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Abstract
Code smells are poor implementation choices that developers apply while evolving source
code and that affect program maintainability. Multiple automated code smell detectors have
been proposed: while most of them relied on heuristics applied over software metrics, a
recent trend concerns the definition of machine learning techniques. However, machine
learning-based code smell detectors still suffer from low accuracy: one of the causes is the
lack of adequate features to feed machine learners. In this paper, we face this issue by inves-
tigating the role of static analysis warnings generated by three state-of-the-art tools to be
used as features of machine learning models for the detection of seven code smell types.
We conduct a three-step study in which we (1) verify the relation between static analysis
warnings and code smells and the potential predictive power of these warnings; (2) build
code smell prediction models exploiting and combining the most relevant features coming
from the first analysis; (3) compare and combine the performance of the best code smell
prediction model with the one achieved by a state of the art approach. The results reveal
the low performance of the models exploiting static analysis warnings alone, while we
observe significant improvements when combining the warnings with additional code met-
rics. Nonetheless, we still find that the best model does not perform better than a random
model, hence leaving open the challenges related to the definition of ad-hoc features for
code smell prediction.
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1 Introduction

Software maintenance is known to be the most expensive phase of the software lifecycle
(Banker et al. 1993). This is not only due to continuous change requests, but also to the
increasing complexity that make developers unable to cope with software quality require-
ments (Lehman 1996). Indeed, in this scenario developers are often enforced to set aside
good design and implementation principles in order to deliver fast, possibly letting emerge
the so-called technical debt (Cunningham 1992), i.e., the introduction of quick workarounds
in the source code that worsen its maintainability.

A relevant form of technical debt is represented by bad code smells (Fowler and Beck
1999), a.k.a., code smells or simply smells: these are symptoms of poor implementation
solutions that previous research has negatively related to program comprehensibility (Abbes
et al. 2011; Politowski et al. 2020), change- and defect-proneness (Khomh et al. 2012;
Palomba et al. 2018b), and maintenance costs (Sjøberg et al. 2012; Soh et al. 2016). The
previous empirical investigations into the relation between code smells and software main-
tainability has motivated researchers in defining automated solutions for detecting code
smells (Azeem et al. 2019; de Paulo Sobrinho et al. 2018).

Most of the existing techniques rely on the combination of various software metrics (e.g.,
cohesion and coupling (Chidamber and Kemerer 1994)) through rules and heuristics (Moha
et al. 2009; Palomba et al. 2014b; Palomba et al. 2016)). While these have been shown to
reach an acceptable accuracy, there are still some key limitations that preclude their wide
usage in practice. In the first place, the output of these heuristic-based detectors cannot
be objectively assessed by developers (Arcelli Fontana et al. 2016a; Palomba et al. 2014a;
Taibi et al. 2017). Secondly, different detectors do not output the same results, making even
harder for developers to decide on whether to refactor source code (Arcelli Fontana et al.
2012). Finally, these detectors require thresholds to distinguish smelly from non-smelly
components which are hard to tune (Arcelli et al. 2015).

For the above-mentioned reasons, researchers have been starting considering the appli-
cation of machine learning techniques as an alternative. Indeed, these may be exploited
to address the limitations of heuristic methods by combining multiple metrics and learn-
ing code smell instances considered relevant by developers without the specification of any
threshold (Azeem et al. 2019). Nonetheless, the promises of machine learning-based code
smell detection have not yet been kept. Di Nucci et al. (2018b) showed that these detectors
fail in most cases, while (Pecorelli et al. 2019; Pecorelli et al. 2020a) identified (1) the little
contributions given by the features investigated so far and (2) the limited amount of code
smell instances available to train a machine learner in an appropriate manner as the two
main causes leading to those failures.

In this article, we started addressing the first problem by conducting a preliminary inves-
tigation into the contribution given by the warnings of automated static analysis tools to the
classification capabilities of machine learning-based code smell detectors. The choice of
focusing on those warnings was motivated by the type of design issues that can be identi-
fied through static analysis tools. More particularly, while some of the warnings they raise
are not directly related to source code design and code quality, there are several exceptions.
For instance, let consider the warning category called ‘bad practice’ raised by FINDBUGS,
one of the most widely used static analysis tools in practice (Vassallo et al. 2019). Accord-
ing to the list of warnings reported in the official documentation,1 this category includes

1The FINDBUGS official documentation: http://findbugs.sourceforge.net/bugDescriptions.html.
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a number of design-related warnings. Similarly, the warning category ‘design’ provided
by CHECKSTYLE and PMD is also associated with design issues. As such, static analy-
sis tools actually deal with the design of source code and pinpoint a number of violations
that may be connected to the presence of code smells. In the context of this paper, we first
hypothesized that the indications provided by the static analysis tools (Wedyan et al. 2009)
can be potentially useful to characterize code smell instances. Secondly, we conjectured
that the incorporation of these warnings within intelligent systems may represent a way to
reduce the high amount of false positives they output (Johnson et al. 2013).

To verify our hypotheses, we have investigated the potential contribution given by
individual types of warnings output by three static analysis tools, i.e., CHECKSTYLE, FIND-
BUGS, and PMD, to the prediction of three code smell types, i.e., God Class, Spaghetti
Code, and Complex Class. To this purpose, we analyzed five open-source projects. Then,
we used the most relevant features coming from the first analysis to build and assess the
capabilities of machine learning models when detecting the three considered smells. The
results of the study highlighted promising results: models built using the warnings of indi-
vidual static analysis tools score between 55% and 91% in terms of F-Measure, while the
warning types that contribute the most to the performance of the learners depended on the
specific code smell considered.

This paper extends our previous work (Lujan et al. 2020a) and enlarges our investigation
toward the usefulness of static analysis warnings for machine learning-based code smell
detection. We extend the number of code smells and software projects considered, taking
into account a total of seven code smell types over 25 releases of 5 open-source projects.
Afterwards, we design a three-step empirical study. First, we conduct a preliminary, moti-
vational investigation into the actual relation between static analysis warnings and code
smells, also attempting to assess the potential predictive power of those warnings.

Second, we start replicating the study conducted in our original paper (Lujan et al.
2020a), analyzing the performance of code smell detection techniques based machine learn-
ers and using the static analysis warnings as features. The results of our replication study
do not confirm our previous findings: indeed, when considering a larger set of projects,
the performance of the machine learners are way lower, especially in terms of precision.
In response to this negative result, we further investigate the problem by studying the over-
lap among the predictions made by machine learning models built using the warnings of
different static analysis tools as features: such an analysis reveals a high complementarity
suggesting that a combination of those warnings could potentially improve the code smell
detection capabilities. As such, we define and experiment a new combined model which
significantly perform better than the individual models. In the last part of our study, we go
beyond and analyze how this combined model can be further combined with additional code
metrics that have been used for code smell detection in previous work (Azeem et al. 2019).
While the performance of the combined model significantly performs better than previous
approaches based on software metrics.

To sum up, our paper provides the following contributions:

1. A preliminary analysis on the suitability of static analysis warnings in the context of
code smell detection;

2. An empirical understanding of how machine learning techniques for code smell
detection work when fed with warnings generated by automated static analysis tools;

3. A machine learning-based detector that combines multiple automated static analysis
tools, improving on the performance of individual detectors;
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4. An empirical understanding of how warning-based machine learning techniques for
code smell detection work in comparison with metric-based ones;

5. A machine learning-based detector that combines static analysis warnings and code
metrics, further improving detectors’ performance;

6. A comprehensive replication package (Pecorelli et al. 2021) which reports all data used
in our study and that can be used by researchers to verify/replicate our results as well
as build upon our findings.

Structure of the Paper Section 2 overviews the state of the art in machine learning for
code smell detection. Section 3 reports the methodology employed to address our research
objectives, while Section 4 reports the results obtained. Section 5 further discusses the main
findings of the study and overviews the implications that they have for the research com-
munity. In Section 6 we discuss the threats to the validity of our study. Finally, Section 7
concludes the paper and discusses our future research agenda.

2 Related Work

The use of machine learning techniques for code smell detection is recently gaining atten-
tion, as proved by the amount of publications in the last years. The interested reader can find
a complete overview of the research done in the field in the survey by Azeem et al. (2019).

2.1 Machine Learning for Code Smell Detection

Some early work has been conducted with the aim of devising machine learning solutions
that could be applied to detect individual code smell types, e.g., White et al. (2016), Khomh
et al. (2009), and Khomh et al. (2011). More recent papers have instead attempted to make
machine learning techniques general enough to support the identification of multiple code
smells. This is clearly the case of our empirical study and, for this reason, we overview in
the following the papers more closely connected.

Kreimer (2005) proposed a detection approach for two code smells (Long Method and
Large Class) based on a decision tree model in two software systems. The model provided a
good level of accuracy. The achieved results were later confirmed by Amorin et al. (Amorim
et al. 2015), who tested the previous technique over a medium-scale system, reaching an
accuracy up to 78%.

Khomh et al. (2011) and Khomh et al. (2009) employed Bayesian belief networks for the
detection of three code smells (Blob, Functional Decomposition, and Spaghetti Code) from
different open-source software, obtaining promising results.

Maiga et al. (2012b) adopted a support vector machine based approach to build a
code smell detection model. The model was trained using software metrics as features
for each instance and was extended taking into account the practitioners feedback (Maiga
et al. 2012a). The extended model is able to capture four code smells (Blob, Functional
Decomposition, Spaghetti Code and Swiss Army Knife) with an accuracy up to 74%.

Arcelli Fontana et al. were among the most active researchers in the field and applied
machine learning techniques to detect multiple code smell types (Arcelli Fontana et al.
2016b), estimate their harmfulness (Arcelli Fontana et al. 2016b), and compute their
intensity (Arcelli Fontana and Zanoni 2017), showing the potential usefulness of these
techniques. More specifically, in (Arcelli Fontana et al. 2016b) they applied 16 different
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machine-learning techniques on four types of code smells (Data Class, Large Class, Fea-
ture Envy, Long Method) and on 74 software systems. The highest accuracy (up to 95%)
was achieved by J48 and Random Forest. In a follow-up study (Arcelli Fontana and Zanoni
2017), the authors focused on the classification of these four code smell severity using
the same machine learning techniques. Also in this work, the best models reached highest
accuracy level (88%–96%).

In a replication study conducted by Di Nucci et al. (2018b), the authors pointed out
that the accuracy of machine learning-based code smell detectors is strongly connected to
the reliability of the dependent variable. This study has driven our choice of focusing on a
manually-built and publicly available dataset of code smell instances (Palomba et al. 2018a;
Palomba et al. 2015).

Pecorelli et al. (2020b) investigated the adoption of machine learning to classify code
smells based on the perceived criticality. The authors ranked four code smells (God Class,
Complex Class, Spaghetti Code, and Shotgun Surgery) based on machine learning depend-
ing on the harmfulness assigned by developers. Results showed that Random forest was
the best modelling technique with an accuracy between 72% and 85%. Pecorelli et al.
(2019) and Pecorelli et al. (2020a) also focused on the role of data balancing for code
smell prediction. More particularly, the authors first conducted a large-scale study to com-
pare the performance of heuristic-based and machine learning techniques (Random Forest,
J48, Support Vector Machine, and Naıve Bayes algorithm) using metrics to detect five code
smells (God Class, Spaghetti Cod, Class Data Should be Private, Complex Class, and Long
Method) in 25 releases of 13 software systems (Pecorelli et al. 2019): their results revealed
that heuristic-based technique has a slightly better performance than machine learning
approaches and that one of the key issues making the performance of machine learning poor
was the high imbalance between smelly and non-smelly components arising in real software
systems. In a follow-up work (Pecorelli et al. 2020a), the authors discovered that, in most
cases, machine learning-based detectors work better when no balancing is applied.

A recent study (Shcherban et al. 2020) applied two machine learning algorithms (Logistic
Regression and Bag of Words) to better locate code smells with a precision of 98% and a
recall of 97%. Differently from the others, this approach mines and analyzes code smell
discussions from textual artefacts (e.g., code reviews).

The role of machine learning algorithms was also investigated in the context of the rela-
tion between code quality and fault prediction capabilities (Ma et al. 2016; Palomba et al.
2017). Finally, Lujan et al. (Lujan et al. 2020b) investigated the possibility of prioritizing
code smell refactoring with the help of fault prediction results.

With respect to the papers discussed above, ours must be seen as complementary. We
aimed at assessing the capabilities of the warnings raised by automated static analysis
tools as features for code smell prediction. As such, we build upon the literature on the
identification of proper features for detecting code smells and present a novel methodology.

2.2 Machine Learning for Static Analysis Tools Detection

On a different note, a few works have applied machine learning techniques to analyze static
analysis warnings and, particularly, to evaluate change- and fault-proneness of SONARQUBE

violations (I Tollin et al. 2017; Falessi et al. 2017; Lenarduzzi et al. 2019a).
I Tollin et al. (2017), analyzed in the context of two industrial projects, analyzed whether

the warnings given by the tool are associated to classes with higher change-proneness, con-
firming the relation. Falessi et al. (Falessi et al. 2017) analyzed 106 SONARQUBE violations
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in an industrial project: the results demonstrated that 20% of faults were preventable should
these violations have been removed.

Lenarduzzi et al. (2019a) assessed the fault-proneness of SONARQUBE violations on
21 open-source systems applying seven machine learning algorithms (AdaBoost, Bag-
ging, Decision Tree, Extremely Randomized Trees, Gradient Boosting, Random Forest,
and XGBoost), and logistic regression. Results showed that violations classified as “bugs”
hardly lead to a failure.

Another work (Lenarduzzi et al. 2019b) applied eight machine learning techniques
(Linear Regression, Random Forest, Gradient Boost, Extra Trees, Decision Trees, Bag-
ging, AdaBoost, SVM) on 33 Java projects, to understand if Technical Debt—based on
SONARQUBE violations—could be derived from the 28 software metrics measured by
SONARQUBE. Results show that technical debt are not correlated with the 28 software
metrics. Considering another static analysis tool, a recent study (Lenarduzzi et al. 2021)
investigated if pull requests are accepted in open-source based on quality flaws identified by
PMD. The study considered 28 Java open-source projects, analyzing the presence of 4.7M
PMD rules in 36K pull requests. As machine Learning, they used eight different classifiers:
Logistic Regression, AdaBoost, Bagging, Decision Tree, ExtraTrees, GradientBoost, Ran-
dom Forest, and XGBoost. Unexpectedly, quality flaws measured by PMD turned out not
to affect the acceptance of a pull request at all.

Our work is complementary to those discussed above, since our goal is to exploit the
outcome of different static analysis tools in order to improve the accuracy of code smell
detection.

3 Research Methodology

In the context of this empirical study, we had the ultimate goal of assessing the extent to
which static analysis warnings can contribute to the identification of design issues in source
code. We faced this goal by means of multiple analyses and research angles.

We defined three main dimensions. At first, we conducted a statistical study aiming
at investigating whether and to what extent can static analysis warnings be actually used
and useful in the context of code smell detection. Such an analysis must be deemed as
preliminary, since it allowed us to quantify the potential benefits provided by those warn-
ings: should this have not provided sufficiently acceptable results, this would have already
stopped our investigation. On the contrary, a positive result would have provided further
motivations into the need for a closer investigation on the role of static analysis warnings
for code smell detection.

In this regard, we defined the first two research questions. In the first place, we aimed
at assessing if the distribution of static analysis warnings differs when computed on classes
affected and not affected by code smells. Rather than approaching the problem from a cor-
relation perspective, we preferred to use a distribution analysis since the latter may provide
insights on the specific types of warnings that are statistically different in the two sets of
classes, i.e., smelly or smelly-free—on the contrary, correlations might have only given an
indication of the strength of association, without reporting on the statistical significance
when computed on smelly and non-smelly classes. We asked:

RQ1 How do static analysis warning types differ in classes affected and not affected by
code smells?

64   Page 6 of 44 Empir Software Eng (2022) 27: 64



In the second place, we complemented the distribution analysis with an additional inves-
tigation into the potential usefulness of static analysis warnings for code smell detection.
While the first preliminary analysis had the goal to assess the distribution of warnings in
classes affected or not by code smells, this second step aimed at quantifying the contribution
that such warnings might provide to code smell prediction models. In particular, we asked:

RQ2 How do static analysis warnings contribute to the classification of code smells?
Once we had ensured the feasibility of a deeper analysis, we then proceeded with the

investigation of the performance achieved by a code smell detection model relying on static
analysis warnings as predictors. This analysis allowed us to provide quantitative insights on
the actual usefulness of static analysis warnings, other than understanding their limitations
when considered in the context of code smell detection. This led to the definition of three
additional research questions.

First, on the basis of the results achieved in the preliminary study, we devised machine
learning-based techniques—one for each static analysis tool considered, as explained later
in this section—that exploit the warnings providing more contribution to the classification
of code smells. Afterwards, we assessed their performance by addressing RQ3:

RQ3 How do machine learning techniques that exploit the warnings of single static analysis
tools perform in the context of code smell detection?

Once we had assessed the classification performance of the individual models created
in RQ3, we discovered that these models had low performance, especially due to false
positives. To overcome this issue, we moved toward the analysis of the complementarity
between the individual models, namely the extent to which different models could identify
different code smell instances. This was relevant because a positive answer could have paved
the way to a combination of multiple models. Hence, we asked:

RQ4 What is the orthogonality among the individual machine learning-based code smell
detectors?

Given the results achieved when addressing RQ4, we then devised a combined model.
The process required the identification of the optimal subset of the static analysis warnings
exploited by different tools. While investigating the performance of such a combined model,
we addressed RQ5:

RQ5 How do machine learning techniques that combine the warnings of different static
analysis tools perform in the context of code smell detection?

The analyses defined so far could help understand how static analysis warnings enable
the identification of code smells. Yet, it is important to remark that the research on machine
learning for code smell detection has been vibrant over the last years (Azeem et al. 2019)
and, as a matter of fact, a number of researchers has been working on the optimization of
machine learning pipelines with the goal of improving the code smell detection capabilities.
We took into account this aspect when defining the third part of our investigation. The last
part of the empirical study consisted of the definition of the last three research questions.

First, we compared the best machine learner coming from the previous study, namely the
one that combines the static analysis warnings coming from different tools, with a machine
learner that exploits structural code metrics, namely a state of the art solution that has been
used multiple times in the past (Azeem et al. 2019). This led to the formulation of our RQ6:
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RQ6 How does the combined machine learner work when compared to an existing, code
metrics-based approach for code smell detection?

Afterwards, we proceeded with a complementarity analysis involving the two techniques
(i.e., the combined machine learner and the metrics-based approach for code smell detec-
tion) in order to understand to what extent the models built on two different sets of metrics
could identify identify different code smell instances. In case of a positive answer, better
performance could be achieved by combining these two sets of metrics together. In this
regard, we asked the following research question:

RQ7 What is the orthogonality among the combined machine learner and the metrics-based
approach for code smell detection?

Finally, after we have studied the complementarity between the two models, we evaluated
an additional combination, which aimed at putting together static analysis warnings and
code metrics. Hence, we asked:

RQ8 How do machine learning techniques that combine static analysis warnings and code
metrics perform in the context of code smell detection?

The next sections report on the data selection, collection, and analysis procedures
adopted to address our research questions.

3.1 Context of the Study

The context of the study was composed of open-source software projects, code smells, and
static analysis tools.

3.1.1 Selection of Code Smells

The exploited dataset reports code smell instances pertaining to 13 different types. However,
not all of them are suitable for a machine learning solution. For instance, let consider the
case of Class Data Should Be Private: this smell appears when a class exposes its attributes,
i.e., the attributes have a public visibility. By definition, instances of this code smell can
be effectively detected using simpler rule-based mechanisms, as done in the past (Moha
et al. 2009).

For this reason, we first filtered out the code smell types whose definitions do not require
any threshold. In addition, we filtered out method-level code smells, e.g., Long Method. The
decision was driven by three main observations. In the first place, the vast majority of the
previous papers on code smell prediction have used a class-level granularity (Azeem et al.
2019) and, therefore, our choice allowed for a simpler interpretation and comparison of the
results. Secondly, our study focuses on the code smells perceived by developers as the most
harmful (Taibi et al. 2017; Palomba et al. 2014a), which are all at class-level. Thirdly, the
analyses performed in the context of our empirical study required the use of a heuristic code
smell detector (i.e., DECOR (Moha et al. 2009)) that has been designed and experimentally
tested on class-level code smells. All these reasons led us to conclude that considering
method-level code smells would not be necessarily beneficial for the paper. Nonetheless,
our future research on the matter will consider the problem of assessing the role of static
analysis warnings for the detection of method-level code smells.

Based on these considerations, we focused our study on the following seven code smells:
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– God Class. Also known as Blob, this smell generally appears when a class is large,
poorly cohesive, and has a number of dependencies with other data classes of the system
(Fowler and Beck 1999).

– Spaghetti Code. Instances of this code smell arise when a class does not properly
use Object-Oriented programming principles (i.e., inheritance and polymorphism),
declares at least one long method with no parameters, and uses instance variables
(Brown et al. 1998).

– Complex Class. As the name suggests, instances of this smell affect classes that
have high values for the Weighted Methods for Class metric (Chidamber and Kemerer
1994)—which is the sum of the cyclomatic complexity (McCabe 1976) of all methods.
This smell may primarily make the testing of those classes harder (Fowler and Beck
1999).

– Inappropriate Intimacy. This code smell affects classes that use internal fields and
methods of another class, hence having a high coupling that might deteriorate program
maintainability and comprehensibility (Fowler and Beck 1999).

– Lazy Class. The code smell targets classes that do not have enough responsibili-
ties within the system and that, therefore, should be removed to reduce the overall
maintainability costs (Fowler and Beck 1999).

– Refused Bequest. Classes that only use part of the methods and properties inherited
from their parents indicate the presence of possible issues in the hierarchy of the project
(Fowler and Beck 1999).

– Middle Man. This smell appears when a class mostly delegates its actions to other
classes, hence creating a bottleneck for maintainability (Fowler and Beck 1999).

The selected code smells are those more often targeted by related research (Azeem et al.
2019). They have been also connected to an increase of change- and fault-proneness of
source code (Catolino et al. 2020; Khomh et al. 2012; Palomba et al. 2018b) as well as
maintenance effort (Sjøberg et al. 2012). According to previous work (Khomh et al. 2012;
Palomba et al. 2018a; Yamashita and Moonen 2012), all the code smells considered let
the affected source code be more prone to changes and faults in different manners. As an
example, Palomba et al. (2018a) reported that the change-proneness of classes affected by
the God Class smell is around 28% higher than classes not affected by the smell, while
Spaghetti Code increases the change-proneness of classes of about 21%. Other empirical
investigations provided different indications, e.g., Khomh et al. (2009) and Khomh et al.
(2012) reported that 68% of the classes affected by a God Class are also change-prone. As a
matter of fact, our current body of knowledge reports that all the code smells we considered
are connected to change- and fault-proneness, but different studies provided different esti-
mations on the extent of such connection. In addition, these code smells are highly relevant
for developers that, indeed, often recognize them as harmful for the evolvability of software
projects (Palomba et al. 2014a; Taibi et al. 2017; Yamashita and Moonen 2013).

3.1.2 Selection of Automated Static Analysis Tools

In the context of our research, we selected three well-known automated static analysis tools
such as CHECKSTYLE, FINDBUGS, and PMD. We provide a brief description of these tools
in the following:
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– Checkstyle. CHECKSTYLE is an open-source developer tool that evaluates JAVA code
according to a certain coding standard, which is configured according to a set of
“checks”. These checks are classified under 14 different categories, are configured
according to the coding standard preference, and are grouped under two severity levels:
error and warning. More information regarding the standard checks can be found from
the Checkstyle web site.2

– Findbugs. FINDBUGS is another commonly used static analysis tool for evaluating
JAVA code, more precisely Java bytecode. The analysis is based on detecting “bug
patterns”, which arise for various reasons. Such bugs are classified under 9 different
categories, and the severity of the issue is ranked from 1-20. Rank 1-4 is the scariest
group, rank 5-9 is the scary group, rank 10-14 is the troubling group, and rank 15-20 is
the concern group.3

– PMD. PMD is an open-source tool that provides different standard rule sets for major
languages, which can be customized by the users, if necessary. PMD categorizes the
rules according to five priority levels (from P1 “Change absolutely required” to P5
“Change highly optional”). Rule priority guidelines for default and custom-made rules
can be found in the PMD project documentation.4

The selection of these tools was driven by recent findings reporting that these are among
the automated static analysis tools more employed in practice by developers (Lenarduzzi
et al. 2020; Vassallo et al. 2018; Vassallo et al. 2019). In particular, the most recent of these
papers (Vassallo et al. 2019) reported that CHECKSTYLE, PMD, and FINDBUGS are actually
the tools that practitioners use more when developing in JAVA, along with SONARQUBE.
The selection was therefore based on these observations. In this respect, it is also worth
remarking that we originally included SONARQUBE as well. However, we had to exclude it
because it failed on all the projects considered in our study (see Section 3.1.3).

3.1.3 Selection of Software Projects

To address the research goals and assess the capabilities of the machine learning tech-
niques for code smell detection, we needed to rely on a dataset reporting actual code smell
instances. Most previous studies (Azeem et al. 2019) focused on datasets collected using
automated mechanisms, e.g., executing multiple detectors at the same time to consider the
instances detected by all of them as actual code smells. Nonetheless, it has been shown that
the performance of machine learning-based code smell detectors might be biased by the
approximations done, other than by the false positive instances detected when building the
ground truth of code smells (Di Nucci et al. 2018b). In this paper, we took advantage of these
latter findings and preferred to rely on a manually-labeled dataset containing actual code
smell instances. Of course, this choice might have had an impact on the size of the empirical
study since there exist only a few datasets of manually-labeled code smells (Azeem et al.
2019). Yet, we were still convinced to opt for this solution, as this was the most appropri-
ate choice to do in order to have reliable results. Indeed, a dataset of real smell instances
allowed us to provide reliable results on the performance capabilities of the experimented
models and, at the same time, to present a representative case of a real scenario where the
code smells arise in similar amounts as in our study (Palomba et al. 2018a) (Table 1).

2https://checkstyle.sourceforge.io
3http://findbugs.sourceforge.net/findbugs2.html
4https://pmd.github.io/latest/
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Table 1 Descriptive statistics
about the number of code smell
instances

Code Smell Min. Median Mean Max. Tot.

God Class 0.00 4.00 6.19 23.00 412

Complex Class 0.00 2.00 4.27 16.00 301

Spaghetti Code 0.00 11.00 12.40 32.00 773

Inappropriate Intimacy 0.00 2.00 3.03 10.00 206

Lazy Class 0.00 1.00 1.95 11.00 141

Middle Man 0.00 1.00 1.11 6.00 84

Refused Bequest 0.00 7.00 7.35 17.00 500

From a technical viewpoint, the selection of projects was driven by the above require-
ment. We exploited a publicly available dataset of code smells developed in previous
research (Palomba et al. 2015; Palomba et al. 2018a): this provides a list of 17,350 manually-
verified instances of 13 code smell types pertaining to 395 releases of 30 open source
systems. Given this initial dataset, we fixed two constraints that the projects to consider had
to satisfy. First, the projects had to contain data for the code smells selected in our investi-
gation (see Section 3.1.1). Secondly, we required them to be successfully built so that they
could be later analyzed by the selected static analysis tools (see Section 3.1.2). These two
constraints were satisfied in 25 releases of the 5 open-source projects reported in Table 2
along their main characteristics.

For the sake of completeness, it is worth reporting that most of the excluded releases/projects
were due to build issues, e.g., dependency resolution problems (Tufano et al. 2017). This
possibly remarks the need for additional public code smell datasets composed of projects
that can be analyzed through static or dynamic tools.

3.2 Data Collection

The data collection phase aimed at gathering information related to dependent and inde-
pendent variables of our study. These concern the labeling of code smell instances, namely
the identification of real code smells affecting the considered systems, and the collection of
static analysis warnings from the selected analyzer, which will represent the features to be
used in the machine learners designed in the empirical study.

Table 2 Software systems considered in the project

Project Description # Classes # Methods

Apache Ant Build system 1,218 11,919

Apache Cassandra Database Management System 727 7,901

Eclipse JDT Integrated Development Environment 5,736 51,008

HSQLDB HyperSQL Database Engine 601 11,016

Apache Xerces XML Parser 542 6,126
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3.2.1 Collecting Information on Actual Code Smell Instances

This stage consisted of identifying real code smells in the considered software projects. The
data collection, in this case, was inherited by the dataset exploited. While some previous
studies relied on automated mechanisms for this step, e.g., by using metric-based detec-
tors (Arcelli Fontana et al. 2016b; Khomh et al. 2009; Maiga et al. 2012), recent findings
showed that such a procedure could threaten the reliability of the dependent variable and,
as a consequence, of the entire machine learning model (Di Nucci et al. 2018a). Hence, in
our study we preferred a different solution, namely considering manually-validated code
smell instances. For all the systems considered, the publicly available dataset exploited in
the empirical study report actual code smell instances (Palomba et al. 2015; Palomba et al.
2018a) and has been used in recent studies evaluating the performance of machine learn-
ing models for code smell detection (Palomba et al. 2018b; Pecorelli et al. 2019; Pecorelli
et al. 2020a). For each code smell, Table 1 reports the distribution of the code smells in the
dataset.

3.2.2 Collecting Static Analysis Tool Warnings

This step aimed at collecting the data of the independent variables used in our study. Each
tool required a different process to collect such data:

– Checkstyle. The jar file for the CHECKSTYLE analysis was downloaded directly from
the Checkstyle’s website5 in order to engage the analysis from the command line. The
version of the executable jar file used was the checkstyle-8.30-all.jar.
In addition to downloading the jar executable, CHECKSTYLE offers two different
types of rule sets for the analysis. For each of the rule sets, the configuration file was
downloaded directly from Checkstyle’s guidelines.6 In order to start the analysis, the
checkstyle-8.30-all.jar and the configuration file in question were saved in
the directory where all the projects resided.

– Findbugs. FINDBUGS 3.0.1 was installed by running the brew install
findbugs in the command line. Once installed, the GUI was then engaged by writing
spotbugs. From the GUI, the analysis was executed through File → NewProject.
The classpath for the analysis was identified to be the location of the project direc-
tory. Moreover, the source directories were identified to be the project jar executable.
Once the class path and source directories were identified, the analysis was engaged by
clicking Analyze in the GUI. Once the analysis finished, the results were saved through
File → Saveas using the XML file format. The main specifications were the ”Class-
path for analysis (jar, ear, war, zip, or directory)” and ”Source directories (optional;
used when browsing found bugs)” where the project directory and project jar file were
added.

– PMD. PMD 6.23.0 was downloaded from GitHub7 as a zip file. After unzipping, the
analysis was engaged by identifying several parameters: project directory, export file
format, rule set, and export file name. In addition to downloading the zip file, PMD

5 https://checkstyle.org/#Download
6https://github.com/checkstyle/checkstyle/tree/master/src/main/resources
7https://github.com/pmd/pmd/releases/download/pmd releases%2F6.23.0/pmd-bin-6.23.0.zip
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offers 32 different types of rule sets for Java.8 All 32 rule sets were used during the
configuration of the analysis.

Using these procedures, we ran the three static analysis tools on the considered soft-
ware systems. At the end of the analysis, these tools extracted a total of 60,904, 4,707, and
179,020 warnings for CHECKSTYLE, FINDBUGS, and PMD, respectively.

3.3 Data Analysis

In this section, we report the methodological steps conducted to address our research ques-
tions.

3.3.1 RQ1. Distribution Analysis

To address the first research question, we first showed boxplots depicting the distribution
of the metrics and smells. Then, we computed the Mann-Whitney and Cliff’s Delta tests
to verify the statistical significance of the observed differences and their effect size. With
respect to other possible analyses methods (e.g., correlation), studying the distribution of
warnings into the smelly and non-smelly classes not only allowed us to identify the warning
types that are more related to code smells, but also to quantify the extent of the difference
between the number of warnings contained in smelly and non-smelly classes.

3.3.2 RQ2 Contribution of Static Analysis Warnings in Code Smell Prediction

In this RQ, we assessed the extent to which the various warning categories of the considered
static analysis tools can potentially impact the performance of a machine learning-based
code smell detector. To this aim, we employed an information gain measure (Quinlan 1986),
and particularly the Gain Ratio Feature Evaluation technique, to establish a ranking of the
features according to their importance for the predictions done by the different models.
This analysis method turned to be particularly useful in our case, since it allowed us to
precisely quantify the potential predictive power of each warning category for the prediction
of code smells. Given a set of features F = {f1, ..., fn} belonging to the model M , the Gain
Ratio Feature Evaluation computes the difference, in terms of Shannon entropy, between
the model including the feature fi and the model that does not include fi as independent
variable. The higher the difference obtained by a feature fi , the higher its value for the
model. The outcome is represented by a ranked list, where the features providing the highest
gain are put at the top. This ranking was used to address RQ2.

3.3.3 RQ3. The Role of Static Analysis Warnings in Code Smell Prediction

Once we had investigated which warning categories relate the most to the presence of code
smells, in RQ3 we proceeded with the definition of machine learning models. Specifically,
we defined a feature for each warning type raised by the tools, where each feature contained
the number of violations of that type identified in a class. For instance, suppose that for

8https://github.com/pmd/pmd/tree/master/pmd-java/src/main/resources/rulesets/java
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a class Ci CHECKSTYLE identifies seven violations to the warning type called “Bad Prac-
tices” : the machine learner is fed with the integer value “7” for the feature “Bad Practices”
computed on the class Ci .

The dependent variable was, instead, given by the presence/absence of a certain code
smell. This implied the construction of seven models for each tool, i.e., for each static anal-
ysis tool considered, we built a model that used its warnings types as features to predict
the presence of God Class, Spaghetti Code, Complex Class, Inappropriate Intimacy, Lazy
Class, Refused Bequest, and Middle Man. Overall, this design led to the creation of 21 mod-
els per project, i.e., one for each code smell/static analysis tool pair. For the sake of clarity,
it is worth remarking that we considered each release of the projects in the dataset as an
independent project. This choice was taken after an in-depth investigation of the differences
among the releases available: we indeed discovered that the releases that met our filtering
criteria (see Section 3.1.3) were too far in time from each other, making other strategies
unfeasible/unreliable—as an example, the excessive distance among releases made not fea-
sible a release-by-release methodology where subsequent releases are considered following
a time-sensitive data analysis (Pascarella et al. 2019; Tantithamthavorn and Hassan 2018).

As for the supervised learning algorithm, the literature in the field still misses a com-
prehensive analysis of which algorithm works better in the context of code smell detection
(Azeem et al. 2019). For this reason, we experimented with multiple classifiers such as
J48, Random Forest, Naive Bayes, Support Vector Machine, and JRip. When training these
algorithms, we followed the recommendations provided by previous research (Azeem et al.
2019; Tantithamthavorn and Hassan 2018) to define a pipeline dealing with some common
issues in machine learning modeling. In particular, we exploited the output of the Gain Infor-
mation algorithm—used in the context of RQ2—to discard irrelevant features that could
bias the interpretation of the models (Tantithamthavorn and Hassan 2018): we did that by
excluding the features not providing any information gain. We also configured the hyper-
parameters of the considered machine learners using the MULTISEARCH algorithm (Ye and
Kalyanaraman 2003), which implements a multidimensional search of the hyper-parameter
space to identify the best configuration of the model based on the input data. Finally, we
considered the problem of data balancing: it has been recently explored in the context of
code smell prediction (Pecorelli et al. 2020a) and the reported findings showed that data
balancing may or may not be useful to improve the performance of a model. Hence, before
deciding on whether to apply data balancing, we benchmarked (i) Class Balancer, which is
an oversampling approach (ii) Resample, an undersampling method (iii) Smote, an approach
including synthetic instances to oversample the minority class, and (iv) NoBalance, namely
the application of no balancing methods.

After training the models, we proceeded with the evaluation of their performance. We
applied a 10-fold cross-validation, as it allows to verify multiple times the performance of
a machine learning model built using various training data against unseen data. With this
strategy, the dataset (including the training set) was divided in 10 parts respecting the pro-
portion between smelly and non-smelly elements. Then, we trained for ten times the models
using 9/10 of the data, retaining the remaining fold for testing purpose—in this way, we
allowed each fold to be the test set exactly once. For each test fold, we evaluated the mod-
els by computing a number of performance metrics, such as precision, recall, F-Measure,
AUC-ROC, and Matthews Correlation Coefficient (MCC). Finally, with the aim of drawing
statistically significant conclusions, we applied the post-hoc Nemenyi test (Nemenyi 1962)
on the distributions of MCC values achieved by the experimented machine learners, setting
the significance level to 0.05.
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3.3.4 RQ4. Orthogonality Between the Three Single-Tool Prediction Models

When addressing this research question, we were interested in understanding whether the
different machine learners experimented in the context of RQ3 were able to detect code
smell instances that are not detected also by other techniques. If this was the case, then it
meant that different automated static analysis tools would have had the potential to predict
the smelliness of classes differently, hence possibly enabling the definition of a combined
machine learning mechanism that it could have further improved the code smell detection
capabilities. In other terms, the analysis aimed at understanding how many true positives
can be identified by a specific model alone and how many true positives can be correctly
identified by multiple models. To this purpose, for each code smell type, we compared the
sets of correctly detected instances by a technique mi with those identified by an alternative
technique mj using the following overlap metrics (Oliveto et al. 2010):

correctmi∩mj
= |correctmi

∩ correctmj
|

|correctmi
∪ correctmj

|%

correctmi\mj
= |correctmi

\ correctmj
|

|correctmi
∪ correctmj

|%

where correctmi
represents the set of correct code smells detected by the approach mi ,

correctmi∩mj
measures the overlap between the set of true code smells detected by both

approaches mi and mj , and correctmi\mj
appraises the true smells detected by mi only

and missed by mj . The latter metric provides an indication of how a code smell detec-
tion technique contributes to enriching the set of correct code smells identified by another
approach.

We also considered an additional orthogonality metric, which computed the percent-
age of code smell instances correctly identified only by the prediction model mi . In this
way, we could measure the extent to which the warning types of a specific static analy-
sis tool contributed to the identification of all correct instances identified. Specifically, we
computed:

correctmi\(mj ∪mk) = |correctmi
\ (correctmj

∪ correctmk
)|

|correctmi
∪ correctmj

∪ correctmk
| %

While different models can identify different correct code smell instances, they can also
identify different false positives. This means that the complementarity of the models does
not necessarily mean that their combination would result in a better model. In the next
Section we show how to build a combined model and compare it with the individual ones.

3.3.5 RQ5. Toward a Combination of Automated Static Analysis Tools for Code Smell
Prediction

In this research question, we took into account the possibility to devise a combined model
that mixes together the outputs of different static analysis tools.

Starting from all warning types of the various tools, we have proceeded as follows. In
the first place, we built a new dataset where, for all classes of the systems considered, we
reported all the warnings raised by all tools. This step led to the creation of unique dataset
that combined all the information mined in the context of our previous research questions.
In the second place, we have re-run the Gain Ratio Feature Evaluation (Quinlan 1986) in
order to globally rank the features and discard those that, in such a new combined dataset,
did not provide any information gain.
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After discarding the irrelevant features, we have followed the same steps as RQ3 with
the aim of conducting a fair comparison of the combined model with the individual ones
previously experimented. As such, we trained the model using multiple classifiers appro-
priately configured using the MULTISEARCH algorithm (Ye and Kalyanaraman 2003) and
considering the problem of data balancing (Pecorelli et al. 2020a). Afterwards, to verify the
performance of the combined model, we adopted the same validation strategy as RQ3 and
compared it with the values of F-Measure, AUC-ROC, and Matthews Correlation Coeffi-
cient obtained by the individual models. Finally, we used the Nemenyi test (Nemenyi 1962)
for statistical significance.

3.3.6 RQ6. Comparison with a Baseline Machine Learner

To address RQ6, we had to first select an existing solution to compare with. Most of the
previous studies (Al-Shaaby et al. 2020; Azeem et al. 2019; Kaur et al. 2021) experimented
with various machine learning techniques, yet they all employed code metrics as predictors.
As an example, Maiga et al. (2012b) characterized God Class instances by means of
Object-Oriented metrics. Similarly, other researchers have attempted to verify how different
machine learning algorithms work in the task of code smell classification without focusing
on the specific features to use for this purpose (Azeem et al. 2019). Hence, we decided to
devise a baseline machine learning technique that uses code metrics as predictors. In this
respect, we computed the entire set of metrics proposed by Chidamber and Kemerer’s suite
(Chidamber and Kemerer 1994) with our own tool and use them as features.

After computing the code metrics, we followed exactly the same methodological pro-
cedure used in the context of RQ3 and RQ5. As such, the baseline machine learner aimed
at predicting the presence/absence of code smells. Also in this case, we experimented with
various machine learning algorithms, finding Random Forest to be the best one. When train-
ing the baseline, we took care of possible multi-collinearity by excluding the code metrics
providing no information gain, other than tuning the hyper-parameters by means of the
MULTISEARCH algorithm (Ye and Kalyanaraman 2003). In terms of data balancing, we ver-
ified what was the best possible configuration, benchmarking Class Balancer, Resample,
Smote, and NoBalance: Smote was found to be the best option.

We applied a 10-fold cross validation on the dataset, so that we could have a fair com-
parison with the approach devised in RQ5—note that we did not consider a full comparison
with the individual models experimented in RQ3 since these were shown already to be less
performing. The accuracy of the baseline was assessed through F-Measure, AUC-ROC, and
MCC. Finally, we executed the post-hoc Nemenyi test (Nemenyi 1962) on the distributions
of MCC values achieved by the baseline and the combined machine learner output by RQ5,
setting the significance level to 0.05.

3.3.7 RQ7. Orthogonality Between the Warning- and Metric-Based Prediction Models

In this research question we performed a complementarity analysis between the warning-
and the metric-based Prediction Models. In order to perform such a complementarity
analysis, we followed the same methodology applyed for RQ4. In particular, for each
actual smelly instance, we computed the overlap metrics described in Section 3.3.4, i.e.,
correctmi∩mj

and correctmi\mj
.
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3.3.8 RQ8. Combining Static Analysis Warnings and Code Metrics

To study the performance of a machine learner that exploits both static analysis warnings
and code metrics, we have proceeded in a similar manner as the other research questions,
After combining all the metrics experimented so far in a unique dataset, we re-run the Gain
Ratio Feature Evaluation (Quinlan 1986) to understand the contribution provided by each
of those metrics. As previously done, we discarded the ones whose contribution was null.
Afterwards, we followed the same steps as RQ5 and compared the performance of the com-
bined model to the previously built models using F-Measure, AUC-ROC, and MCC, other
than the Nemenyi test (Nemenyi 1962) for statistical significance.

4 Analysis of the Results

In the following, we discuss the results achieved when addressing our research questions.
For the sake of understandability, we report the discussion by RQ.

4.1 RQ1. Distribution Analysis

Figure 1 shows boxplots of the distributions of warning categories in smelly and non-smelly
classes for the seven code smell types considered in the study. Regardless of the code smell
and the warning category considered, the distributions always contain higher values for
smelly cases, i.e., smelly classes are more likely to contain a higher number of warnings.
The only exception is represented by Lazy Class, in which the greater number of warnings
arises in classes that are not affected by this code smell. Although this result could sound
strange, it is fair to remember that Lazy Class refers to very short classes that basically have
no responsibility. Therefore, it is reasonable to think that lazy classes are associated with
few or no warnings. Table 3 reports results for the Mann-Whitney and Cliff’s Delta tests.
Results indicate that for most of the warning categories, there is a statistically significant
difference between the two distributions, thus indicating that those categories represent rel-
evant features to discriminate smelly and non-smelly instances. Turning to the analysis of
the categories related to each individual tool, we can see that PMD yields the most rele-
vant warnings. Indeed, except for Middle Man and Lazy Class, all the warning categories
belonging to this tool resulted to be relevant. Similarly, Checkstyle’s warning categories are
very relevant for six out of the seven code smells considered. Finally, the warnings gen-
erated by Findbugs are those showing the smaller differences between the two considered
distributions.

4.2 RQ2. Contribution of static analysis warnings in code smell prediction.

Table 4 reports the mean information gain values obtained by the metrics composing the 21
models built in our study. For the sake of readability, we just reported the three most relevant
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Fig. 1 Boxplots reporting warnings distributions in smelly/non smelly classes for the seven code smells
considered

warning categories for each model, i.e., one for each tool-smell combination—the interested
reader can find the complete results as part of our online appendix (Pecorelli et al. 2021).

Looking at the achieved results, the first thing to notice is that, depending on the code
smell type, the warning types could have different weights: this practically means that a
machine learner for code smell identification should exploit different features depending on
the target code smell rather than rely on a unique set of metrics to detect them all. As an
example, the Indentation type of CHECKSTYLE provides different information gain based
on the specific code smell type. This seems to suggest that not all warnings would have the
same impact on the performance of various code smell detectors.

When analyzing the most powerful features of CHECKSTYLE and PMD, we could notice
that features related to source code readability are constantly at the top of the ranked list for
all the considered code smells. This is, for instance, the case of the Indentation warnings
given by CHECKSTYLE or the Code Style metrics highlighted by PMD. The most relevant
warnings also seem to be strongly related to specific code smells: as an example, the pres-
ence of a high number of blocks having a large size might strongly affect the likelihood
to have a God Class or or a Complex Class smell; similarly, design-related issues are the
most characterizing aspects of a Spaghetti Code or a Middle Man. In other words, from this
analysis, we could delineate a relation between the most relevant warnings highlighted by
CHECKSTYLE and PMD and the specific code smells considered in this paper.

A different discussion should be done for FINDBUGS: in this case, the most powerful
metrics mostly relate to Performance or Security, which are supposed to cover different
code issues than code smells. As such, we expect this static analysis tool to have lower
performance when used for code smell detection.

Finally, it is worth noting that the information gain of the considered features seems to be
generally low. On the one hand, this may potentially imply a low capability of the features
when employed within a machine learning model. On the other hand, it may also be the
case that such a little information would already be enough to characterize and predict the
existence of code smell instances. The next sections address this point further (Table 5).
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Table 4 Information Gain of our independent variables for each static analysis tool

Checkstyle FindBugs PMD

Code Smell Metric Mean Metric Mean Metric Mean

God Class Indentation 0.03 Style 0.02 Code Style 0.03

Blocks 0.03 Bad Practice 0.01 Documentation 0.03

Sizes 0.03 I18N 0.01 Error Prone 0.03

Complex Class Indentation 0.04 Style 0.02 Code Style 0.03

Blocks 0.04 Security 0.01 Design 0.03

Sizes 0.03 Malicious Code 0.01 Error Prone 0.03

Spaghetti Code Indentation 0.03 I18N 0.01 Error Prone 0.03

Blocks 0.02 Security 0.01 Code Style 0.03

Coding 0.02 Correctness 0.01 Design 0.03

Inappropriate Intimacy Whitespace 0.01 Bad Practice 0.02 Code Style 0.01

Indentation 0.01 Style 0.01 Error Prone 0.01

Javadoc 0.01 Correctness 0.01 Design 0.01

Lazy Class Javadoc 0.01 Security 0.01 Code Style 0.01

Sizes 0.01 Malicious Code 0.01 Documentation 0.01

Indentation 0.01 Correctness 0.01 Design 0.01

Middle Man Indentation 0.01 Security 0.01 Error Prone 0.01

Design 0.01 Malicious Code 0.01 Documentation 0.01

Checks 0.01 Correctness 0.01 Code Style 0.01

Refused Bequest Indentation 0.01 Style 0.01 Code Style 0.01

Checks 0.01 Security 0.01 Error Prone 0.01

Design 0.01 Malicious Code 0.01 Design 0.01

4.3 RQ3. The role of static analysis warnings in code smell prediction.

Figure 2 reports the performance capabilities in terms of MCC of the models built using the
warnings given by CHECKSTYLE, FINDBUGS, and PMD, respectively. In this section, we
only discuss the overall results obtained with the best configuration of the models, namely
the one considering Random Forest as classifier and Class Balancer as data balancing algo-
rithm. The results for the other models are available in our online appendix (Pecorelli et al.
2021).

We can immediately point out that the models built using the warnings of static analysis
tools have very low performance. In almost all cases, indeed, the MCCs show median values
that are very close to zero, indicating a very low, if not even null correlation between the set
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Table 5 Aggregate results reporting the performance of the models built with the warning generated by the
three static automatic tools

Checkstyle FindBugs PMD

Prec. Recall FM MCC Prec. Recall FM MCC Prec. Recall FM MCC

God Class 0.01 0.62 0.02 0.04 0.01 0.25 0.01 0.01 0.43 0.52 0.47 0.47

Complex Class 0.01 0.48 0.01 0.02 0.00 0.22 0.01 0.00 0.28 0.35 0.31 0.31

Spaghetti Code 0.02 0.43 0.03 0.05 0.01 0.19 0.02 0.00 0.26 0.22 0.24 0.23

Inappropriate 0.01 0.44 0.01 0.03 0.00 0.31 0.00 -0.01 0.08 0.17 0.11 0.11

Intimacy

Lazy Class 0.01 0.13 0.01 0.02 0.00 0.63 0.00 -0.01 0.04 0.11 0.06 0.06

Middle Man 0.00 0.15 0.00 -0.02 0.00 0.66 0.00 0.01 0.08 0.03 0.04 0.05

Refused Bequest 0.01 0.38 0.01 0.00 0.01 0.50 0.01 0.00 0.27 0.14 0.18 0.19
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Fig. 2 Boxplots representing the MCC values obtained by Random Forest trained on static analysis warnings
for code smells detection
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Fig. 3 Plots representing the results of Nemenyi test for statistical significance between the MCC values
obtained by Random Forest trained on static analysis warnings for code smells detection

of detected and the set of actual smelly instances. This result is in line with previous stud-
ies on the application of machine learning for code smell detection (Di Nucci et al. 2018b;
Pecorelli et al. 2019). As an example, Pecorelli et al. (2019) reported that models built using
code metrics of the Chidamber-Kemerer suite (Chidamber and Kemerer 1994) work worst
than a constant classifier that always considers an instance as non-smelly. Perhaps more
interestingly, our findings contradict the preliminary insights we obtained on the capabilities
of static analysis warnings as features for code smell detection (Lujan et al. 2020a): indeed,
when replicating the study on a larger scale, we could not confirm the fairly high perfor-
mance previously achieved, highlighting how replications in software engineering research
represent a precious method to corroborate (or not) analyses done under specific conditions
that can affect generalizability (Carver et al. 2014).

The reasons behind the low MCC values could be various. This coefficient is computed
by combining true positives, true negatives, false positives, and false negatives altogether;
as such, having a clear understanding of the factors impacting those values is not trivial.
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In an effort of determining these reasons, Table 4 provides a more detailed overview of the
performance of the models for each of the considered tools and code smells.

The first aspect to consider is that, when considering CHECKSTYLE and FINDBUGS, the
low performance could be due to the high false-positive rate. Indeed, despite the moderately
high recall, the results are negatively influenced by the very low precision that is always
close to zero. A different conclusion must be drawn for PMD. The results show similar
precision and recall values when considering the code smells individually, but these values
are higher or lower depending on the specific code smell type. In other words, our results
indicate that the models built using the warnings provided by this tool could achieve higher
or lower performance, depending on the smell considered—hence, the capabilities of these
models cannot be generalized to all code smells.

Another important aspect to take into account is the different behaviour of the three
models with respect to the code smell to detect. While CHECKSTYLE and PMD achieve
better performance in detecting God Class, Complex Class, and Spaghetti Code, FINDBUGS

gives its best in the detection of Lazy Class, Middle Man, and Refused Bequest.
Figure 3 confirms the discussion above. Indeed, by analyzing the statistical difference

between models with respect to code smells, we can notice that PMD performance are sta-
tistically better than the other two models when detecting God Class instances. In the cases
of Lazy Class and Inappropriate Intimacy code smells, instead, models built with warn-
ing generated by CHECKSTYLE, and FINDBUGS performs significantly better than those
relying on PMD warnings.

Nonetheless, despite the negative results achieved so far, it is worth reflecting on two
specific aspects coming from our analysis. On the one hand, for each code smell there is
at least one tool whose warnings are able to catch a good number of smelly instances (i.e.,
recall ≈ 50%). On the other hand, different warning categories achieve higher performance
on different sets of code smells. Based on these two considerations, we conjectured that
higher performance could be potentially achieved when combining the warnings generated
by the three static analysis tools. Next paragraphs address this point deeply.

4.4 RQ4. Orthogonality of the Prediction Models

In the context of the fourth research question, we sought to move toward a combination
of warning types coming from different static analysis tools for code smell detection. Let
discuss the results by analyzing Table 6, that reports the overlap between the model using
the warnings generated by CHECKSTYLE and the one built on the FINDBUGS warnings. It
is interesting to observe that there is a very high complementarity between the two models,
regardless on the code smell considered. Indeed, only a small portion of smelly instances are
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Table 6 Overlap analysis
between Checkstyle and
Findbugs

Code Smell CS ∩ FB CS \ FB FB \ CS

God Class 7% 47% 46%

Complex Class 11% 37% 52%

Spaghetti Code 5% 70% 25%

Inappropriate Intimacy 8% 23% 69%

Lazy Class 0% 7% 93%

Middle Man 8% 0% 92%

Refused Bequest 21% 25% 54%

correctly identified by both the models, i.e., (CS ∩ FB) ≤ 21%. Moreover, the percentage
of instances correctly classified by only one of the models is generally high, indicating such
complementarity.

Table 7 show the results of the overlap between the models built on CHECKSTYLE and
PMD warnings. The table immediately suggests that PMD provides a very limited contri-
bution in terms of new smelly instances discovered. Results suggest that for all code smells,
CHECKSTYLE alone could detect almost the same set of smelly instances.

Table 8 provides the overlap results for FINDBUGS and PMD. These results deserve a
discussion similar to the previous one. Indeed, as we discussed above, also in this case PMD
does not provide an important contribution. Most of the correctly classified instances are
indeed provided by the model built only on FINDBUGS warnings.

Finally, looking at the overlap results for all the three models, shown in Table 9, we can
confirm the above results. The low percentage of instances that are simultaneously correctly
detected as smelly by all three approaches indicates a high complementarity between the
instances detected by the three tools, i.e., different tools are able to detect different sets
of smelly instances. Such complementarity is an indicator that better performance could
be achieved by combining the warnings generated by the three tools in a unique, unified,
detection model.

Table 7 Overlap analysis
between Checkstyle and PMD Code Smell CS ∩ PMD CS \ PMD PMD \ CS

God Class 0% 98% 2%

Complex Class 0% 98% 2%

Spaghetti Code 2% 94% 4%

Inappropriate Intimacy 33% 60% 7%

Lazy Class 0% 100% 0%

Middle Man 0% 100% 0%

Refused Bequest 0% 100% 0%
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Table 8 Overlap analysis
between Findbugs and PMD Code Smell FB ∩ PMD FB \ PMD PMD \ FB

God Class 1% 98% 1%

Complex Class 0% 98% 2%

Spaghetti Code 2% 87% 11%

Inappropriate Intimacy 10% 84% 6%

Lazy Class 0% 100% 0%

Middle Man 0% 100% 0%

Refused Bequest 0% 100% 0%

4.5 RQ5. Toward a Combination of Automated Static Analysis Tools for Code Smell
Prediction

In the context of this RQ, we defined and evaluated a combined model. As explained in
Section 4.2, we faced the problem by first measuring the potential information gain by the
warning types when put all together and then considering the most relevant warnings for
the definition of a more effective combination. Table 10 reports the information gain values
obtained by the metrics composing the combined models. Also in this case, for the sake of
readability we only reported the three most relevant categories for each model. The complete
results can be found in our online appendix (Pecorelli et al. 2021).

Looking at the table, the first consideration we can do is that readability-related fea-
tures remain relevant even when considering all the features together. Some examples are
Code Style for God Class or Javadoc for Lazy Class. Differently, features related to perfor-
mance and security aspects, that have been shown to be relevant in the models built only on
FINDBUGS warnings, are no longer important when combining the tools.

Another important aspect is related to the presence of design-related features in the list
of the most relevant predictors. Those features, that are the more in-line with the definition
of code smell, were surprisingly excluded in the context of our RQ2. The fact that they
become more relevant when the three tools are combined may represent an indicator of the
fact that a combined model can outperform the models discussed in RQ3.

Table 11 and Fig. 4 show the performance of the combined model. As we can see, there
is a general improvement, particularly in terms of precision—hence confirming our hypoth-
esis on the potential of combining features of different static analysis tools to reduce false
positives. The MCC values, ranging between 14% and 48% are clearly better than the one
provided by the single models, as discussed in RQ3. Results of Nemenyi test, reported in

Table 9 Overlap Analysis considering each tool independently

Code Smell CS \ (FB ∪ PMD) FB \ (CS ∪ PMD) PMD \ (CS ∪ FB) CS ∩ FB ∩ PMD

God Class 44% 56% 0% 0%

Complex Class 38% 59% 2% 0%

Spaghetti Code 74% 23% 2% 1%

Inappropriate Intimacy 40% 46% 1% 13%

Lazy Class 4% 95% 1% 0%

Middle Man 21% 79% 0% 0%

Refused Bequest 36% 62% 2% 0%
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Table 10 Information Gain of
our independent variables for the
combined model

Combined model

Code Smell Metric Mean

God Class Code.Style 0.03

Documentation 0.02

Design 0.02

Complex Class Code Style 0.03

Design 0.02

Error Prone 0.02

Spaghetti Code Error Prone 0.03

Code Style 0.02

Design 0.02

Inappropriate Intimacy Code Style 0.01

Whitespace 0.01

Design 0.01

Lazy Class Javadoc 0.01

Sizes 0.01

Code Style 0.01

Middle Man Imports 0.01

Design 0.01

Checks 0.01

Refused Bequest Code Style 0.01

Error Prone 0.01

Documentation 0.01

Fig. 5, evidenced a clear statistical difference between the MCCs achieved by the combined
model and the ones provided by single-tool models. However, unfortunately, these results
still indicate the unsuitability of machine learning approaches for code smell detection, as
already proven in previous studies in the field (Di Nucci et al. 2018b; Pecorelli et al. 2019).
A more detailed discussion of what these findings imply for code smell research and, par-
ticularly, for the applicability of machine learning solutions to detect code smells is reported
in Section 5.

4.6 RQ6. Comparison with a Baseline Machine Learner

Table 12 and Fig. 6 report the results regarding the comparison of the performance achieved
by the model that uses the combination of the warnings generated by the three ASATs con-
sidered, and the model using structural information as predictors. The first consideration is
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Table 11 Results reporting the performance of the model built by combining the warning generated by the
three static automatic tools

Checkstyle FindBugs PMD Combined

Prec.RecallFM MCCPrec.RecallFM MCCPrec.RecallFM MCCPrec.RecallFM MCC

God Class 0.01 0.62 0.020.04 0.01 0.25 0.010.01 0.43 0.52 0.470.47 0.49 0.47 0.480.48

Complex Class 0.01 0.48 0.010.02 0.00 0.22 0.010.00 0.28 0.35 0.310.31 0.34 0.34 0.340.34

Spaghetti Code 0.02 0.43 0.030.05 0.01 0.19 0.020.00 0.26 0.22 0.240.23 0.31 0.19 0.240.24

Inappropriate Intimacy0.01 0.44 0.010.03 0.00 0.31 0.00-0.01 0.08 0.17 0.110.11 0.21 0.15 0.170.17

Lazy Class 0.01 0.13 0.010.02 0.00 0.63 0.00-0.01 0.04 0.11 0.060.06 0.17 0.12 0.140.14

Middle Man 0.00 0.15 0.00-0.02 0.00 0.66 0.000.01 0.08 0.03 0.040.05 0.56 0.07 0.130.20

Refused Bequest 0.01 0.38 0.010.00 0.01 0.50 0.010.00 0.27 0.14 0.180.19 0.39 0.09 0.150.18
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Fig. 4 Boxplots representing the MCC values obtained by Random Forest trained on static analysis warnings
for code smells detection
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Fig. 5 Plots representing the results of Nemenyi test for statistical significance between the MCC values
obtained by Random Forest trained on static analysis warnings for code smells detection

Table 12 Aggregate results reporting the comparison of the warning-based model with the metric-based one

Warning Metric

Prec. Recall FM MCC Prec. Recall FM MCC

God Class 0.49 0.47 0.48 0.48 0.30 0.83 0.44 0.49

Complex Class 0.34 0.34 0.34 0.34 0.18 0.61 0.27 0.32

Spaghetti Code 0.31 0.19 0.24 0.24 0.15 0.34 0.21 0.22

Inappropriate Intimacy 0.21 0.15 0.17 0.17 0.10 0.23 0.14 0.15

Lazy Class 0.17 0.12 0.14 0.14 0.00 0.00 0.00 0.00

Middle Man 0.56 0.07 0.13 0.20 0.00 0.00 0.00 0.00

Refused Bequest 0.39 0.09 0.15 0.18 0.21 0.02 0.03 0.06
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Fig. 6 Boxplots representing the MCC values obtained by Random Forest trained on static analysis warnings
and structural metrics for code smells detection

that the model using the warnings generated by the three ASATs seems to slightly outper-
form the model using structural information for almost all the code smell types. In particular,
this is the case of Lazy Class, Inappropriate Intimacy, Refused Bequest, and Middle Man.
These four smells do not have a direct correlation with structural information given to the
structural classifier. For instance, while we can use simple structural metrics such as size and
complexity to identify God Class and Spaghetti Code instances, the ML model using struc-
tural information does not include precise metrics describing other aspects such as laziness
or intimacy level between classes.

The results of the Nemenyi test depicted in Fig. 7, confirm that in the cases described
above there is a statistically significant difference in the two distributions. On the other
hand, with respect to God Class, and Spaghetti Code it is not possible to clearly establish
which of the models perform better.
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Fig. 7 Plots representing the results of Nemenyi test for statistical significance between the MCC val-
ues obtained by Random Forest trained on static analysis warnings and structural metrics for code smells
detection

4.7 RQ7. Orthogonality between the warning- and metric-based Prediction Models

Table 13 reports results of the complementarity analysis conducted between the warning-
and the metric-based machine learning prediction models. The most evident result is that,
regardless of the code smell considered, the two techniques show a strong overlap, i.e.,
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Table 13 Overlap analysis between the warning- and metric-based Prediction Models

Code Smell Warning ∩ Metric Warning \ Metric Metric \ Warning

God Class 81% 11% 6%

Complex Class 76% 16% 8%

Spaghetti Code 72% 18% 10%

Inappropriate Intimacy 64% 22% 22%

Lazy Class 98% 1% 1%

Middle Man 86% 9% 5%

Refused Bequest 89% 7% 4%

most of the smelly instances identified by a technique are also identified by the other.
Such a strong overlap could indicate that using metrics and warnings in combination would
not lead to performance improvements. This is particularly true for Lazy Class, Refused
Bequest, and Middle Man for which there is a very small complementarity. However, as
for God Class, Complex Class, Spaghetti Code, and Inappropriate Intimacy, results show
that there exist a number of smelly instances that only one of the techniques is able to
detect, thus indicating a complementarity, even if limited. Therefore, it could be still worth
to assess the performance achieved by a machine learner based on both warnings and
structural metrics.

4.8 RQ8. Combining Static Analysis Warnings and Code Metrics

Table 14 and Fig. 8 report the results of the performance achieved by the two model based
only on ASATs warnings and code metrics, and the one combining warnings and structural

Table 14 Aggregate results reporting the comparison of the combined model with the model combining
warnings categories and structural metrics

Warning Metric Combined

Prec. Recall FM MCC Prec. Recall FM MCC Prec. Recall FM MCC

God Class 0.49 0.47 0.48 0.48 0.30 0.83 0.44 0.49 0.53 0.58 0.56 0.55

Complex Class 0.34 0.34 0.34 0.34 0.18 0.61 0.27 0.32 0.39 0.43 0.41 0.41

Spaghetti Code 0.31 0.19 0.24 0.24 0.15 0.34 0.21 0.22 0.36 0.21 0.25 0.27

Inappropriate 0.21 0.15 0.17 0.17 0.10 0.23 0.14 0.15 0.08 0.09 0.10 0.11

Intimacy

Lazy Class 0.17 0.12 0.14 0.14 0.00 0.00 0.00 0.00 0.19 0.12 0.15 0.15

Middle Man 0.56 0.07 0.13 0.20 0.00 0.00 0.00 0.00 0.17 0.06 0.10 0.13

Refused Bequest 0.39 0.09 0.15 0.18 0.21 0.02 0.03 0.06 0.34 0.14 0.20 0.21
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Fig. 8 Boxplots representing the MCC values obtained by Random Forest trained on static analysis warnings
and on the combination of static analysis warnings with structural metrics for code smells detection

information. Regardless of the considered code smell type, the full model, i.e., the one con-
sidering both warnings and structural metrics, appears to slightly outperform the other two.
This is particularly true for God Class, Complex Class, Spaghetti Code, and Inappropriate
Intimacy.

Nemenyi test results, reported in Fig. 9, confirm that for God Class, Complex Class, and
Inappropriate Intimacy the full model performs significantly better than the others. This
result is in line with RQ7 findings. Indeed, a higher complementarity has been shown for
such smells, therefore the combined model is able to significantly improve the performance
of warning- and metric-based machine learners.

The reported results clearly indicate that adding more information to ML classifiers helps
to improve the overall performance in most cases. However, on the other hand, there is still
the need of defining a set of metrics that could further improve code smell detection tech-
niques’ performance. Our suggestion for future studies is to involve a wider set of predictors
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Fig. 9 Plots representing the results of Nemenyi test for statistical significance between the MCC values
obtained by Random Forest trained on static analysis warnings and on the combination of static analysis
warnings with structural metrics for code smells detection

of various kinds (e.g., structural, textual, historical) in order to give the classifiers as much
information as possible.

5 Discussion and Implications of the Study

The results of the study pointed out a number of findings and implications for researchers
that deserve further discussion.
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On the implications of the performance achieved. The results of our analyses have
shown that a combination of features can improve the performance of ML-based code
smell detection. This was true when combining static analysis warnings raised by differ-
ent automated tools, but also when combining the warnings with code metrics considered
by previous work. But is this enough? To further understand this point, we have com-
pared the performance of the proposed combined model with those of three baselines:
(i) the OPTIMISTIC CONSTANT classifier, that classifies any instance as smelly; (ii) the
PESSIMISTIC CONSTANT classifier, that classifies any instance as non-smelly; and (iii)
a RANDOM classifier, which classifies an instance as smelly or non-smelly with a proba-
bility of 50%. We performed this comparison in terms of Type I, that counts the number
of false positive errors, and Type II, that counts the number of false negative errors. The
selection of these two metrics was inspired by previous work in the literature (Haiduc
et al. 2012). Table 15 reports the total number of Type I and Type II errors. Results show
that, regardless on the code smell under consideration, the PESSIMISTIC CONSTANT

achieves the best results in terms of total errors, i.e., Type I + Type II, thus pointing out
once again the low performance of ML-based code smell detection techniques.

These results lead to clear implications: The problem of code smell detection through
machine learning still requires specific features that have not been taken into account yet.
Moreover, additional AI-specific instruments should be considered in the future with the
aim of improving the code smell detection capabilities of these techniques.

On static analysis warnings and code smells. According to the results of RQ2, the gain
provided by the warnings raised by static analysis tools to the predictions done when
using those warnings as features for code smell detection is limited. These results
revealed a limited connection between the types of issues raised by static analysis tools
and the specific code smells considered in the study. While this poor connection might
be due to the fact that static analysis tools aim at capturing a wider set of general source
code issues, we still claim that our results are somehow worrisome since they show that
the warnings given to developers do not evidently refer to any design problem that pre-
vious research has related to change- and fault-proneness (Khomh et al. 2012; Palomba
et al. 2018a). To some extent, such a low relation with code smells might be one of the
causes leading developers to ignore the warnings raised by static analysis tools in prac-
tice (Emanuelsson and Nilsson 2008; Vassallo et al. 2019). On the one hand, our findings
suggest that further studies on the relation between static analysis tools and code smells
should be performed. On the other hand, tool vendors could exploit the reported results
in order to propose some tuning of the static analysis tools that enable the identification
of code smell-related warnings.

A possible factor influencing the performance. As a complementary and follow-up
discussion, our analyses conducted in RQ4 revealed that classification models built using
static analysis warnings have a very low precision. While in the context of the paper
we mainly highlighted the poor precision from the perspective of the models, and given
for granted the poor relation between static analysis warnings and code smells discussed
above, another problem might have been the cause of our results: the amount of false
positive warnings raised by static analysis tools. While we did not establish the amount
of false positives output by the static analysis tools in our context, this is a well-known
problem that has been raised in literature (Johnson et al. 2013) and that, very likely, has
had some influence on our findings. On the one hand, we plan to further investigate this
aspect and possibly quantify the influence of false positives on our results. On the other
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hand we can still remark, for the benefit of researchers working in this field, that the prob-
lem of false positives is something that might have impacted the overall contribution that
static analysis tools may have provided to the experimented code smell detection mod-
els. As such, our results might be seen as an additional motivation to investigate novel
instruments to improve current static analysis tools.

On the connection with the state of the art. The empirical studies conducted in this
paper represented the first attempt to make static analysis warnings useful for code smell
detection. Unfortunately, the results achieved confirmed the current knowledge on the
state of machine learning-based code smell detection. At the same time, our findings
extend the body of knowledge under two perspectives. First, researchers in the field of
code smells might take advantage of our study to further investigate the reasons behind
our results, possibly revealing the causes leading static analysis warnings to be not effec-
tive for detecting code smells or even proposing alternative solutions to make them
work. Second, researchers in the field of automated static analysis might be interested in
understanding the reasons why currently available tools do not properly support the iden-
tification of diffused and dangerous design issues, even tough certain specific warnings
types are supposed to provide indications in this respect.

Large-scale experimentations matter. With respect to the preliminary findings achieved
in our previous work (Lujan et al. 2020a), our new results did not confirm the suitabil-
ity of static analysis warnings for the detection of code smells through machine learning
methods. This was due to the larger-scale nature of this experiment, where we tested the
devised approaches on a dataset containing 20 more projects than the preliminary study.
Therefore, as a meta-result our analyses confirmed the importance of large-scale exper-
imentations in software engineering as a way to draw more definitive conclusions on a
phenomenon of interest. Hence, based on our experience, we can recommend researchers
to carefully consider the scale of the experiments when running empirical studies and
take into account the overall generalizability of the reported findings when reporting and
discussing results.

6 Threats to Validity

Some aspects might have threaten the validity of the results achieved in our empirical study.
This section reports on these aspects and explains how we mitigated them, following the
guidelines provided by Wohlin et al. (2000).

Construct Validity Threats in this category concern with the relationship between theory
and observation. These are mainly due to possible measurement errors. A first discussion
point is related to the dataset exploited in our study. In this respect, we decided to rely
on a dataset reporting manually-validated code smell instances: this decision was based on
previous findings showing that the meaningfulness and actionability of the results highly
degrade when considering tool-based oracles (Di Nucci et al. 2018a). As such, our choice
made the findings more reliable—we did not include in our ground-truth false positives
and negatives—at the cost of having less systems analyzed: we are aware of this possible
limitation and we plan indeed to conduct larger-scale analyses as part of our future research
agenda.

When it comes to the selection of the automated static analysis tools, we considered
three of the most reliable and adopted tools (Vassallo et al. 2019). Nevertheless, we cannot
exclude the presence of false positives or false negatives in the detected warnings. While
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this may have influenced the results achieved, our study showed that the performance of
code smell prediction models can be fairly high even in presence of false positives and
negatives: this means that, in cases of tools giving a lower amount of false alarms or being
able to provide more correct information, the accuracy of the proposed learners might be
even increased. In any case, further analyses targeting the impact of misinformation on the
performance of the learners are part of our future research agenda.

Internal Validity These threats are related to the internal factors of the study that might
have affected the results. When assessing the role of static analysis tools for code smell
detection, we took into account three tools with the aim of increasing our knowledge on the
matter. Yet, we recognize that other tools might consider different, more powerful warnings
that may affect the performance of the learners. Also in this case, further analyses are part
of our future research agenda.

External Validity As for the generalizability of the results, our empirical study considered
all the systems that could be actually analyzed from the exploited public dataset (Palomba
et al. 2018a; Palomba et al. 2015). As also reported above, we are aware that our analy-
ses have been bounded by technical limitations, e.g., the inability to compile some of the
systems in the dataset, or by design decisions, e.g., the choice of considering a dataset
containing actual code smell instances. Nonetheless, we preferred to conduct a more pre-
cise and reliable analysis, sacrificing quantity. Yet, we do believe that the results presented
represent a valuable base for researchers, practitioners, and tool vendors that can be used
and/or extended to reconsider the role of static analysis tools in the context of software
quality assessment and improvement. In this respect, we also highlight the need for addi-
tional publicly available datasets of validated code smell instances, which might allow more
generalizable and reliable investigations.

Conclusion Validity These threats are related to the relationship between the treatment and
the outcome. In our research, we adopted different machine learning techniques to reduce
the bias of the low prediction power that a single classifier could have. In addition, we
did not limit ourselves to the usage of these classifiers, but also addressed some of the
possible issues arising when employing them. For instance, we dealt with multicollinearity
problems, hyper-parameter configuration, and data unbalance. We recognize, however, that
other statistical or machine learning techniques (e.g. deep learning) might have yielded
similar or better accuracy than the techniques we used.

Last but not least, we applied the Nemenyi test (Nemenyi 1962) to statistically verify the
performance achieved by the experimented machine learning approaches.

7 Conclusion

In this paper, we assessed the adequacy of static analysis warnings in the context of code
smell prediction. We started by analyzing the contribution given by each warning type to
the prediction of seven code smell types. Then, we measured the performance of machine
learning models using static analysis warnings as features and aiming at identifying the
presence of code smells.

The results achieved when experimenting the individual models revealed low perfor-
mance: this was mainly due to their poor precision. In an effort of dealing with such low
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performance, we considered the possibility to combine the warnings raised by different
static analysis tools: in this regard, we first measured the orthogonality of the code smell
instances correctly identified by machine learners exploiting different warnings; then, we
combined these warnings in a combined model.

The results of our study reported that, while a combined model can significantly improve
the performance of the individual models, it yields a similar accuracy than the one of a ran-
dom classifier. We also found out that machine learning models built using static analysis
warnings reach a particularly low accuracy when considering code smells targeting coupling
and inheritance properties of source code. The outcomes of this empirical study represent
the main inputs for our future research agenda, which is mainly oriented to face the chal-
lenges related to the definition of ad-hoc features for code smell detection through machine
learning approaches. In addition, part of our future research work in the area will be devoted
to the qualitative analysis of the role of static analysis warnings for code smell detection. In
particular, we plan to complement the achieved findings through investigations conducted
on source code snippets mined from STACKOVERFLOW, for which we plan to analyze the
relation between the posts issued by developers and related to static analysis warnings and
the presence of code smells in those snippets. We also plan to extend the scope of our work
with method-level code smells. In this respect, we aim at defining the most appropriate tools
and data analysis methodologies that may help investigating how static analysis warnings
impact the detection of this category of code smells. Last but not least, we plan to system-
atically assess deep learning methods (Das et al. 2019; Liu et al. 2019), which might more
naturally combine features, given that they act directly on source code.
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