu K et al (2019) Learning to spot and refactor inconsistent method names. In: 2019 IEEE/ACM 41St
international conference on software engineering (ICSE), pp 1–12

Matsugu M, Mori K, Mitari Y, Kaneda Y (2003) Subject independent facial expression recognition with
robust face detection using a convolutional neural network. Neural Netw 16(5-6):555–559

Mikolov T, Chen K, Corrado G, Dean J (2013) Efficient estimation of word representations in vector space.
arXiv:1301.3781

Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J (2013) Distributed representations of words and phrases
and their compositionality. In: Advances in neural information processing systems, pp 3111–3119

Minaee S, Kalchbrenner N, Cambria E, Nikzad N, Chenaghlu M, Gao J (2021) Deep learning based text
classification: A comprehensive review

Moore DS, Notz WI, Fligner MA (2015) The basic practice of statistics. Macmillan Higher Education
Morris K (2016) Infrastructure as code: managing servers in the cloud. ” O’Reilly Media Inc.”
Omri S, Sinz C (2020) Deep learning for software defect prediction: A survey. In: Proceedings of the

IEEE/ACM 42nd International conference on software engineering workshops, ICSEW’20, pp 209–214.
Association for computing machinery, New York, NY, USA. https://doi.org/10.1145/3387940.3391463

Empir Software Eng (2022) 27:178178 Page 26 of 30

https://doi.org/10.1007/s11219-016-9318-6
http://arxiv.org/abs/1607.01759
https://doi.org/10.1145/3405962.3405979
http://arxiv.org/abs/1607.05368
https://doi.org/10.1016/j.infsof.2020.106287
https://www.sciencedirect.com/science/article/pii/S0950584920 300379
https://www.sciencedirect.com/science/article/pii/S0950584920 300379
http://arxiv.org/abs/1301.3781
https://doi.org/10.1145/3387940.3391463

Opdebeeck R, Zerouali A, Velázquez-rodrı́guez C, Roover CD (2020) Does infrastructure as code adhere to
semantic versioning? an analysis of ansible role evolution. In: 2020 IEEE 20Th international working
conference on source code analysis and manipulation (SCAM), pp 238–248

Palma F, Gonzalez-Huerta J, Founi M, Moha N, Tremblay G, Guéhéneuc YG (2017) Semantic analysis of
restful apis for the detection of linguistic patterns and antipatterns. Int J Coop Inf Syst 26(02):1742001.
https://doi.org/10.1142/S0218843017420011

Pennington J, Socher R, Manning C (2014) GloVe: Global vectors for word representation. In: Proceedings
of the 2014 Conference on empirical methods in natural language processing (EMNLP), pp 1532–1543.
Association for computational linguistics, Doha, Qatar. https://doi.org/10.3115/v1/D14-1162. https://
www.aclweb.org/anthology/D14-1162

Pradel M, Sen K (2018) Deepbugs: A learning approach to name-based bug detection. Proc. ACM Program.
Lang., p 2. https://doi.org/10.1145/3276517

Rahman A, Farhana E, Williams L (2020) The ‘as code’ activities: Development anti-patterns for infrastruc-
ture as code. Empir Softw Eng 25(5):3430–3467

Rahman A, Mahdavi-Hezaveh R, Williams L (2019) A systematic mapping study of infrastructure as code
research. Inf Softw Technol 108:65–77

Rahman A, Parnin C, Williams L (2019) The seven sins: Security smells in infrastructure as code scripts. In:
Proceedings of the 41st International conference on software engineering, pp 164–175

Rahman A, Rahman MR, Parnin C, Williams L (2021) Security smells in ansible and chef scripts: A
replication study. ACM Transactions on Software Engineering and Methodology (TOSEM) 30(1)

Rahman A, Williams L (2018) Characterizing defective configuration scripts used for continuous deploy-
ment. In: 2018 IEEE 11Th international conference on software testing, verification and validation
(ICST), pp 34–45. IEEE

Rahman A, Williams L (2019) Source code properties of defective infrastructure as code scripts. Inf Softw
Technol 112:148–163

Rahman A, Williams L (2019) Source code properties of defective infrastructure as code scripts. Inf Softw
Technol 112:148–163

Roberts K (2016) Assessing the corpus size vs. similarity trade-off for word embeddings in clinical nlp. In:
Proceedings of the clinical natural language processing workshop (ClinicalNLP), pp 54–63

Sandobalı́n J, Insfran E, Abrah ao S (2020) On the effectiveness of tools to support infrastructure as code:
Model-driven versus code-centric. IEEE Access 8:17734–17761

Schermann G, Zumberi S, Cito J (2018) Structured information on state and evolution of dockerfiles on
github. In: Proceedings of the 15th International conference on mining software repositories, MSR ’18,
pp 26–29. ACM

Schwarz J, Steffens A, Lichter H (2018) Code smells in infrastructure as code. In: 2018 11Th international
conference on the quality of information and communications technology (QUATIC), pp 220–228. IEEE

Sharma T, Fragkoulis M, Spinellis D (2016) Does your configuration code smell? In: 2016 IEEE/ACM 13Th
working conference on mining software repositories (MSR), pp 189–200. IEEE

Sotiropoulos T, Mitropoulos D, Spinellis D (2020) Practical fault detection in puppet programs. In: Proceed-
ings of the ACM/IEEE 42nd International conference on software engineering, ICSE ’20, pp 26–37.
Association for computing machinery

Spadini D, Aniche M, Bacchelli A (2018) Pydriller: Python framework for mining software repositories. In:
Proceedings of the 2018 26th ACM Joint meeting on european software engineering conference and
symposium on the foundations of software engineering, pp 908–911

Sulistya A, Prana GAA, Sharma A, Lo D, Treude C (2020) Sieve: Helping developers
sift wheat from chaff via cross-platform analysis. Empir Softw Eng 25(1):996–1030.
https://doi.org/10.1007/s10664-019-09775-w

Takang AA, Grubb PA, Macredie RD (1996) The effects of comments and identifier names on program
comprehensibility: an experimental investigation. J Prog Lang 4(3):143–167

Van Der Maaten L (2014) Accelerating t-sne using tree-based algorithms. J Mach Learn Res 15(1):3221–
3245

Van der Maaten L, Hinton G (2008) Visualizing data using t-sne. Journal of machine learning research 9(11)
Wang S, Liu T, Tan L (2016) Automatically learning semantic features for defect prediction. In: Proceedings

of the 38th International conference on software engineering, ICSE ’16, pp 297-308. Association for
computing machinery, New York, NY, USA

Wattenberg M, Viégas F, Johnson I (2016) How to use t-sne effectively. Distill 1(10):e2
Wilcoxon F (1992) Individual comparisons by ranking methods. In: Breakthroughs in statistics, pp 196–202.

Springer

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Empir Software Eng (2022) 27:178 Page 27 of 30 178

https://doi.org/10.1142/S0218843017420011
https://doi.org/10.3115/v1/D14-1162
https://www.aclweb.org/anthology/D14-1162
https://www.aclweb.org/anthology/D14-1162
https://doi.org/10.1145/3276517
https://doi.org/10.1007/s10664-019-09775-w

Nemania Borovits

Indika Kumara

Dario Di Nucci

Empir Software Eng (2022) 27:178178 Page 28 of 30

Parvathy Krishnan

Stefano Dalla Palma

Fabio Palomba

Empir Software Eng (2022) 27:178 Page 29 of 30 178

Damian A. Tamburri

Willem-Jan van den Heuvel

Empir Software Eng (2022) 27:178178 Page 30 of 30

	FindICI: Using ML to detect linguistic inconsistencies in IaC
	Abstract
	Introduction
	Structure of the paper

	Infrastructure-as-Code and their Linguistic Inconsistencies
	Infrastructure-as-Code and Ansible
	Linguistic Inconsistencies in Ansible Tasks

	FindICI: A Framework for Learning to Detect Code-Description Inconsistencies in Infrastructure Codes
	Generating Training and Test Data
	Tokenization of Names and Bodies
	Creating Vector Representations
	Training and Tuning Prediction Models
	Inconsistency Identification
	Implementation

	Empirical Study Definition and Design
	Research Questions
	Data Collection
	Classifiers Selection
	Model Selection
	Model Validation
	Word Embedding Selection

	Results of the Empirical Study
	RQ1. To what extent can Machine Learning be employed to detect linguistic inconsistencies in IaC?
	RQ2. To What Extent can Word Embedding Representations Affect the Performance?
	RQ3. To What Extent can the Approach Find Linguistic Inconsistencies in Real-World IaC Scripts?
	Results
	Qualitative Analysis of Inconsistencies and False Positives

	Threats to Validity
	Threats to Construct Validity
	Threats to Internal Validity
	Threats to External Validity

	Related Work
	Empirical Studies related to IaC
	IaC Quality and Defect Prediction
	Linguistic Anti-patterns Literature in Other Domains

	Conclusion and Future Work
	References

