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Abstract
Jupyter Notebooks have been widely adopted by many different communities, both in
science and industry. They support the creation of literate programming documents that
combine code, text, and execution results with visualizations and other rich media. The
self-documenting aspects and the ability to reproduce results have been touted as signifi-
cant benefits of notebooks. At the same time, there has been growing criticism that the way
in which notebooks are being used leads to unexpected behavior, encourages poor coding
practices, and makes it hard to reproduce its results. To better understand good and bad
practices used in the development of real notebooks, in prior work we studied 1.4 million
notebooks from GitHub. We presented a detailed analysis of their characteristics that impact
reproducibility, proposed best practices that can improve the reproducibility, and discussed
open challenges that require further research and development. In this paper, we extended
the analysis in four different ways to validate the hypothesis uncovered in our original study.
First, we separated a group of popular notebooks to check whether notebooks that get more
attention have more quality and reproducibility capabilities. Second, we sampled notebooks
from the full dataset for an in-depth qualitative analysis of what constitutes the dataset and
which features they have. Third, we conducted a more detailed analysis by isolating library
dependencies and testing different execution orders. We report how these factors impact the
reproducibility rates. Finally, we mined association rules from the notebooks. We discuss
patterns we discovered, which provide additional insights into notebook reproducibility.
Based on our findings and best practices we proposed, we designed Julynter, a Jupyter
Lab extension that identifies potential issues in notebooks and suggests modifications that
improve their reproducibility. We evaluate Julynter with a remote user experiment with the
goal of assessing Julynter recommendations and usability.
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1 Introduction

Jupyter Notebook is the most widely-used system for interactive literate programming (Shen
2014). It was designed to make data analysis easier to document, share, and reproduce. The
system was released in 2013, and today there are over 9 million notebooks in GitHub (Par-
ente 2020). Jupyter originated from IPython (Pérez and Granger 2007) and, in addition to
Python, it supports a variety of programming languages, such as Julia, R, JavaScript, and C.
It also allows the interleaving of not only code and text, but also different kinds of rich media,
including image, video, and even interactive widgets combining HTML and JavaScript.

Kluyver et al. (2016) advocate the usage of notebooks for publishing reproducible
research due to their ability to combine reporting text with the executable research code.
However, the format has been increasingly criticized for encouraging bad habits that lead
to unexpected behavior and are not conducive to reproducibility (Pomogajko 2015; Grus
2018; Mueller 2018; Pimentel et al. 2019b). Among the main criticisms are hidden states,
unexpected execution order with fragmented code, and bad practices in naming, version-
ing, testing, and modularizing code. In addition, the notebook format does not encode
library dependencies with pinned versions, making it difficult (and sometimes impossible)
to reproduce the notebook. These criticisms reinforce prior work, which has emphasized
the negative impact of the lack of best practices of Software Engineering in scientific com-
puting software (Wilson et al. 2014), regarding separation of concerns (Hürsch and Lopes
1995), tests (Myers et al. 2004), and maintenance (Horwitz and Reps 1992).

While studies have been carried out to better understand how notebooks are used (Kery
et al. 2018; Neglectos 2018; Rule et al. 2018), they did not attempt to execute the notebooks
and assess characteristics related to reproducibility. Instead, they explored other aspects,
including use cases (Kery et al. 2018), narrative (Kery et al. 2018; Rule et al. 2018), and
structure (Neglectos 2018; Rule et al. 2018).

In recent work (Pimentel et al. 2019b), we analyzed a large corpus of notebooks to obtain
insights into what contributes to their reproducibility or lack of thereof. We used the afore-
mentioned criticisms as a guide to define metrics that reflect the extent of the adoption
of both good and bad practices. We computed these metrics for a collection of 1,159,568
unique notebooks from 264,020 GitHub repositories. We found evidences of good and bad
quality practices. As good practices, we found that (i) 69.07% of the notebooks have Mark-
down cells; (ii) 70.90% of the notebooks that have loops or condition structures also have
function definitions; and (iii) most notebooks have descriptive filenames (i.e., only 1.99%
start with “Untitled” and only 0.69% have “-Copy”in their names). As bad practices, we
found that (i) only 1.54% of the Python notebooks import known test modules; (ii) 76.90%
of the unambiguous execution order notebooks have at least one skip; (iii) 36.36% have
out-of-order cells; and (iv) 21.11% have non-executed code.

Besides, to assess the reproducibility rate, we attempted to execute the notebooks. Out
of 863,878 attempted executions of valid notebooks (i.e., notebooks with defined Python
version and execution order), only 24.11% executed without errors, and only 4.03% pro-
duced the same results. Based on our findings, we proposed a set of best practices for the
development of Jupyter Notebooks.

In this paper, we extend our previous work in several directions. To get more insight
into the context in which good and bad practices are applied, we select a subset of popular
notebooks (based on the number of stars and forks of the repositories they belong to) and
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compare their results with the overall results. We select this subset with the expectation that
notebooks that receive more stars and forks are likely to be of higher quality.

Having the same goal of getting insight into the context of notebooks, we perform a
systematic sampling of real notebooks. We perform an in-depth analysis of the notebooks
in the sample, looking either for characteristics that are hard to extract automatically from
the dataset or qualitative characteristics that are impracticable to manually analyze in a set
of over a million notebooks. We also use notebooks from the samples to illustrate good and
bad practices.

In the reproducibility study of our original work, we may have underestimated the repro-
ducibility metrics by running all the notebooks in shared environments, following a single
cell execution order, and comparing the results at the character-by-character level. We did
not consider small acceptable deviations that occur during the execution of notebooks, such
as dates referring to the execution moment, memory addresses of Python objects, and small
variations of images. Hence, in this paper, we isolate dependencies, test different execution
orders, and explore various strategies for comparing notebook results. We discuss how these
changes affect the reproducibility rate. Additionally, to gain insights into quality metrics
that influence reproducibility, we mine association rules (Agrawal et al. 1994) that relate
specific notebook features to both success and failure of reproductions.

Based on our findings and the set of best practices we proposed before, we designed
Julynter, a Jupyter Lab extension for linting notebooks. Julynter identifies potential prob-
lems and suggests fixes that aim at improving the notebook quality and reproducibility. We
also evaluated Julynter with Jupyter users to assess Julynter recommendations, usability,
and improved it accordingly.

This paper is organized as follows. Section 2 provides some background about literate
programming and Jupyter Notebooks. Section 3 presents the extended analysis of the large
corpus of notebooks. In Section 4, we propose a set of best practices for the development of
Jupyter Notebooks. We describe and evaluate Julynter in Section 5. We present related work
in Section 6. Finally, we conclude in Section 7, where we outline directions for future work.

2 Background

Knuth (1984) introduced the literate programming paradigm that, by combining code
and natural language, allows programmers to document a program’s logic. This paradigm
enables the programmers themselves and others to more easily understand the code. The
original system was designed for static documents and required two compilation pro-
cesses (Knuth 1984): tangling and weaving. The tangling process executes the code snippets
in the document and produces the results. Then, the weaving combines the text, code snip-
pets, and results to deliver a human-readable document. Nowadays, literate programming
is used in interactive computational notebook environments (Shen 2014). These environ-
ments allow parts of a notebook to be executed with immediate visualization of results and
formatted text, avoiding the need for tangling and weaving.

A Jupyter Notebook (Shen 2014) is both an interactive literate programming document
and an application that executes the document. In this work, to avoid the ambiguity, we
use the term Jupyter to refer to the application that executes notebooks, such as Jupyter
Notebook and Jupyter Lab. We use the termsNotebook or Jupyter Notebook interchangeably
to refer to the literate programming document.

A notebook is composed of cells, which can be of three types: code, Markdown, and raw.
A code cell contains executable code used to produce results. A Markdown cell contains
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formatted text. Finally, a raw cell contains text that is neither code nor formatted text—tools
that convert notebooks into other formats use raw cells for configuration.

Jupyter uses a kernel to execute code cells. During the execution of a cell, the kernel
communicates with Jupyter to display partial and final results. By default, Jupyter displays
text, images (PNG, JPG, and SVG), HTMLwith JavaScript, and Markdown. Additionally, it
supports extensions to display other formats. The notebook format uses JSON to store all of
its contents in “.ipynb” files. When Jupyter sends a code cell for execution, it marks the cell
as executing by assigning “*” to the cell execution counter. After the execution, the kernel
allocates a number to the counter, which indicates the execution order. Users can execute
the cells in any order, and a given cell can be executed multiple times.

Storing either executed or non-executed notebooks is possible. A non-executed notebook
contains only prospective data (Freire et al. 2008), i.e., the notebook title and definition
of its cells. An executed notebook contains prospective data plus retrospective data (Freire
et al. 2008) derived by the execution of the notebook cells—the output of code cells and
their execution counters. The execution of a notebook does not require cleaning the outputs
of previous executions. Thus, an executed notebook may contain retrospective data from
multiple executions.

Figure 1 shows an executed Jupyter notebook, which contains two Markdown cells and
two code cells. On the left of code cells, Jupyter displays an execution counter that indicates
the order in which the cells were executed. Below the code cells, Jupyter displays their

Fig. 1 An example of an executed notebook with Markdown, code, and output
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outputs. Note that the first code cell returns a number, identified by Out[3], and the second
code cell displays an image without returning it. This figure also illustrates skips on the
execution counters. A skip represents cell executions that do not have explicit definitions in
the notebooks. In this case, the two executions before the execution counter 3 represent one
skip, and the four executions between 3 and 8 represent another.

When initially released, IPython (Pérez and Granger 2007) notebooks supported only
Python. The system has evolved into Jupyter, which is language agnostic. Today IPython
is the kernel that Jupyter uses for executing Python code. IPython supports a superset of
Python. In addition to all Python constructs, it supports line magics to execute IPython
related commands; cell magics to modify the semantics of code cells; bang expressions to
execute system commands; cell referencing to reference the code and output of other code
cells; and help queries to access the documentation and source code of functions and classes.
Note that the second code cell of Fig. 1 uses the line magic %matplotlib inline to
enable the visualization of matplotlib figures.

3 Notebook Study

We analyzed a large corpus of notebooks to obtain insights into what contributes to their
quality and reproducibility or lack thereof. This section is organized as follows: Section 3.1
presents the research questions and the definition of their analyses. Section 3.2 describes
the collection and preprocessing of the GitHub data. Section 3.3 discusses the selection of
a popular set of notebooks that we obtained to use as a baseline and compare it with the
overall results. Section 3.4 presents the sampling process we used to gain more insights
about the data. Section 6 discusses the corpus of this work. We present the analysis results
in Section 3.6. Finally, Section 3.7 presents threats to the validity of our study.

3.1 Research Questions and Analyses

As discussed before, Jupyter has recently been the target of substantial criticism for encour-
aging bad coding habits and practices that hinder reproducibility (Grus 2018; Mueller 2018;
Pomogajko 2015). In what follows, we discuss these criticisms and propose analyses to
quantify their impact on notebooks available in GitHub. These criticisms relate to both
prospective (i.e., code definition) and retrospective (i.e., code execution) components of
notebooks (Freire et al. 2008). We thus frame our analyses in terms of seven research ques-
tions (RQ1, RQ2, RQ3, RQ4, RQ5, RQ6, and RQ7), which we organize into two categories:
Analysis of Prospective Data, which covers RQ1–RQ4, and Analysis of Retrospective Data,
which covers the remaining questions.

Note that these are the same research questions we use in our previous work (Pimentel
et al. 2019b). However, as we discuss in the introduction, we answer them now in more
detail, with a qualitative analysis of a sampled set of notebooks. We also use examples of
real notebooks of the sample to illustrate each aspect of the research questions. Moreover,
we compare the obtained results with a set of popular notebooks.

For RQ7, which investigates the reproducibility of the notebooks, we re-executed all the
experiments using different execution orders, isolating the execution environments using
Docker, and also applying normalizations to the notebook outputs to minimize small devi-
ations that do not necessarily indicate a different result. Thus, the reproducibility study we
present in this extended paper removes several threats to the validity of the experiments in
our original paper.
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Analysis of Prospective Data Notebooks store cell definitions and the notebook title
as prospective data. In our analyses, we used this information to answer the following
questions:

RQ1. How do notebooks use literate programming features? According to Wilson et al.
(2014), scientists should write programs for people and not for computers. Being a
literate programming tool, Jupyter can fulfill this goal. Jupyter allows users to write
Markdown cells with text describing the logic behind their programs, followed by direct
visualizations of the results. However, the ability to do it does not imply that users will
write descriptions or whether these descriptions are meaningful. Grus (2018) pointed
out that among the officially recommended tutorials written in Jupyter, there are tutori-
als with descriptive text that does not correctly explain what the code does. We analyze
whether Jupyter is used as a literate programming tool by looking at the number of
Markdown cells and their positions in the notebooks. Investigating the presence of lin-
guistic anti-patterns (Arnaoudova et al. 2016) or whether the Markdown descriptions are
meaningful for the notebooks is outside the scope of this work.
RQ2.How are notebooks named? By default, Jupyter creates notebooks titled “Untitled”.
It discourages users from choosing meaningful names (Grus 2018). Also, the title is used
as the name of the file which stores the contents of the notebook. Using the title as a file-
name creates OS-based restrictions in the size of titles and the allowed characters (e.g., in
Windows, it is impossible to create or use a notebook that has “?” in the title (Microsoft
2018)). Moreover, the choice of notebook title is restricted by the filename conventions
adopted by different OS (e.g., not using space characters (Tim and Doorknob 2014)). We
analyze the number of untitled notebooks, the number of notebooks with “-Copy” in the
title, the size of notebook titles, and the presence of characters not recommended by the
POSIX fully portable filenames guide (the guide recommends A-Z a-z 0-9 . -) (Lewine
1991).
RQ3. How do notebooks use modules, functions, and classes? In traditional program-
ming languages, modules, functions, and classes are essential constructs to maintain the
separation of concerns in software (Hürsch and Lopes 1995). In literate programming
environments, Markdown cells could be used to separate the concerns. However, this
would lead to the lack of referencing and reusability. Moreover, Python treats every script
as a module and allows users to import functions and classes from them, which improves
the reusability across scripts. However, importing notebooks is hard and unusual (Grus
2018). We extract the Python Abstract Syntax Tree (AST) from cells to analyze the pres-
ence of local module imports, and function and class definitions as evidence of separation
of concerns.
RQ4. How are notebooks tested? Testing is a good practice to verify that a given pro-
gram meets its requirements and keeps working after changes are applied (Myers et al.
2004). Since notebooks are not modules, testing code in a notebook is challenging as it
requires mixing test code with the notebook narrative code (Grus 2018; Mueller 2018).
To search for evidence of testing in notebooks, we analyze the imported module names
that contain “test”, “Test”, “TEST”, “mock”, “Mock”, or “MOCK” as a sub-string. We
also checked for known Python testing tools that do not have these sub-strings (i.e.,
antiparser, aspectlib, behave, doublex, fit, fudge, fusil, hypothesis, lettuce, ludibrio, mox,
nose, peckcheck, pester, pry, pythoscope, reahl.tofu, reahl.stubble, sancho, subunit, taof,
twisted.trial). We obtained this list of modules from the categories unit testing tools,
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mock testing tools, fuzz testing tools, and acceptance testing tools of the Python testing
tools taxonomy page (Python-Wiki 2019).

Analysis of Retrospective Data Notebooks store cell outputs and execution counters as
retrospective data. We use the following questions to explore the retrospective data.

RQ5. Do users store notebooks with retrospective data? Displaying execution results
is part of the literate programming aspect of notebooks. The support for rich media
enhances the narratives and the writing of programs for people. Moreover, having partial
cell results helps in checking the reproduction of a notebook by allowing the compar-
ison of the cell outputs upon re-execution. However, some advocate that the results of
notebook execution should be removed before committing to avoid noise in diffs (Staley
2017). Furthermore, Jupyter is also used as an IDE for general-purpose software devel-
opment with the goal of extracting the produced code to scripts afterwards (Kery et al.
2018). We analyze the number of notebooks that have retrospective data and whether
Jupyter is used as a literate programming tool by looking at the output formats (i.e.,
MIME types of cells’ outputs) in executed notebooks.
RQ6. How are notebooks executed? Jupyter allows users to execute cells in any order.
While notebooks present the cells in a linear top-bottom narrative, a user may choose
to execute the cells in a non-linear, arbitrary order. This ability departs from how most
people expect to run code (Grus 2018; Mueller 2018; Pomogajko 2015). Moreover, cells
that appear at the beginning of notebooks may depend on cells that appear later, leading
to additional issues for users that run them in the default top-down order (Koop and Patel
2017). Figure 2 presents an unordered notebook and two re-executions of it following
distinct execution orders: cell execution counter order and top-down order. In this exam-
ple, the order that produces the same results is the one that follows the cell execution
order. To quantify the prevalence of this practice, we identify notebooks that have cells
in a non-linear order.

In addition to out-of-order cells, when Jupyter executes a code cell, the execution may
change a state in the environment. It does not cause problems when users run cells only
once and do not change previously executed cells. However, when the user runs the same

Fig. 2 Original notebook and two executions that follow different orders
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cell multiple times, edits, or removes the cell code after executing it, the environment state
may no longer represent the code definition, and this can lead to bugs and make debugging
harder (Grus 2018; Pomogajko 2015).

Figure 3 presents three examples of hidden states caused by these situations. Having a
hidden state may make it impossible to reproduce the same results upon the re-execution
of the notebook. In fact, the re-execution of these notebooks would produce results that
differ from the ones in the output cell. Note that hidden states caused by cell re-execution
or removal make the notebooks skip numbers in the execution counter sequence. Thus, in
our analyses, we count how many execution counters skips there exist in the notebooks.
Also, note that a removed or re-executed cell that causes a skip number does not necessarily
produce a hidden state when it has code that does not change the environment. Hence,
our measurement states the susceptibility of notebooks to have hidden states rather than
confirming that they have them. Additionally, our analysis does not consider hidden states
caused by edited cells that were not executed.

We can only analyze the presence of skips and out-of-order cells in unambiguous execu-
tion order notebooks. We define unambiguous execution order notebooks as notebooks that
have only one valid execution sequence. That is, they neither have cells with repeated exe-
cution counters, nor cells whose counter indicates that they are being executed. Note that
this definition does not guarantee that the notebook outputs represent a single execution, but
it is a close approximation with practical implications in our analyses.

Finally, the presence of non-executed code cells in the middle of the notebooks also
hinders the reasoning about the execution. We analyze this issue by counting how many
non-executed cells are in the notebooks and by comparing their positions with the position
of executed ones.

RQ7. How reproducible are notebooks? Notebooks do not declare the versions of
imported libraries (Grus 2018). The lack of version information may cause incompatibil-
ities and prevent the execution of the notebook in environments that are different from the
one in which the notebook was created. In Python, this issue can be addressed by defin-
ing dependencies in standard files: setup.py, requirements.txt, and Pipfile.
We analyze how many notebooks belong to repositories with such files.

The existence of hidden states, out-of-order cells, hard-coded paths, and other bad prac-
tices also prevent the reproduction of notebooks. To assess the rate of reproducibility, we
perform a reproducibility analysis of all unambiguous execution order Python notebooks.
An unambiguous execution order notebook can have non-executed code cells in the middle.
We ignore these cells since they do not have outputs.

Fig. 3 Three types of Hidden States: a Re-execution; b edited cell; c removed cell
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Execution Modes In this analysis, we try to execute notebooks in five different modes to
assess their reproducibility rate, as summarized in Table 1. We assess the rate by identifying
notebooks that, when executed, lead to results that are the same as the results stored within
the notebooks.

The first execution mode is the one adopted in our previous work (Pimentel et al.
2019b), in which we executed the notebooks following the cell execution counter order
in a shared OS environment with conda and anaconda environments to manage multiple
Python installations and kernels. Conda is a package and environment management sys-
tem that installs and manages the dependencies of packages. It allows multiple versions of
Python to be installed with different dependencies. Conda was originally designed as part
of anaconda (Anaconda 2018), which is a Python and R distribution that includes over 100
Scientific Packages, such as numpy, scipy, matplotlib, and other packages. Today, anaconda
is a conda package that includes all these dependencies. In this work, we refer both to conda
environment and anaconda environment. When we refer to conda environment, we con-
sider an environment with only Python and Jupyter installed. When we refer to anaconda
environment, we consider the environment that bundles the anaconda package and all of
its dependencies. The decision on which environment to use was based on the availability
of dependency declarations in the repositories. For repositories that declared dependen-
cies, we used a conda environment and attempted to install the dependencies. For the other
repositories, we used an anaconda environment with multiple pre-installed packages.

Since the first execution mode uses a shared OS environment, one execution can change
system dependencies and affect the execution of other notebooks. Hence, we define four
additional execution modes as an attempt to reduce the number of false negatives. In the
second execution mode, we use docker containers to isolate the executions, and we run
cells following the existing cell execution counter. In the third execution mode, we also use
docker containers, but we run cells following the top-down order. In both these modes, we
have anaconda environments installed in the containers. In the fourth and fifth execution
modes, we also use docker containers, but we created bloated containers by attempting to
install the maximum number of packages that we could install. The goal was to prevent
notebooks from failing to reproduce due to the lack of dependencies. In the fourth execution
mode, we executed notebooks following the existing cell execution counter, and in the fifth
execution mode, we executed notebooks following the top-down order. Table 1 presents

Table 1 Execution modes for the reproducibility experiments

# Mode Environment Execution order

1 Shared + Shared OS with conda and Cell Execution

Exec. Counter anaconda environments Counter

2 Isolated + Isolated docker container with an Cell Execution

Exec. Counter anaconda environment Counter

3 Isolated + Isolated docker container with an Top-Down

Top-Down anaconda environment

4 Bloated + Bloated docker container with Cell Execution

Exec. Counter many dependencies installed Counter

5 Bloated + Bloated docker container with Top-Down

Top-Down many dependencies installed
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all the execution modes that we use in this work. We set a time limit of 5 minutes for the
execution of each notebook.

Normalizations In the first execution mode, we performed a direct character-by-character
comparison of the output of a re-execution with the saved result to check the reproducibil-
ity results. However, this comparison can lead to false negatives due to small differences.
For instance, the cell execution counter is part of the cell output. In the first analysis,
every notebook with a skip would lead to a non-reproducible notebook. Similarly, insignif-
icant deviations in number, date, and other object formats would lead to a non-reproducible
notebook despite the notebook producing a similar result that is semantically the same.

To avoid this problem, we normalize the notebook outputs in the latter four execution
modes. The normalization operations we applied are presented in Table 2. We apply these
operations in the same sequence they appear in Table 2. Hence, before we apply the stream
normalization, we apply both the encode normalization and the execution counter normal-
ization. Thus, having skips in the execution counter or insignificant deviations in formats
does not lead to non-reproducible notebooks, reducing the number of false negatives.

We indicate the reproducibility rate for each normalization. Note that the Image normal-
ization is expected to have the highest rate, as it includes all the previous normalization
operations. On the other hand, the image normalization is expected to cause false positives,
as it strips images out of the notebooks.

Mining Relationships Between Notebook Features and Reproducibility To gain deeper
insights into factors that influence reproducibility, we mined association rules (Agrawal
et al. 1994) that relate specific notebook features to both success and failure to reproduce
notebooks. Association rules have the goal of finding probabilistic associations or correla-
tions. They are expressed as X→Y, where X is the antecedent set, and Y is the consequence
set. Their interpretation is based on the amount of evidence determined by three metrics:
support, confidence, and lift (Agrawal et al. 1994; Han et al. 2011). These metrics can be
calculated as follows:

support (X → Y ) = P(X ∪ Y ) (1)

conf idence(X → Y ) = P(Y |X) = P(X ∩ Y )

P (X)
(2)

lif t (X → Y ) = P(X ∩ Y )

P (X) × P(Y )
(3)

The lift metric indicates how much the occurrence of X increases the probability of Y
occurring. When lif t > 1, X increases the probability of Y; when lif t = 1, X does not
interfere with Y; and when lif t < 1, X decreases the occurrence of Y (Han et al. 2011).

Our data mining strategy was conservative by nature—we used a low absolute support
threshold of 100 transactions and did not use a confidence threshold. This is important to
avoid hindering infrequent but relevant rules. Then, we mined for rules with size two (one
feature in the antecedent and one in the consequent) using the Apriori algorithm (Agrawal
et al. 1994) provided by package arules in R. Next, we sorted the obtained rules descending
by lift and fixed features related to reproducibility in the consequent. Finally, we observed
what features appeared in the antecedent with lift significantly higher or lower than one.

3.2 Data Acquisition and Preprocessing

We used the GitHub API to find repositories created between January 1st, 2013 and April
16th, 2018 that had a file with “Jupyter Notebook” as identified language. This query
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Table 2 Normalization operations for comparing execution results

Operation How Reason

Encode Encodes outputs into Some notebooks were stored in a different

UTF-8. encoding, leading to mismatches.

Execution Counter Removes the execution Skips in the execution counter lead to

counter from outputs. mismatches.

Stream Combines print Different versions of Jupyter/IPython behave

sequences into a single differently, leading to mismatches on print

output element. statements.

Dictionary Alphabetically sorts The order of these elements does not matter,

dictionary keys and but the textual comparison fails for

set elements. unordered objects.

Dataframe Removes HTML Pandas outputs both text representations

representation of and HTML representations of the same

pandas dataframes, dataframes, but the HTML representation

keeping only textual has changed over time for styling reasons,

representations. leading to mismatches.

Exception Path Removes paths from Python exceptions show the file path, leading

exceptions. to mismatches in different machines.

Deprecation Removes deprecation Deprecation warnings in new versions of

warnings. libraries lead to mismatches.

White space Transforms all kinds of The representation of line breaks and other

white spaces into a white space characters changes from system

single space. to system, leading to mismatches.

Decimal Cuts numbers at the Small variations in float precision lead to

second decimal place. mismatches.

Date Replaces dates by Running a notebook that outputs the current

1970-01-01T. date at two different dates would result in a

mismatch.

Time Replaces time by Running a notebook that outputs the current

00:00:00. time at two different times would result in a

mismatch.

Memory Replaces numbers that Python objects often indicate their position

start with 0x by in the memory on print statements. Since

0x0000000. every execution puts the object in a different

position, keeping the original number leads to

a mismatch.

Image Removes images from It is hard to compare images, and very small

outputs. changes in image generation lead to different

results.
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returned 265,888 repositories with 1,450,071 notebooks. We did not collect checkpoint
notebooks stored in .ipynb checkpoints directories. Most repositories (60.09%) have
2 or fewer notebooks. Only 12.42% of the repositories have 10 or more notebooks. However,
61.45% of the notebooks belong to repositories with 10 or more notebooks.

On July 22nd, 2020, we queried GitHub again to obtain the number of stars and forks of
these repositories. Some repositories were removed from GitHub in this interval. Thus, we
removed them from our analyses as well, resulting in 1,274,872 notebooks from 235,643
repositories.

After collecting the repositories, we excluded invalid notebook files, empty notebooks,
empty repositories, and repositories that we lost access between the query moment and
the analysis moment, resulting in 1,251,074 valid notebooks from 234,729 repositories.
From this result, we also excluded 226,805 (18.13%) duplicated notebooks. The goal was to
reduce the bias towards forks and notebook copies (Kalliamvakou et al. 2014). We detected
these notebooks by calculating the SHA1 hashes from cell sources and output formats. We
did not use the output results or other metadata when we calculated the hashes to be able
to detect notebooks that only had distinct prospective data as duplicates. This resulted in
1,024,269 unique notebooks for the analyses.

3.3 Popular Notebooks Selection

From the set of unique notebooks, we extracted a set of popular notebooks represent-
ing mature notebooks to use it as a baseline for the analyses. This selection reasoning is
that those mature notebooks should condense the most quality and reproducibility char-
acteristics as they have received the most attention from users. In fact, we observed that
popular notebooks attain more quality features, such as having more Markdown cells (see
Section 3.6.1), fewer issues with titles (see Section 3.6.2), and less out-of-order cells and
skips (see Section 3.6.6). As we discuss in Section 3.6.7, popular notebooks are more repro-
ducible than the overall group as well. They are 31.04% more likely to execute until the
end, 84.83% more likely to reproduce the same results without normalizations, and 41.34%
more likely to reproduce the same results after all normalizations.

For selecting the set of popular notebooks, we approximated the popularity of the
notebooks based on the popularity of their repositories. Hence, we first assigned to each
notebook the number of stars and forks of the repositories containing them. We then com-
puted a popularity score (s) that consists of the harmonic mean of stars and forks of the
notebooks. From this, we removed notebooks with zero as the popularity score and obtained
top outliers of the remaining notebooks as follows:

s ≥ 1.5 × IQR

≥ 1.5 × (Q3 − Q1)

≥ 33.331 (4)

This selection resulted in a popular set of 38,063 notebooks, which corresponds to 3.72%
of the unique notebooks.

3.4 Sampling

To get more insight into the context in which good and bad practices are applied, we sys-
tematically extracted a sample of real notebooks from the complete set of unique notebooks.
With this sample, we can observe characteristics that we could not extract automatically
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from the notebooks and use real notebooks as examples. We used Cochran’s sample size
formula (Israel 1992) to calculate our population’s sample size. Assuming a maximum vari-
ability (p = 0.5), and desiring a confidence level of 90% and ±10% precision range, we
calculated the sample size as 68.05 notebooks. Hence, we randomly selected 69 notebooks
as our sample.

As a sanity check, we compared 75 metrics with percentages related to the broad set of
unique notebooks that we report throughout this work with their sample counterparts. We
found that only 11 metrics deviate from the ±10% range when using sub-group selections.
However, all of them are calculated based on sub-groups that are not representative enough
in the sample (e.g., a percentage over the number of “Untitled” notebooks, which corre-
sponds to only 1.93% of the notebooks). When we do not consider sub-group selections
(i.e., we compare the percentages over the total number of unique notebooks or sampled
notebooks), all analyzed metrics are within the ±10% range.

In the sample, we found 31 notebooks associated with courses, such as tutorials, class
assignments, or course exercises. We also found ten academic notebooks related to papers,
dissertations, theses, and capstone projects. Ten notebooks had analysis for tasks not related
to education—although some are related to writing blog posts. Nine notebooks were related
to personal practicing, such as solving book exercises or exploring new things. Five note-
books described how to use other tools and libraries. Three notebooks are related to books.
A notebook is part of a presentation. Given the number of notebooks related to education,
understanding and supporting notebooks may greatly impact educational projects.

Given that most notebooks belong to educational projects, we analyzed to which area
they belong the most. We counted 28 notebooks related to data exploration, using simple
pandas functions and plots. Ten notebooks were related to machine learning, with libraries
such as keras, sklearn, and lasagne. Additionally, six notebooks were related to data min-
ing, with algorithms for clustering and building decision trees. Five notebooks were related
to data cleaning, to transform a data format into another. While most notebooks were data-
centric, we also found notebooks related to other areas: programming (four notebooks),
databases (three notebooks), math problems (three notebooks), algorithms (three note-
books), computer vision (two notebooks), games (one notebook), computer graphics (one
notebook), and physics (one notebook). The last two notebooks only had markdown cells
with tasks for students. These results indicate that most notebooks are data-centric analyses.

Despite most notebooks sharing areas and being data-centric, most of them use different
datasets for their analyses. Some of them use toy datasets available in existing libraries—
others use real data from many different contexts.

3.5 Corpus

We analyzed the declared programming languages of all unique notebooks. Figure 4
presents, in the log scale, the 15 most declared programming languages we found. Python is
by far the most used programming language, corresponding to 93.11% of the notebooks. It
is followed by R (1.33%) and Julia (0.96%). The popular group has slightly more Julia note-
books (1.05%) than R notebooks (0.99%), but Python still represents most of the notebooks.
All notebooks in the sample declare Python as their programming language. However, two
notebooks could declare any or no programming language, as they do not have code cells.
Moreover, two notebooks are composed mostly of cell magics with SQL queries. We also
found five Python notebooks in the sample that used bang expressions to invoke shell
commands.
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Fig. 4 Top 15 most declared programming languages. Notebooks axis in logarithmic scale

Due to the interactive nature of notebooks, most programming languages are scripting
languages. Nonetheless, Jupyter is also used for compiled languages such as C++ and
Haskell. A total of 39,636 unique notebooks do not declare a programming language, and
30,953 of them use nbformat lower than 4, which predates the release of the language-
agnostic Jupyter. Although this is a strong indication that these notebooks also use Python,
we opted for removing them from Python-specific analyses.

Since most notebooks contain Python code (953,654) and questions RQ3, RQ4, and RQ7
require language-specific analyses, we focus on Python notebooks to answer these ques-
tions. We extracted declared versions and cells with metadata from Python notebooks, and
we used the Python AST to extract Python constructs and imported modules. The most used
version is Python 2.7, which corresponds to 36.38% of the Python notebooks. However,
by combining minor releases, Python 3 surpassed Python 2. In fact, 63.53% of the Python
notebooks use Python 3. The remaining did not declare a version. For RQ3 and RQ4, we
used only valid Python notebooks (i.e., notebooks with a valid Python syntax in all code
cells). Valid Python notebooks correspond to 886,668 (92.98%) notebooks. For RQ7, we
did not have this restriction, because we ran only executed cells of Python notebooks with
unambiguous execution order, which correspond to 753,405 (79.00%) notebooks.

In addition to these restrictions, we analyzed only executed notebooks for RQ5 and RQ6,
corresponding to 932,382 (91.03%) notebooks. Figure 5 presents the distributions of code
cells and maximum execution counter value by executed notebooks for the overall group (a)
and popular group (b). Both distributions concentrate at the beginning of their histograms,
indicating that notebooks are relatively small both in the number of code cells and in the
number of maximum execution counter, compared to the size they can get. However, the
mismatch between the number of code cells and the maximum execution counter number—
which can be observed both by comparing the median or the visual representation—indicate
that notebooks have more executions than cells (i.e., they necessarily have skips). Popular
notebooks are even smaller (shorter medians), and the difference between the maximum
execution counter and the number of code cells is smaller than that of the overall group as
well. It indicates that they have fewer skips. Their execution counter is closer to the code
definition.
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Fig. 5 Distribution of code cells and maximum execution counter for overall group (a) and popular group (b)

Figure 6 summarizes the corpus of this work. The percentages reported in each research
question’s analysis refer to the number presented in this corpus unless stated otherwise.
While we indicate the number of samples in each group in this figure, we still discuss all the
samples in the analyses, since some restrictions do not hold for manual qualitative analyses.
For instance, to assess the modularization (RQ3) and tests (RQ4) of notebooks, we do not

Fig. 6 Notebook corpus and its partitions used in the analyses
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need to attain to Python notebooks with valid syntax, since we are not using automatic AST
analysis tools.

3.6 Results and Discussion

In this section, we present the results we collected to answer each of the research questions
of our study.

3.6.1 RQ1. How do Notebooks Use Literate Programming Features?

Markdown Use An important aspect of literate programming is using natural language for
describing the code. In the collected data, notebooks have a median of 4 Markdown cells.
As a comparison, they have a median of 13 code cells. Note, however, that 30.84% of the
notebooks have no Markdown cell at all.

Popular notebooks have many more Markdown cells (median of 8), and fewer code cells
(median of 11). Additionally, they are 59.59% less likely to have no Markdown cells, sug-
gesting that either they are better documented or they have more Markdown cells directly
associated with code cells.

Overall, in notebooks with Markdown cells, these cells concentrate at the beginning
of the notebooks, as presented in Fig. 7a. The same thing occurs with the popular group,
but popular notebooks have a higher percentage of Markdown cells in the middle of the
notebook, as presented in Fig. 7b.

Among the 708,393 notebooks that have Markdown cells, 50% have at least 26 non-
symbol Markdown lines. Additionally, 50% of the notebooks have at least 168 non-symbol
words. We consider non-symbol words all the words that are not part of the Markdown
syntax. Similarly, non-symbol Markdown lines are lines that have at least one non-symbol
word. We also count stopwords as non-symbol words. Stopwords correspond to a median
of 44 words in the notebooks for which we could detect the language. Despite popular
notebooks having more Markdown cells, their sizes are smaller: median of 25 non-symbol
lines, 118 non-symbol words, and 23 stopwords. It suggests that they are not necessarily
better documented. Instead, they use Markdown cells closer to code cells for more direct
documentation.

Finally, the most common Markdown elements are headers (H1, H2, and H3), and
paragraphs. These elements appear respectively in 90.72% and 79.50% of notebooks with
Markdown. Notebooks have a median of 18 words in all headers and 89 words in all
paragraphs.

Language We used the langdetect library (Danilak 2016) to identify the language of Mark-
down cells. English appears in the Markdown cells of 87.38% (619,001) of notebooks with
Markdown cells. However, only 275,380 are solely in English. We detected other languages
in cells of 46.29% (327,908) of the notebooks with Markdown. Besides English, the most
popular languages are French, Italian, German, Romanian, Indonesian, Spanish, Norwe-
gian, Portuguese, and Danish, in this order. Additionally, we could not detect the language
of cells in 37.88% of notebooks with Markdown. Popular notebooks are 10.67% less likely
to use only English.

SampledNotebooks Among the 69 sampled notebooks, we noted that 68.12% of them use
Markdown. As expected, this is close to the percentage in the full dataset (69.16%). Most of
these notebooks are written in English, but we found four notebooks in distinct languages:

65    Page 16 of 55



Empir Software Eng (2021) 26:  65

Chinese, Japanese, Spanish, and Portuguese. Nonetheless, two of these notebooks had code
written in English, and the other two did not have any code cell. Instead, they only had
Markdown cells defining the problem.We used an external service to translate the languages
that we could not understand for analyzing the content of the markdown cells.

Regarding the content, 36 notebooks have a Markdown cell with a meaningful title for
the notebook. While we only found this type of title in header elements, not all header ele-
ments represent a notebook title. Some headers only separate sub-subjects of the notebook,
and others only describe the executed code. In the sample, 38 notebooks use headers and
paragraphs for describing the notebook code. Some descriptions in the Markdown have a
goal that is different from describing what the code does: 29 notebooks use the Markdown
to describe a problem and/or goal; 16 notebooks present tasks for students, reinforcing the
educational aspect of notebooks; and 13 notebooks have a markdown cell concluding the
notebook with findings, directions for the next steps, or limitation discussion.

Figure 8 presents a snippet of a sampled notebook. This notebook starts with a Mark-
down cell with the title and a brief explanation of the notebook subject. It has sub-headers
(e.g., “Training with k-Fold Cross-Validation”) separating sections of the notebook, and
Markdown cells explaining the code cells. In addition to Markdown cells, this notebook also
uses code comments to describe the code.

RQ1. How do notebooks use literate programming features?
Answer:Most notebooks have Markdown cells, which is a literate programming char-
acteristic. Moreover, Markdown cells correspond to almost one-fourth of the cells. On
the other hand, the text is often short, and the most used elements are simple head-
ers and paragraphs, despite the possibility of displaying lists, images, links, and other
formatted elements. In the sample, we observed that notebooks use headers to sepa-
rate sections and describe code cells. In addition to describing code cells, notebooks
also use Markdown to describe the problem/goal they are tackling, describe tasks, and
conclude the document.
Possible implications: Markdown plays a considerable role in notebooks, but their
usage may not properly reach the literate programming goal of producing well-
described narratives, given their sizes and elements. It potentially compromises the
understandability of the notebook. Their position indicates that users give more atten-
tion to the beginning of notebooks. Additionally,Markdown could provide descriptions
on how to reproduce the notebook, such as indicating libraries to install or the execu-
tion order. Hence, reproducing the last cells of an average notebook that does not have
Markdown cells may represent a challenge. The linting tool we propose in Section 5
attempts to support the goal of producing well-described narratives by suggesting the
writing of Markdown cells at the beginning and ending of notebooks for describing
and concluding them, respectively.

3.6.2 RQ2. How are Notebooks Named?

Anti-patterns Only 1.93% of the notebooks start with “Untitled”, and only 0.68% of the
notebooks have “-Copy” in their names. A considerable number of notebooks (26.86%)
have characters not recommended by the POSIX fully portable filenames guide. Many of
these names do not cause problems for most systems, but 0.08% of the notebooks would
not work on Windows. Since we used Linux to clone the repositories, we do not know how
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Fig. 7 Distribution of cell types among all notebooks with Markdown (a), and popular notebooks (b)

many titles Linux does not support, if any. All these anti-patterns are less prevalent in the
popular group: notebooks with “Untitled”, “-Copy”, non-recommended POSIX characters,
and invalid Windows characters correspond respectively to 0.40%, 0.15%, 20.52%, and
0.03% of the popular notebooks.

We further investigated the repositories of notebooks with invalid names. We observed
that 56.49% of the untitled notebooks belong to repositories with two or more untitled
notebooks, and 50.79% of them belong to repositories with ten or more notebooks. Simi-
larly, 59.99% of the “-Copy” notebooks belong to repositories with two or more “-Copy”
notebooks, and 65.49% of them belong to repositories with ten or more notebooks. This
suggests that these anti-patterns are more likely to appear and repeat in repositories with
many notebooks. Users can better handle smaller repositories with few notebooks.

Name Length Figure 9 presents the distribution of filename lengths. Note that all note-
book names have the extension “.ipynb”. We found 8 notebooks without a title (i.e., their

Fig. 8 Snippet of IBM/Science/sklearn cookbook.ipynb from the GitHub repository WatPro/binder-
workspace
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Fig. 9 Distributions of filename lengths in the overall group (a) and popular group (b)

filename was just “.ipynb”). Excluding the extension, 50% of the notebooks—and popular
notebooks—have 16 letters or less. This corresponds to an average of 2 to 3 English words.

Sampled Notebooks In our sample of 69 notebooks, we observed the semantics of the
names. We found that most sampled notebooks have a meaningful name (84.06%). We
noticed that 11 notebooks have meaningless names, such as “project”, “main”, “exercise”,
or a variation with numbers and letters. Additionally, two notebooks had “-Copy”, which
removes some meaning by allowing multiple notebooks to share the same name. Observ-
ing the notebook’s context in the repository, we also noticed 20 notebooks (28.99%) with
numbered names. These numbers most likely define the order of execution of the notebooks.

RQ2. How are notebooks named?
Answer: Most users seem to change the default name in the titles of their committed
notebooks and use meaningful but short names. On the other hand, many users do not
seem to be concerned about OS-based restrictions and conventions in naming files. In
the sample, we observed that some repositories define a sequence of execution for the
notebooks.
Possible implications: Although the title is important for the narrative, disregarding
OS-based naming constraints may hamper the reproducibility when using other oper-
ating systems. Julynter—proposed in Section 5—has seven linting suggestions that
aim at supporting both the narrative and OS-based naming constraints. In addition to
these constraints, the sequencing in the naming scheme is important both for the repro-
ducibility (e.g., executing a notebook that depends on data generated by a previous
notebook in the sequence) and for the literate aspect of the notebooks (e.g., executing a
notebook that deepens on the explanation of a concept that was introduced in previous
notebooks).

3.6.3 RQ3. How do Notebooks Use Modules, Functions, and Classes?

Imports To answer this question, we analyzed the AST of all 886,668 valid Python note-
books. While 91.43% of them had imports, only 10.41% of them had local imports (i.e.,
imports of modules defined in the repository directory). The popular group percentages are
close: 90.19% of notebooks with imports and 10.93% with local imports. Figure 10 presents
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Fig. 10 Top 20 most imported modules

the top 20 most imported modules. The most used modules are numpy, matplotlib, and pan-
das, which are modules related to scientific software and data analytics. Built-in Python
modules also appear among the top 20, but in a much lower number of notebooks. Figure 11
presents the distribution of cells with imports in notebooks. Note that most imports occur
at the beginning of the notebooks. In Python scripts, the official Python style guide (PEP 8)
recommends writing imports at the top of the files (van Rossum et al. 2001).

Constructs Next, we analyzed the AST constructs from notebooks to understand if they
define functions and classes. Figure 12 presents the used AST constructs from valid Python
notebooks. Note that only 54.28% of valid Python Notebooks define functions, and only
8.55% define classes. The small number of classes is expected: Python is a multi-paradigm
programming language that encourages starting the code as a simple functional or imper-
ative script and evolving object-oriented code from it (Vavrová and Zaytsev 2017). While
the percentage of notebooks with functions may indicate that notebooks discourage writing
functions, we found that 71.02% of notebooks with loops or conditional structures also have
function definitions. Hence, notebooks without functions may be simple enough, not requir-
ing this abstraction. We did not observe a big difference in the distribution of constructs in
the popular group.

Sampled Notebooks Regarding the 69 sampled notebooks, we observed that 86.96% of
them have imports in the first cells. Despite condensing most imports in the beginning,
42.03% of the notebooks also have imports in the middle, indicating that the users did not
have a strict concern about the position of their imports. Moreover, 7.25% only have imports
in the middle. In the sample, only 44.93% of the notebooks concentrated all imports in the

Fig. 11 Distribution of cells with imports in valid Python notebooks (a) and popular notebooks (b)
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beginning, but even in this case, some of them did not use only the first cell: 10.14% have
imports up to the second one, and 1.45% have imports up to the third cell. Some of these
notebooks spread imports through the first cells. Others use the first cell for initialization
code, such as constant definitions, bang expressions to install external libraries, and IPython
magics to load extensions.

We also found that 79.71% of the notebooks are mainly designed to orchestrate library
functions, which themselves perform heavy processing. It is expected, as Python is not a
fast language for processing-intensive tasks. These notebooks often use loops to convert a
data format into another compatible with the tools they are using. Only 12 notebooks of the
sample (17.39%) implement their own intensive processing. While 50.72% of the notebooks
in the sample had function definitions, the only pattern we could identify is that the function
definitions usually appear near the cells that use them.

Figure 13 presents a snippet of one of the sampled notebooks. This notebook loads the
data into a pandas DataFrame, and most of its operations are an orchestration of pandas
and the other imported libraries (not visible in the snippet). The snippet shows the cell In
[13] with loops. However, these loops do not constitute the heavy processing operations
of the notebook. Instead, the main goal of these loops in the cell is to convert the data
from a format to another and add it back to the pandas DataFrame for other orchestration
operations. In our sampled notebooks, most loops had a similar goal of transforming the
data format or feeding the orchestrated libraries with data. Few notebooks used loops for
heavy processing.

RQ3. How do notebooks use modules, functions, and classes?
Answer: On the one hand, users seem to create functions in notebooks that have more
complex code with control flow constructs. On the other hand, users do not seem to
extract functions to local modules, given the fewer number of notebooks with local
modules. Class definitions are indeed rare, but it may be a consequence of the multi-
paradigm design of Python.
Possible implications:While defining functions and classes inside notebooks achieves
the benefits of reusability and abstraction, these benefits are limited to internal use
of the notebook. Local modules could be better explored to extend the reusability to
other notebooks and scripts, and reduce the size of code cells in notebooks. However,
keeping the code inside the notebook can be good for reproducibility, as it allows users
to share only the notebook file with all code.

3.6.4 RQ4. How are Notebooks Tested?

Tests Only 13,894 (1.57%) valid Python notebooks import known testing modules or mod-
ules that have “test”, “Test”, “TEST”, “mock”, “Mock”, “MOCK” as a sub-string of their
names. The most imported testing module is problem unittests, which is a local module from
a deep-learning course that has been forked 4,293 times at the time of this writing (Udac-
ity 2017). Note that we excluded duplicated notebooks. Thus, all the notebooks that import
this file have a distinct source code. The second most imported testing module is unittest,
which is the built-in Python module for unit testing. The percentage of valid popular Python
notebooks that import testing modules is very close: 1.62%.
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While some tools were designed to support tests on Jupyter (Burns and Ward 2013;
Pimentel 2016), we could not detect many uses of these tools. Moreover, they require
modifying the notebook code in a way that may break the narrative.

The reason why we found very few notebooks with tests may not be the notebook envi-
ronment. Instead, it may be the domain of the applications that people develop with Jupyter.
As observed in the sample in Section 3.4, and discussed in Section 3.6.3, Jupyter Notebooks
are mainly used for scientific software and data analytics. Testing this kind of software is
hard due to the lack of oracles, and the difficulty of judging the number of tests required to
guarantee the correctness (Hook and Kelly 2009). Nonetheless, another reason that explains
the lack of tests in notebooks is their usage in exploratory tasks, which are often one-offs.
If people are deploying code that will be run multiple times, they may prefer to do so in
Python scripts.

Sampled Notebooks Our sample did not have any notebooks with tests. However, we did
find tests in eight repositories associated with the notebooks of our sample. Only one of
them had tests inside other notebooks but in a subject not related to the sampled notebook.
The other repositories had tests in Python files. Three repositories had tests unrelated to the
sampled notebook. Two tool repositories that use notebooks to show how to use the tool had
tests related to the tool. A repository had a test file that attempted to run the notebook and
check if it executes successfully, but it did not check the outputs. Finally, a repository had
tests in the same subject of the sampled notebook, but it did not test the notebook’s code.

RQ4. How are notebooks tested?
Answer: Very few notebooks import testing modules. However, we observed in the
sampled notebooks that some repositories attempt to test code related to the notebook
outside the notebook environment.
Possible implications: There is an opportunity for improving tests on notebooks. As
presented in Section 3.6.3, users already tend to create functions in notebooks that have
a more complex code. These are probably the most appropriate abstractions for test-
ing with default testing tools, such as the Python unittest. An appropriate test suite is
important for assuring the reproducibility in other environments. However, for note-
book code that is based on data exploration, the existing tools are not sufficient and too
intrusive. It also opens the opportunity for proposing testing approaches for notebooks.

3.6.5 RQ5. Do Users Store Notebooks with Retrospective data?

Outputs As stated in Section 3.2, we collected 932,382 executed notebooks, which
corresponds to 91.03% of the unique notebooks. These notebooks have retrospective data.

Among the executed notebooks, 54.31% of the code cells had an output, and 96.20% of
the notebooks had at least one cell with an output. Despite having fewer code cells, popular
notebooks have more code cells with an output, proportionally (59.66%).

Table 3 presents the percentage of cells and notebooks with each output format for both
the set of executed notebooks and executed popular notebooks. Note that a cell can have
multiple output formats. Thus, the percentages add up to more than 100%. The same hap-
pens for notebooks. In this table, Text represents the textual output of cells, and Stream
represents the output of print statements and exceptions. Image represents PNG, JPEG, and
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Fig. 12 Distribution of Python constructs in notebooks. This figure groups constructs into categories. The
constructs of a category appear on the right of the category bar. A category corresponds to the union of its
constructs

SVG formats, which are the default image formats supported by Jupyter. Formatted rep-
resents Markdown and LATEX formats. Finally, Extension combines all extension-specific
formats. The most common extension formats are Jupyter Widgets, plotly, and bokeh for-
mats. Very few notebooks use the extension formats. Note in this table that most executed

Fig. 13 Snippet of train actions csv.ipynb from the GitHub repository AdrianHsu/charades-parser
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Table 3 Output formats in cells and notebooks. Note that a cell can have multiple output formats, thus, the
percentages add up to more than 100%

Format Overall Popular

% of cells % of executed % of cells % of executed

with output notebooks with output notebooks

Text 68.11% 82.00% 58.48% 67.21%

Stream 36.08% 70.47% 44.32% 65.28%

Image 22.67% 51.69% 19.84% 43.61%

HTML/JS 16.23% 36.92% 12.08% 26.98%

Error 2.28% 14.86% 1.15% 6.92%

Formatted 1.22% 1.91% 1.31% 1.75%

Extension 0.44% 1.56% 0.32% 0.97%

PDF 0.08% 0.12% 0.08% 0.11%

notebooks have outputs in cells. Note also that despite having proportionally more executed
cells with outputs, the popular group has a smaller percentage of all output formats. It might
indicate that cells in the overall group tend to have multiple outputs at once, while cells in
the popular group tend to be more focused on a smaller number of outputs.

Sampled Notebooks In the 69 sampled notebooks, only five notebooks (7.25%) do not
have execution data. Two of them are the notebooks mentioned before that only have tasks
descriptions in the Markdown. In the notebooks with retrospective data, we found eight
types of output data: 53.62% of the notebooks with results on cell outputs, 5.80% with acci-
dental results on cell outputs (e.g., functions that configurematplotlib plots returning objects
at the end of cells whose main goal is to display plots), 72.46% with stream outputs, 46.38%
with images, 43.48% with tables, 21.74% with warnings, 14.49% with exceptions, and
7.25% with interactive components that did not load without re-executing the notebooks.
Some of these components use HTML and JS in the output, while others use extensions.
Finally, we also identified that 27.54% of the notebooks write files in addition to the usual
notebook output.

Note that these categories are somewhat different than the ones we reported in Table 3.
This mainly happens because we analyzed the outputs in the sampled notebooks using the
Jupyter Lab interface instead of reading their JSON representations. It leads to two major
consequences. First, as humans, it is easier for us to visually identify that a cell has a table
than to identify that a cell outputs HTML to display the table—everything is HTML in the
Jupyter Lab interface. Similarly, we can easily identify whether a stream output is a warning
message or just the result of a print statement. Second, in some situations, we are only
able to identify one output type, despite a given cell generating at the same time multiple
outputs (e.g., a pandas table has both an HTML representation and a text representation).
This happens because Jupyter only displays the most appropriate for the application in such
situations but stores both results in the notebook file.

Figure 14 presents a snippet of one of the sampled notebooks that has a cell with no
output (In [15]), and cells that output a text string at Out[16], an HTML table at
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Fig. 14 Snippet of pythoncode/improvedlm.ipynb from the GitHub repository poorbaby/Predict-New-York-
Taxi-Demand

Out[17], and an error at Out[19]. It is common to find notebooks containing multiple
output formats.

RQ5. Do users store notebooks with retrospective data?
Answer:Most notebooks store cells with outputs.
Possible implications: This result fosters reproducibility. Knowing the expected out-
put allows users to re-run notebooks and check if they reproduce the results. However,
notebooks may store results from distinct executions, and the lack of session iden-
tification may hamper the reproducibility check. Julynter (see Section 5) suggests
re-executing cells with results from previous sessions during the newest one to avoid
this issue.

3.6.6 RQ6. How are Notebooks Executed?

Executed Notebooks Among the 932,382 executed notebooks, 21.11% had non-executed
code cells, and 62.14% had empty cells. Figure 15 presents the distribution of code cells
in the notebooks. Note that the percentage of executed code cells drops towards the bottom
of notebooks, while the percentage of non-executed and empty cells grows. While 59.15%
of executed notebooks finish with empty cells, only 11.35% of executed notebooks have
empty cells among non-empty ones. Popular notebooks are 38.43% less likely to have non-
executed cells, 38.80% less likely to have empty cells in the end, and 56.14% less likely to
have empty cells among non-empty ones.
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Fig. 15 Distribution of code cells in executed notebooks (a) and popular notebooks (b)

Unambiguous Execution Order We collected 802,474 notebooks with unambiguous exe-
cution order (i.e., the ones that neither have repeated values in execution counters nor
executing cells, marked with an asterisk). This number corresponds to 86.07% of the exe-
cuted notebooks. Among the notebooks with unambiguous execution order, 36.45% have
out-of-order cells. The percentage of unambiguous notebooks in the popular group is very
close (85.49%), but only 22.37% of them have out-of-order cells.

By following the execution counters’ sequence in unambiguous execution order note-
books, we counted how many skips occurred. Since skips represent cell executions without
explicit definitions, they may indicate the presence of hidden states. Figure 16 presents
the distribution of skips by notebooks. 76.88% of unambiguous execution order notebooks
have at least one skip. A skip contains 12.83 executions on average. By considering only
skips in the middle (i.e., excluding skips in the first cell), the percentage of notebooks with
skips drops to 66.15%. Additionally, the average of skipped executions drops to 10.33. As
expected, all these numbers drop as well for popular notebooks: 57.54% of them have skips,
and 47.84% of them have skips in the middle. A skip contains 9.84 executions on average,
or 8.31 executions when we only consider skips in the middle.

Sampled Notebooks Among the 69 sampled notebooks, we found 28 unordered note-
books for exploratory reasons (40.58%), such as updating plots, reloading data, or changing
the algorithm. Among them, 19 notebooks had cells defining names (i.e., variables and
functions) executed after the cells that use them, leading to non-reproducible notebooks.
Moreover, 15.94% of the notebooks had ambiguous execution order due to the repetition of
cell numbers, making it hard to execute them. In some cases, the repetition occurred follow-
ing the top-down order, indicating an attempt to re-execute the notebook in a new session

Fig. 16 Distribution of skips in notebooks with unambiguous execution order (a) and popular notebooks (b)
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that did not run all cells. In other cases, the notebook had results from two separate ses-
sions, with one of them executing cells at the beginning and the other executing cells at the
end. Some unordered notebooks had repeated cell numbers spread throughout the notebook,
making it hard to understand the desired execution intention.

We also observed that 8.70% of the sampled notebooks have cells that were noticeably
edited after their execution (e.g., cells with output that could not be generated by that cell
code), and 36.23% of the notebooks have non-executed code cells, making it hard to decide
which cells should be executed. Nonetheless, 32.00% of these notebooks with non-executed
cells had them at the end of the notebook, indicating that the users stopped executing the
cells at a given moment. Additionally, 16.00% of these notebooks have non-executed code
cells with only code comments. We also found that a notebook had an incomplete code cell
that was not executed, and a notebook had non-executed cells after an exception, which
might have prevented the user from running the end of the notebook using the Run all cells
option.

Figure 17 presents a snippet of one of the sampled notebooks. This notebook has an
empty cell between two Markdown cells, a skip in the execution count, and non-executed
code cells in the end. While the skip in the snippet is from In [10] to In [38], the
actual skip in the notebook is from In [17], as the notebook has the cells in the wrong
order. Having cells in the wrong order is also a source of hidden states in this case: the
cell In [12] appears at the beginning of the notebook, but it redefines the variables
cancellations, operations, and airports used in the In [10], presented in
the snippet. Hence, executing this notebook following the cell execution counter would fail.

Fig. 17 Snippet of pparker-roach/project 7-SANDBOX.ipynb from the GitHub repository mohsseha/DSI-
BOS-students
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RQ6. How are notebooks executed?
Answer:Many unambiguous execution order notebooks have non-executed code cells,
out-of-order cells, and skips in the execution counter. All these characteristics hinder
the reasoning about execution states. The number of notebooks with skips and the
average size of skips drop when we exclude skips at the beginning of the notebooks.
A possible cause for these skips happening only at the beginning of a notebook is the
re-execution of all of its cells without restarting the kernel.
Possible implications: There is an opportunity for proposing approaches that measure
non-executed code cell, out-of-order cells, and skips as code smells in notebooks, i.e.,
structures in the code that violate design principles and can negatively impact qual-

esehtfotsom,yletanutroF.)8102küçüKdnaisuoraG(yti code smells are easily fixable
by restarting the kernel and executing all cells again before committing. Nonetheless,
such an approach could detect out-of-order cells by looking not only to cell numbers
but also to variable usages occurring before their definition. In Section 5, we propose
Julynter, a linting tool that checks these code smells and suggests fixes.

3.6.7 RQ7. How Reproducible are Notebooks?

Handling Dependencies To answer RQ7, we conducted a reproducibility study in which
we attempted to execute all 753,405 Python notebooks with unambiguous execution order.
Among these, 94,183 (12.50%) belong to repositories that declared module dependencies
(which corresponds to 8.78% of the repositories that have Python notebooks with unambigu-
ous execution order). Proportionally, a higher percentage of popular notebooks belong to
repositories that declared dependencies (21.77%), suggesting that popular notebooks have
more intention of providing directions for their reproducibility. These repositories corre-
spond to 24.63% of the popular repositories that have Python notebooks with unambiguous
execution order.

Among repositories with dependencies, 79.85% use requirements.txt, while
45.62% use setup.py. Many of these repositories (26.09%) have both setup.py files
and requirements.txt files. Moreover, some repositories even have more than one of
these files. In addition to these files, we found 865 notebooks that belong to repositories
with Pipfile.

Popular notebooks are 7.80% less likely to have requirements.txt files, 22.20%
more likely to have setup.py files, 13.71% more likely to have both, and 50.77% less
likely to use Pipfile. Using more setup.py and less requirements.txt may
indicate that popular notebooks are part of repositories meant to be redistributed and used
together with other projects (e.g., libraries)—in opposite to repositories that define the com-
plete Python environment for their standalone execution. The reason they use less Pipfile
may be related to their age and the time they needed to become popular, as Pipfile is a
much more recent system.

Not all dependency declarations are valid. In the first execution mode (shared + execution
counter), we attempted to install the dependencies for these notebooks in conda environ-
ments. However, the dependencies of 59.30% of the notebooks failed to install. To install the
dependencies, we first installed all the setup.py files in the repository. Then, we installed
the requirements.txt files. Finally, we installed the Pipfile files. The failure rates
for these files were 65.53%, 57.21%, and 60.69%, respectively.
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The failure rate for the installation of requirements.txt was lower than the other
formats. While the requirements.txt is a declarative format in which the module
version is pinned, the setup.py is a generic Python script that supports any flexible instal-
lation code. Thus, setup.py is more susceptible to errors. In comparison to Pipfile,
requirements.txt is a well-established format that has been used for many years.
Pipfile, on the other hand, was introduced less than four years ago, and its specification
still goes through constant revisions.

The failure rate of setup.py was about the same for popular notebooks (64.92%).
However, requirements.txt and Pipfile were less likely to fail: 47.42%, and
40.91%, respectively. The reason it happened may be related to the intention of the users
when creating these files. Usually, Python developers create setup.py to install libraries
and command-line tools (PyPA 2020). This intention does not change according to the
repository popularity. However, requirements.txt and Pipfile have the intention
of either describing the dependencies of a complete Python environment or describing
the dependencies of an application. We suppose popular repositories may design these
files describing only the project dependencies to allow other users to use it, while non-
popular repositories may use the pip freeze command to describe all the environment
dependencies for a requirements.txt file and not face issues from other users.

Among the reasons for installation errors, we identified that 29.17% have files that
require other unavailable files (e.g., sub-requirements and downloads from unavailable
servers), 29.17% have malformed files (i.e., wrong syntax or conflicting dependencies),
25.59% have files that require a previous installation of Python packages (e.g., a setup.py
that requires Cython to compile and build a package), 19.69% have files that require exter-
nal tools (e.g., compilers and libraries), 8.43% have files designed for other systems (e.g.,
Raspberry Pi and Windows), and 0.98% have dependencies that do not support the declared
Python version (e.g., the repository has a Python 2 notebook, but the setup.py requires a
module that dropped support to Python 2 and did not pin the module version). Popular note-
books have fewer errors related to unavailable files (20.28%), malformed files (20.28%),
being designed for other systems (5.94%), or having dependencies that do not support the
Python version (0.10%), but more errors related to requiring a previous installation of a
Python dependency (33.87%) or an external tool (25.09%). It is expected since there was no
standard way to define installation dependencies during the development of most of these
notebooks. The specification for Python build system requirements was proposed in May
2016 and implemented in March 2017 (Cannon et al. 2016).

We were able to install the dependencies for 40.70% of the notebooks. In addition to
these notebooks, we prepared anaconda environments for the notebooks that did not declare
dependencies (87.48% of them). Unlike previous conda environments, an anaconda envi-
ronment comes with a comprehensive set of scientific Python packages, such as numpy,
matplotlib, and pandas. Combining both the set of notebooks for which we were able to
install the dependencies and the set of notebooks that did not declare dependencies, we
had 697,398 notebooks on our original reproducibility study (Pimentel et al. 2019b). The
installation success rate for popular notebooks was very close: 41.38%.

Isolating Executions and Exploring Different Execution Orders While the first execution
mode used conda environments to isolate the dependency installation, it did not isolate the
interactions between notebooks and the OS. Consequently, one execution could interfere
with another by changing state in the shared OS. To address this limitation, we run note-
books inside isolated docker containers. Additionally, the first execution mode was inherited
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from the original study (Pimentel et al. 2019b), which only executed notebooks by follow-
ing the order of cell execution counters, which can lead to false negatives with respect to
reproducibility assessment. In the current study, we follow both the cell execution counter
and the top-down order.

We also prepared bloated docker images in which we attempted to install all mod-
ules imported by all Python notebooks that we collected. As expected, many installations
failed and we left them out of the image. Nonetheless, most popular modules, which were
imported by more than 2,000 notebooks in our corpus, were successfully installed. The only
exceptions were GraphLab (imported by 11,092 notebooks), PyTorch (imported as torch
by 7,745 notebooks and as torchvision by 3,433 notebooks), gensim (imported by
7,174), and GeoPandas (imported by 3,350). GraphLab requires a license to use. PyTorch
did not work in our environment. GeoPandas and gensim had binary dependencies that we
could not install. In addition to these dependencies, we also installed common tools, com-
pilers, and interpreters in all docker containers to reduce the number of failures due to the
absence of external tools.

Notebook Executions We report five execution modes by alternating both the execution
order and the environment. The first one (shared + execution counter) is the reproducibil-
ity study of the first paper, in which we executed notebooks following the cell execution
counter in conda and anaconda environments installed in a shared system. The second one
(isolated + execution counter) uses the anaconda docker image and runs notebooks follow-
ing the cell execution counter. The third one (isolated + top-down) also uses the anaconda
docker image, but we execute the cells following the top-down execution order. In the fourth
one (bloated + execution counter), we use the bloated docker image to execute notebooks
following the cell execution counter. Finally, in the fifth mode (bloated + top-down), we
also use the bloated docker image to execute in the top-down order. Due to time constraints,
we could not install the dependencies from the dependency files in the docker containers.
Thus, we restricted the executions in the isolated modes only to notebooks in reposito-
ries that did not have dependency files. Additionally, we executed all notebooks in bloated
modes without installing specific packages from dependency files of each repository.

In our experiments, many notebooks failed to execute all cells. Some failed because
their execution exceeded a time limit of 5 minutes, while others failed due to an exception.
Figure 18 presents the percentage of notebooks that failed due to timeout, in addition to
the 10 most common exceptions the notebooks presented in each execution mode of our
assessment.

By mining association rules related to timeout on the executions of the isolated modes,
we found that importing unittests, defining “raise” and “while” statements increases the
frequency of timeouts by at least 9.81, 2.37 and 1.63 times, respectively, as presented in
Table 4.

The bloated docker environments failed much less due to ImportError and ModuleNot-
FoundError than the other environments, since these exceptions are related to missing
dependencies. On the other hand, these environments failed much more due to Attribu-
teError, KeyError, and RuntimeError. The former two exceptions are related to updates on
libraries that deprecate and change APIs, and the latter exception may be related to conflict-
ing versions of libraries. Hence, simply installing dependencies from imports does not solve
all dependency problems. In fact, with the growth of these other types of exceptions, the per-
centage of notebooks that run all cells did not improve much. These issues would be better
addressed through the proper definition of dependencies with their versions in dependency
files.
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Fig. 18 Failure reasons for the executions in each execution mode. The blue bars represent the Top 10 excep-
tions. The “Timeout” orange bar represents executions that we stopped when they took 5 minutes to run. The
“Other” orange bar groups all the other exceptions that are not part of the Top 10
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Table 4 Association rules related to timeout

Mode Antecedent Consequent Support Confidence Lift

Isolated + unittests timeout 0.09% 28.80% 11.56

Exec.Counter

Isolated + raise timeout 0.17% 6.79% 2.73

Exec. Counter

Isolated + while timeout 0.32% 4.21% 1.69

Exec. Counter

Isolated + unittests timeout 0.11% 35.26% 9.81

Top-Down

Isolated + raise timeout 0.21% 8.50% 2.37

Top-Down

Isolated + while timeout 0.45% 5.86% 1.63

Top-Down

Surprisingly, in the first execution mode (in which we tried to install declared depen-
dencies), 44.18% of the notebooks from repositories with declared dependencies failed
with one of these errors. In contrast, only 31.61% of the notebooks from repositories with-
out declared dependencies failed with these errors. It probably happened because we used
anaconda environments with more pre-installed dependencies for the latter ones. Still, it
indicates that many dependency files do not declare all the notebook dependencies. Popular
notebooks were about 13% more likely to fail in both situations.

Another very common exception in the executions that followed the cell execution
counter was NameError. This exception occurs when Python tries to access a variable that
was not defined. This exception is related to hidden states and out-of-order cells. By mining
association rules over features from executions of the isolated modes, we found that skips
raise the chance of NameError exceptions, as presented in Table 5. Skips increase more the
likelihood of exceptions when we run notebooks following the cell execution counter than
when we run them in top-down order (1.27 times vs. 1.19 times). Moreover, having skips in
the middle raises even more the likelihood of exception in the execution counter order (1.39
times). Since this exception occurred much more on executions that followed the execution
counter than on executions that followed the top-down order, this suggests that even though

Table 5 Association rules related to skips and NameError

Mode Antecedent Consequent Support Confidence Lift

Isolated + Skips in the middle NameError 13.41% 20.32% 1.39

Exec. Counter

Isolated + Skips NameError 14.21% 18.50% 1.27

Exec. Counter

Isolated + Skips in the middle NameError 3.05% 4.62% 1.18

Top-Down

Isolated + Skips NameError 3.56% 4.63% 1.19

Top-Down
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users can execute the notebook at any other and define and redefine variables, they still tend
to define variables in the top-down order.

Finally, the other very common exceptions were FileNotFoundError and IOError. These
errors occur when users use absolute paths to access data files or do not include the data in
the repositories.

Reproducibility Results. Table 6 presents the reproducibility results for each execution
mode, considering each normalization described in Tables 2 and 7 presents the reproducibil-
ity results for the popular notebooks. The normalization columns of the first execution mode
(shared + execution counter) are empty because we originally did not apply any normal-
ization. In these tables, the percentages refer to the number of notebooks that we attempt
to run (i.e., we exclude failed installations in the first execution mode and notebooks with
dependency descriptors in isolated modes). Also, we considered notebooks that resulted in
a timeout and notebooks with exceptions as non-reproducible. This last assumption may not
be true since reproducible notebooks could have exceptions in them.

In Table 6, we calculated that about 11% of the executed notebooks (or 6% in Table 7
for the popular group) originally had exceptions, and about 7% of the notebooks (popular
group: 4% in Table 7) had cells with outputs after the original exception. While we counted
them as non-reproducible, these exceptions are likely the expected behavior of these note-
books. However, as we did not compare the exceptions, we cannot indicate whether they are
reproducible.

The percentage of executions that run all cells ranged from 22.57% to 26.09%. These
results are very close to the reproducibility rate of 24.9% that Collberg et al. (2014) achieved
in their study of reproducibility in general computer systems research. Their study only
attempted to compile the source code and did not check the execution results. In our case, the
shared + execution counter mode was able to run more notebooks (26.09%) than the other
modes, probably due to the installation of dependency files. Additionally, the bloated + exe-
cution counter mode had the smallest percentage of notebooks that run all cells (22.57%).
However, these results do not reflect the number of notebooks that produce the same results.

The worst reproducibility rate was observed for the first execution mode (shared + exe-
cution counter) with no normalization (4.90%) and the best rate occurred for the bloated
+ top-down mode after the image normalization (15.04%), as expected. The image nor-
malization not only applies all the previous normalizations shown in Table 2, but it is also
the most susceptible to false positives, as it ignores differences in image results by con-
sidering that these differences could be caused by small changes in module updates. The
boated + execution counter mode had the second-best results (14.40%, after the image
normalization).

Popular notebooks were more reproducible in all situations. The percentage of executions
that run all cells ranged from 31.84% to 36.27%. In this case, the isolated + top-down mode
could run more notebooks than the other environments, proportionally (36.27%). However,
in terms of producing the same results, the bloated + top-down mode dominated all the
others, reaching a reproducibility rate of 21.32% after the image normalization.

While the normalizations did not affect the ability to run notebooks, they almost dou-
bled the reproducibility rate (compared to the scenario when no normalization was applied).
However, not all normalizations were equally effective. The most effective normaliza-
tions were image, execution counter, dataframe, deprecation, and stream. The deprecation
normalization had more effect than the dataframe one on the environments with all depen-
dencies. This is probably due to the fact that we installed the most recent version of packages
in the bloated environments, increasing the chance of having deprecations in them.
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Table 6 Reproducibility results for all notebooks

Shared + Isolated + Isolated + Bloated + Bloated+
Exec. Exec. Top Exec. Top

Counter (1) Counter (2) Down (3) Counter (4) Down (5)

Attempted 697,398 590,354 590,358 672,232 672,235

executions

Run all 181,955 137,208 152,555 151,730 170,949

cells (26.09%) (23.24%) (25.84%) (22.57%) (25.43%)

Stopped by 8,903 13,969 20,847 24,690 27,652

timeout (1.28%) (2.37%) (3.53%) (3.67%) (4.11%)

Stopped by 506,539 439,177 416,956 495,296 473,324

exception (72.63%) (74.39%) (70.63%) (73.68%) (70.41%)

Had exception 80,520 67,762 66,226 76,151 74,816

originally (11.55%) (11.48%) (11.22%) (11.33%) (11.13%)

Output after 55,138 46,165 43,459 52,042 49,287

exception (7.91%) (7.82%) (7.36%) (7.74%) (7.33%)

Same results

No 34,148 29,927 33,555 58,365 58,910

normalization (4.90%) (5.07%) (5.68%) (8.68%) (8.76%)

Encode 29,927 33,555 58,365 58,910

(5.07%) (5.68%) (8.68%) (8.76%)

Execution 39,976 44,618 70,050 71,873

counter (6.77%) (7.56%) (10.42%) (10.69%)

Stream 42,306 47,274 72,449 74,410

(7.17%) (8.01%) (10.78%) (11.07%)

Dictionary 42,306 47,426 72,449 74,410

(7.17%) (8.03%) (10.78%) (11.07%)

Dataframe 45,773 51,357 75,708 77,990

(7.75%) (8.70%) (11.26%) (11.60%)

Exception 45,773 51,415 75,708 77,990

path (7.75%) (8.71%) (11.26%) (11.60%)

Deprecation 48,138 54,058 79,763 82,370

(8.15%) (9.16%) (11.87%) (12.25%)

White 48,138 54,593 79,763 82,370

space (8.15%) (9.25%) (11.87%) (12.25%)

Decimal 48,138 55,161 79,763 82,370

(8.15%) (9.34%) (11.87%) (12.25%)

Date 48,138 55,174 79,763 82,370

(8.15%) (9.35%) (11.87%) (12.25%)

Time 48,138 55,183 79,763 82,370

(8.15%) (9.35%) (11.87%) (12.25%)

Memory 48,138 55,404 79,763 82,370

(8.15%) (9.38%) (11.87%) (12.25%)

Image 64,214 76,745 96,783 101,078

(10.88%) (13.00%) (14.40%) (15.04%)
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Table 7 Reproducibility results for the popular group

Shared + Isolated + Isolated + Bloated + Bloated +
Exec. Exec. Top Exec. Top

Counter (1) Counter (2) Down (3) Counter (4) Down (5)

Attempted 19,473 13,842 13,842 17,411 17,411

executions

Run all 6,864 4,806 5,021 5,543 5,858

cells (35.25%) (34.72%) (36.27%) (31.84%) (33.65%)

Stopped by 172 280 363 639 679

timeout (0.88%) (2.02%) (2.62%) (3.67%) (3.90%)

Stopped by 12,437 8,756 8,458 11,224 10,869

exception (63.87%) (63.26%) (61.10%) (64.46%) (62.43%)

Had exception 1,201 861 843 1,046 1,032

originally (6.17%) (6.22%) (6.09%) (6.01%) (5.93%)

Output after 873 616 584 758 727

exception (4.48%) (4.45%) (4.22%) (4.35%) (4.18%)

Same results

No 2,135 1,610 1,652 2,590 2,609

normalization (10.96%) (11.63%) (11.93%) (14.88%) (14.98%)

Encode 1,610 1,652 2,590 2,609

(11.63%) (11.93%) (14.88%) (14.98%)

Execution 1,769 1,821 2,769 2,801

counter (12.78%) (13.16%) (15.90%) (16.09%)

Stream 2,097 2,142 2,907 2,935

(15.15%) (15.47%) (16.70%) (16.86%)

Dictionary 2,097 2,146 2,907 2,935

(15.15%) (15.50%) (16.70%) (16.86%)

Dataframe 2,189 2,243 2,999 3,029

(15.81%) (16.20%) (17.22%) (17.40%)

Exception 2,189 2,243 2,999 3,029

path (15.81%) (16.20%) (17.22%) (17.40%)

Deprecation 2,249 2,310 3,098 3,134

(16.25%) (16.69%) (17.79%) (18.00%)

White 2,249 2,332 3,098 3,134

space (16.25%) (16.85%) (17.79%) (18.00%)

Decimal 2,249 2,343 3,098 3,134

(16.25%) (16.93%) (17.79%) (18.00%)

Date 2,249 2,343 3,098 3,134

(16.25%) (16.93%) (17.79%) (18.00%)

Time 2,249 2,343 3,098 3,134

(16.25%) (16.93%) (17.79%) (18.00%)

Memory 2,249 2,347 3,098 3,134

(16.25%) (16.96%) (17.79%) (18.00%)

Image 2,678 2,846 3,641 3,712

(19.35%) (20.56%) (20.91%) (21.32%)
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Since the execution counter normalization is among the ones that affected the most the
reproducibility rates without adding false positives, we decided to use it when mining asso-
ciation rules. The association rules indicate that small notebooks, “while” definitions, and
“class” definitions raise the probability of obtaining the same results by 122%, 83%, and
67% when following the execution counter order, and 107%, 81%, and 65% when fol-
lowing the top-down order, respectively. On the other hand, we found that skips in the
middle, imports, unordered cells, and big notebooks decrease the chance of obtaining the
same results by 36%, 37%, 66%, and 70% when following the execution counter order, and
27%, 34%, 41%, and 64% when following the top-down order, respectively, as presented in
Table 8.

RQ7. How reproducible are notebooks?
Answer: We were able to successfully run between 22.57% and 26.09% of the note-
books that we attempted to run. This number is close to the results of a previous
reproducibility study (Collberg et al. 2014) about general computer systems research
(24.9%). However, the rates are way smaller (4.90%–15.04%) when we count only
notebooks that produce the same results. The most common causes of failures were
related to missing dependencies, the presence of hidden states and out-of-order exe-
cutions, and data accessibility in all execution sets. In the experiments that we used
docker environments with most pre-installed dependencies, many executions also
failed due to incompatible versions of dependencies and conflicts.
Possible implications: While the reproducibility rate is comparable to the rate in
general computer systems research (Collberg et al. 2014), it is far from ideal. The
identification of the root causes suggests that there is an opportunity to improve the
reproducibility rate in notebooks by devising approaches that address these problems.
More specifically, managing the dependencies of notebooks and guaranteeing the lin-
ear (top-down) execution order could improve the reproducibility rate. It is worthy
of noting that dependency resolution problems are also common in other contexts,
such as building past snapshots of software (Tufano et al. 2017). Additionally, tools
such as ReproZip (Chirigati et al. 2016) can automatically capture dependencies (both
libraries and data) and create packages including these dependencies, thus ensur-
ing reproducibility. ReproZip has a plugin for Jupyter (ReproZip 2017). Similarly,
Julynter—proposed in Section 5—detects imports of modules that are not declared
in requirements.txt files and suggests their inclusion. Additionally, Julynter
also detects out-of-order cells and suggests reordering or re-executing the notebook to
guarantee a linear execution order.

3.7 Threats to Validity

This first study attempts to obtain a picture of quality and reproducibility practices used in
the design of Jupyter Notebooks. As presented in Section 3.1, we have designed measures
that capture different aspects of notebooks that impact their reproducibility. These measures,
however, have some threats to validity that we discuss below.

Internal While we used clean conda environments in the first execution mode (shared +
execution counter), we did not isolate the executions in the system. It means that a notebook
execution or dependency installation could install or modify system dependencies before
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Table 8 Association rules related to executions that generate the same results after the execution counter
normalization

Mode Antecedent Consequent Support Confidence Lift

Isolated + 9 or less cells Same Results 3.84% 14.47% 2.22

Exec. Counter (1st quartile)

Isolated + while Same Results 0.91% 11.95% 1.83

Exec. Counter

Isolated + class Same Results 0.88% 10.94% 1.67

Exec. Counter

Isolated + Skips in the middle Same Results 2.77% 4.19% 0.64

Exec. Counter

Isolated + Imports Same Results 3.66% 4.11% 0.63

Exec. Counter

Isolated + Unordered Same Results 0.80% 2.23% 0.34

Exec. Counter

Isolated + 37 or more cells Same Results 0.44% 1.98% 0.30

Exec. Counter (4th quartile)

Isolated + 9 or less cells Same Results 4.00% 15.09% 2.07

Top-Down (1st quartile)

Isolated + while Same Results 1.00% 13.16% 1.81

Top-Down

Isolated + class Same Results 0.96% 12.02% 1.65

Top-Down

Isolated + Skips in the middle Same Results 3.48% 5.28% 0.73

Top-Down

Isolated + Imports Same Results 4.29% 4.81% 0.66

Top-Down

Isolated + Unordered Same Results 1.55% 4.31% 0.59

Top-Down

Isolated + 37 or more cells Same Results 0.59% 2.62% 0.36

Top-Down (4th quartile)

the preparation and execution of another notebook. We attempted to minimize this threat by
running the new analyses in isolated docker environments. However, in the new analyses,
we did not attempt to install the dependencies declared in the repositories, due to time
constraints. Instead, we did try to install all modules imported by the notebooks in separate
environments.

Additionally, we examined all notebooks from GitHub as valid subjects in this
work. We did not account for all the perils of mining software repositories from
GitHub (Kalliamvakou et al. 2014). Some analyzed notebooks may not be intended to be
reproducible and may not value quality. For instance, students prepare exercises with the
goal of studying for a course. These exercises have a short life-span and are often not clas-
sified as engineered software projects (Munaiah et al. 2017). A basic check for notebooks
containing words related to exercises (“assignment”, “course”, “exercise”, “homework”,
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“lesson”) returns 164,463 unique notebooks (16.06%). Even though this check is very sus-
ceptible to false positives and false negatives, it indicates that exercises are a solid use case
for notebooks and deserve investigations. Other use cases for notebooks (e.g., tutorial note-
books, research notebooks, dashboards, and others) may also have different goals in terms
of quality and reproducibility and also require further investigations. In the sampled note-
books, we observed that education is a big use case for notebooks. Hence, even though these
notebooks may have different goals in terms of quality and reproducibility, it is still worth
it to understand them to improve these aspects.

Moreover, during sampling, we manually analyzed the characteristics of the notebooks.
This analysis is subject to human error. We attempted to mitigate this threat by comparing
some results with proxies on the database. However, these proxies are not complete (i.e.,
there are things that we only observed in the sample) nor reliable for qualitative analyses
(i.e., they do not capture nuances that we could interpret by reading the notebook).

Construct The methods we use to answer the research questions aim to attain an approx-
imated answer since it is not possible to get accurate answers that precisely represent all
notebooks without false positives and false negatives. For instance, a module for statisti-
cal tests could have “test” in its name and appear as an answer to RQ4 without being a
module for testing software. Similarly, we may not detect a testing module that does not
have “test” or “mock” in its name, and that does not appear in the Python testing tools
taxonomy (Python-Wiki 2019).

Moreover, in the reproducibility study, we did not consider the maintainability of note-
books and libraries. Many libraries might have been updated since the notebooks were
originally developed. This should be a threat for the bloated execution modes, which uses
arbitrary versions of the libraries. However, we found that these modes were more repro-
ducible than the shared environment, which attempted to install pinned versions declared in
dependency files (setup.py, requirements.txt, and Pipfile). Similarly, many
repositories may have been updated to account for library changes since we first collected
them. However, when assessing the maintainability of repositories with notebooks, we
found that only 12.68% of them still had some active development six months after the
collected commit, and only 2.84% of them were still active in the six months prior to the
moment we queried GitHub again (July 22nd, 2020). Hence, it is reasonable to assume that
most repositories are not maintained, we perform the reproducibility study as is.

Additionally, we only checked whether the notebooks generated the same results when
they successfully ran all cells. However, we stopped the executions on exceptions and did
not consider these notebooks as reproducible. An exception may be the expected (although
unusual) behavior of a notebook, and it may have executed code after the exception as well.

To account for small deviations in the notebooks’ results that were leading to false neg-
atives in the analyses of same results, we performed normalizations on the outputs. While
some normalizations reduce the number of false negatives without drawbacks (e.g., encode
normalization and execution counter normalization), other normalizations increase false
positives. For instance, after applying the image normalization, two notebooks can generate
completely different images, but we will consider them as generating the same results.

To assess the popularity of notebooks, we used the number of stars and forks from repos-
itories as a proxy for the notebooks due to the lack of a better number. Since these numbers
are from the repositories, they may not represent the popularity of a notebook. For instance,
a tool repository that uses a notebook as an example of how to use it may be popular because
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of the tool and not because of the notebook. However, in our comparisons, popular note-
books had more quality features and reproducibility than the overall group, indicating that
the proxy was sound.

External We collected repositories fromGitHub for over one year. During this period, many
repositories were updated, and many repositories were removed. Despite having data until
April 16th, 2018, the repository states represent their state during the collection and not
their state on this date. Additionally, we restricted our analysis to committed notebooks.
Presumably, these notebooks receive more attention than the average scratchpad notebook
and follow better practices. For instance, Grus (2018) pointed out the problem of untitled
notebooks, but in our data, these notebooks correspond only to 1.93% of the notebooks.

4 Best Practices for the Reproducibility of Notebooks

In Section 3.6, we identified a set of bad practices that hinder the reproducibility and the benefits
of the literate programming aspects of notebooks. Based on our findings, we propose the
following best practices for the development of notebooks (Pimentel et al. 2019b):

1. Use short titles with a restrict charset (A-Z a-z 0-9 . -) for notebook files
and Markdown headings for more detailed ones in the body. As discussed in
Section 3.6.2, some operating systems may not support characters that many notebook
titles use. Since notebooks support Markdown, we recommend using it to write the
complex titles inside the notebooks and leave the notebook title as simple as possible.

2. Pay attention to the bottom of the notebook. Check whether it can benefit from
descriptive Markdown cells. Additionally, check whether the bottom cells have
been executed. If not, consider either executing or removing them. Users seem to
pay more attention to the beginning of the notebook, as depicted in Sections 3.6.1, 3.6.3
and 3.6.6. Particularly, the bottom of notebooks usually has fewer Markdown cells and
fewer executed code cells, compromising reproducibility.

3. Abstract code into functions, classes, and modules, and test them. As presented
in Section 3.6.3, most users do not extract code into modules. This hinders the reuse
and test of the notebooks. This is especially serious because notebooks are not packed
together with tests. Thus, we recommend to abstract and test notebooks.

4. Declare the dependencies in requirement files and pin the versions of all packages.
In Section 3.6.7, we identified that requirements.txt files fail less than other formats.
We also recognized that many failures occur due to the lack of module dependencies.
Hence, we recommend defining the dependencies explicitly and pinning the versions
on a requirements.txt file.

5. Use a clean environment for testing the dependencies to check if all of them are
declared. In the original reproducibility study (Pimentel et al. 2019b), we identified that
installing dependencies in a clean environment failed more than just using an anaconda
environment. Similarly, in the new study (Section 3.6.7), the bloated environment failed
less due to ImportError and more due to updates on the modules. Thus, we recommend
setting a clean environment and testing the notebooks dependencies before releasing it
to check whether all of them are declared.

6. Put imports at the beginning of notebooks. This is not only close to the PEP 8 (van
Rossum et al. 2001) recommendation but also helps in the verification of imports that
we discussed above.
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7. Use relative paths for accessing data in the repository. We identified that accessing
files was also a common cause of errors in Section 3.6.7. Accessing project files using
relative paths can reduce this issue.

8. Re-run notebooks top to bottom before committing. As presented in Section 3.6.6,
many notebooks have out-of-order cells and skips. Moreover, these issues seem to
impact the reproducibility (Section 3.6.7). Thus, we recommend re-running notebooks
for restoring the execution counters and minimizing the impact of hidden states and
out-of-order cells.

In the next section, we propose a tool that helps users to automatically verify most of
these best practices.

5 Julynter: A Jupyter Linting Tool

Based on the results of our analyses and the proposed best practices, we propose Julynter,1

a tool that performs linting on notebooks. Julynter is a Jupyter Lab extension that performs
many checks on the quality and reproducibility of notebooks in real-time and produces
recommendations. Figure 19 presents Julynter in action for the notebook of Fig. 1. Julynter
recommended ten changes related to four categories: Invalid Title, Hidden State, Confuse
Notebook, and Import. In addition to these categories, Julynter also has an Absolute Path
category.

This section is organized as follows. Section 5.1 describes the approach. Section 5.2
presents the experiment design we defined to evaluate Julynter. Section 5.3 indicates how
we collected the experiment data. Section 5.4 presents the experiment results. Finally,
Section 5.5 describes the threats to the validity of the Julynter experiment.

5.1 Approach

In addition to showing linting recommendations to users, Julynter also has filtering and dis-
play features to provide better readability. Users can filter recommendations by category,
recommendation code, and appearance in a specific cell. Additionally, they can group the
recommendations by category or by cell through the interface. They can store their pref-
erences in the notebook, the project folder (i.e., the working directory of the Jupyter Lab
execution), or the user directory.

The interface also allows users to click on the recommendations to apply actions. In
the Invalid Title recommendations, it opens the rename notebook form. In the Import rec-
ommendation related to an import that does not exist in the requirements file, it adds the
imported package to the requirements file, indicating its version. In a recommendation
related to a cell that depends on a variable that was defined in a cell that does not exist any-
more, it recreates the cell. Finally, for the other recommendations, it moves to the cell with
the issue to allow users to fix them.

Julynter currently identifies 21 issues from notebooks. Table 9 presents these issues with
their categories and the Julynter recommendations on how to fix them. Note that some
recommendations require a kernel restart to really ensure the reproducibility. After some
feedback from user experiments, we added a button to hide these recommendations for
development notebooks. The Julynter extension detection covers six out of the eight best

1https://dew-uff.github.io/julynter
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Fig. 19 Julynter in action (left pane). By analyzing the notebook on the right pane, Julynter identified ten
issues from four different categories

practices proposed in Section 4. To cover the seventh (using a clean environment for testing
dependencies), we added a command-line interface (CLI) to Julynter that allows users to use
pyenv environments, Conda environments, or Docker containers to detect dependency files
and install them. Users can use this CLI to check if the installation is enough to import all
modules. They can also use it to check the reproducibility of the notebooks after installing
the modules. Finally, they can use it to automatically prepare an isolated environment with
only the project dependencies. Hence, the only best practice that Julynter still does not cover
is suggesting users to abstract code. Nonetheless, this suggestion is on our radar for future
releases.

For detecting the issues, Julynter has two linting modules: a language-agnostic and a
language-specific one. The language-agnostic module checks for common issues on the
notebook structure that do not depend on the notebook language. This is the case for issues
C1, C2, C3, C4, C5, H3, H4, T1, T2, T3, T4, T5, T6, T7. The language-specific module con-
nects to the kernel to obtain information about the execution history, the cell dependencies,
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Table 9 Issues detected by Julynter. The first character of the Code indicates the category: C—Confuse
Notebook; H—Hidden State; I—Import; P—Path; T—Invalid Title

Code Message Suggestion

C1 Cell :index is a non-executed cell Please consider cleaning it to guarantee

among executed ones. the notebook reproducibility.

C2 Cell :index has the execution Please consider re-running the

counter :excount in the wrong order. notebook to guarantee its reproducibility.

C3 Cell :index is empty in the middle Please consider removing it

of the notebook. to improve the notebook readability.

C4 The first cell of the notebook is not Please consider adding a Markdown

a Markdown cell. cell to describe the notebook.

C5 The last cell of the notebook is not Please consider adding a Markdown

a Markdown cell. cell to conclude the notebook.

H1 Cell :index has execution results, Please consider re-executing it to guarantee

but it was not executed in this session. the reproducibility of the notebook.

H2 Cell :index has changed since its Please consider re-executing it to

execution, but it was not executed guarantee the reproducibility of the

after the changes. notebook.

H3 Cell :index repeats the execution Please consider re-running the

counter :excount. notebook to guarantee its reproducibility.

H4 Cell :index skips the execution Please consider re-running the

counter. notebook to guarantee its reproducibility.

H5 Cell :index uses name “:variable” Please consider restoring the cell and

that was defined in In [:excount], re-running the notebook to guarantee

but it does not exist anymore. its reproducibility.

H6 Cell :index has the following Please consider defining them to

undefined names: :undefined. guarantee the reproducibility of the notebook.

I1 Cell :index has import but it is not Please consider moving the import to

in the first cell. the first cell of the notebook.

I2 Module :module was imported by Please consider adding it to guarantee

Cell :index, but it is not in the the reproducibility of the notebook.

requirements file.

P1 Cell :index has the following absolute Please consider using relative paths to

paths: :paths. guarantee the reproducibility of the

notebook.

T1 Title is empty. Please consider renaming it to a

meaningful name.

T2 Title starts with “Untitled”. Please consider renaming it to a

meaningful name.

T3 Title has “-Copy”. Please consider renaming it to a

meaningful name.

T4 Title has blank spaces. Please consider removing them to

support all OS.

T5 Title has special characters. Please consider replacing them to

support all OS.
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Table 9 (continued)

Code Message Suggestion

T6 Title is too big. Please consider renaming it to a

shorter name and using a Markdown

cell for the full name.

T7 Title is too small. Please consider renaming it to a

meaningful name.

the executed cells with absolute paths, and the status of imported modules on requirement
files (issues H1, H2, H5, I1, I2, P1). Both modules connect to each other using Jupyter
Comm. Hence, they do not interfere with the execution.

Figure 20 presents the architecture of Julynter and Jupyter communications. When the
Jupyter Lab web application sends a cell to the kernel to execute, the Julynter extension
triggers both linting modules. The language-specific module sends an invocation of a query
function to the kernel, which then returns the execution history, the cell dependencies, the
imports, and the absolute paths. Julynter processes this data together with the notebook def-
inition and presents it back in the Jupyter Lab Application. The language-agnostic module
processes only the notebook definition to report the issues.

Julynter has some limitations. First, the detection is restricted to run as an extension of
Jupyter Lab. Currently, it cannot run as a standalone module nor as a Jupyter Notebook
extension. Second, it must be executed in real-time. Starting Julynter in an existing notebook
with a new kernel results in many warnings related to the presence of results from previous
executions, and no warnings related to imports and absolute paths. This situation can be
easily solved by running the whole notebook again, but it may not be what users expect
when they use traditional linting tools. Finally, the language-specific module currently only
supports Python.

5.2 Experiment Design

Since Julynter connects to the kernel to get the execution history in real-time, it is more
capable of detecting hidden states and other issues than we were in the experiments we

Fig. 20 Architecture of Julynter. Blue arrows represent input messages that occur before the cell execution.
Red arrows represent output messages that occur after the kernel executes the cell
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reported in the previous sections. However, since this detection relies on real-time history,
it cannot detect hidden states in notebooks executed in previous sections. Thus, we could
not simply use the notebooks we collected in Section 3.2 to evaluate Julynter as it would at
most produce the results we presented before.

Hence, for evaluating the usability and capability of Julynter to ensure the quality of
notebooks in the wild, we designed an experiment with users using Julynter over their own
notebooks. The experiment was composed of three parts: a characterization form, the main
experiment, and an exit questionnaire. In the characterization form, we asked questions
about how frequently do they use notebooks, their experience with linting tools, Jupyter
Notebook, Jupyter Lab, Python, R, and Julia, their preference between Jupyter Lab and
Jupyter Notebook, and their usage of notebooks.

Due to the COVID-19 pandemic, we had to run the experiment remotely. Hence, for
the main experiment, we adapted Julynter to collect usage data and asked the participants
to install Julynter in their own machines and use it with their own notebooks for a week.
For collecting the usage data, we also asked the participants to run a configuration tool
to indicate which data they would like to share. Additionally, we added buttons for each
recommendation in the tool to allow users to send feedback through positive, negative, and
textual reports.

In the exit questionnaire, we asked users to send their collected data. We also asked
about their satisfaction with each linting category using a Likert scale, and their overall
satisfaction with the tool using both a System Usability Scale Questionnaire (Brooke 1996)
and Microsoft Reaction Cards (Benedek and Miner 2002). Finally, we asked for suggestions
to improve Julynter.

5.3 Data Collection

We conducted the experiment in three phases: I, II, and III. Phase I was a pilot and had
the goal of identifying problems in the experiment itself. Two people participated in this
phase: one coauthor and one undergrad student, and they identified five minor problems in
the experiment. We do not use their results in the next section.

After fixing the experiment problems, we directly invited ten people for the next phase of
the experiment. We selected these people based on our knowledge that they use notebooks.
Only six of them completed the experiment during Phase II, and all six gave feedback on
how to improve the tool. We implemented the requested features and started the last phase
of the experiment. We shared the experiment in Data Science groups, Graduate Student
groups, Python groups, and Twitter for this phase. Two people that were invited to Phase II
but did not have time for the main experiment decided to participate in Phase III. Fourteen
people answered the initial form, but only six completed the experiment. Figure 21 presents
the flow of completion of the experiment for the main phases. Note that one participant
did not reply to our invitation in Phase II, and one interrupted the experiment after filling
the initial form. In Phase III, eight participants interrupted after the initial form, and two
interrupted after starting the experiment.

Figure 22 presents the experience of the 12 participants that concluded either Phase II or
Phase III. While all of them have at least an average experience with Jupyter Notebook and
Python, most of them are novices in Jupyter Lab, which is the tool Julynter supports. It is
expected, as Jupyter Lab is a newer tool released in 2018. When we asked which tool they
prefer, seven participants prefer Jupyter Notebook, four participants prefer Jupyter Lab, and
a participant has never used Jupyter Lab to have a preference.
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Fig. 21 Participants experiment flow

When we asked the participants to report their use-cases for Jupyter in a text field (i.e.,
we did not give predefined options and a participant could write multiple things), nine par-
ticipants answered data-centric use-cases, such as data analysis, data cleaning, and data
visualization; four use Jupyter for prototyping scripts and tools; four use or have used
Jupyter for education tasks such as preparing course material or doing homework; three use
it for research; two use it for communicating results and workflows; and one uses Jupyter
to build interactive reports.

During the experiment, seven participants worked on data analysis projects, four par-
ticipants used notebooks as scratchpads for prototyping and developing packages, and one
participant prepared class materials.

Fig. 22 Participants’ experience
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In the next subsection, we present the experiment results, filtering out both the par-
ticipants of the pilot experiment (Phase I) and the participants that did not conclude the
experiment.

5.4 Results and Discussion

Usage Since the participants used Julynter at their own pace with their own notebooks, the
number of recommendations they received varied. Table 10 presents the number of days,
usage sessions, notebooks each participant worked on, and the number of lint recommenda-
tions they received, solved, or clicked. We count a usage session as the moment a participant
opens a notebook in the Jupyter Lab interface. Note that while many participants worked on
a single notebook during the experiment, most of them opened the same notebook multiple
times and through many days.

The participants #1 and #2 worked on the same usage session through different days,
indicating that they did not close Jupyter Lab from a day to another. #6 was the only par-
ticipant that worked on a single usage session of a single notebook during the experiment.
Nonetheless, #6 was also the participant that received the most lint recommendations during
Phase II. During Phase III, #10 also used Julynter for a single day, but in eight notebooks
across 22 kernel sessions.

In this table, we count lints as all recommendations that Julynter shows and solved lints
as all recommendations that disappear after a participant action. Despite the tool showing
hundreds of recommendations to most participants, this number does not reflect directly
on the effort they had to solve them. For instance, opening a big notebook with execu-
tion results leads to many H1 recommendations, indicating that it has results from previous
kernel sessions. Solving them is as easy as running all notebook cells. On the other hand,
solving cells with H4 recommendations (which identify skips) requires restarting the kernel
and re-running all cells.

Table 10 Julynter usage statistics

Phase P# Days Sessions Notebooks Lints Solved Solved Lint

(%) Clicks

II #1 4 2 1 77 72 93.5% 62

II #2 3 2 1 330 330 100.0% 218

II #3 4 10 4 317 217 68.5% 202

II #4 5 8 2 201 154 76.6% 129

II #5 2 4 1 71 48 67.6% 40

II #6 1 1 1 587 521 88.8% 124

III #7 6 18 15 602 534 88.7% 460

III #8 3 7 1 1,888 1,873 99.2% 880

III #9 3 29 7 106 66 62.3% 85

III #10 1 22 8 85 43 50.6% 54

III #11 5 28 4 1,053 751 71.3% 333

III #12 2 14 4 58 20 34.5% 34

Total 12 28 145 49 5,375 4,629 86.1% 2,621

The last line of the table was bold to indicate it represents the total (sum) of the other rows
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Recommendations Figure 23 presents all lints that appeared to the participants, indicating
the percentage of solved and unsolved lints. The recommendations T1 (empty title), T3
(title with “-Copy”), T6 (big title), and T7 (small title) did not appear for any participant. As
expected, recommendations that can appear for any cell were more prevalent than the ones
that appear for the notebook (C4, T1—T7) or in sporadic events such as importing modules
(I1—I2) or using absolute paths (P1). Recommendations related to the organization of the
notebook (H4 – skips, C2—out-of-order cells) appeared the most.

These results suggest that Julynter recommends changes to improve the quality of the
notebook that the participants are willing to apply. Nonetheless, the participants solved more
some types of recommendations than others.

Recommendation Feedback In the Confuse Notebook group, C4 and C5 were the least
solved recommendations. These recommendations suggest using Markdown cells in the
beginning to describe the notebook and in the end to conclude it, respectively. We received
four negative reports about C5, three textual reports asking why it was necessary, and one
textual report complaining that it appeared too soon (i.e., before finishing the notebook to
draw conclusions). C4 was more controversial: we received two negative reports and three
positive ones about it. #10 sent a textual report indicating that the recommendation was
good, but it would not be fixed because the notebook was part of a tool written by someone
else. #12 sent both positive and negative reports about it, with a textual report indicating
that “not all notebooks are literate ones”.

In the Hidden State group, participants solved the least H1, H4, and H6 recommenda-
tions. As described before, H1 appears when the user first opens a notebook that has results
from previous executions. If the user does not want to run the notebook, it is expected not
to have it solved. We received two negative reports with textual reports. A participant indi-
cated that the notebook was not executed yet. The other indicated that an error in a previous
part of the notebook prevented its normal execution.

The recommendation H4 is harder to solve, as it requires restarting the kernel and
re-running all cells. This recommendation received a textual report indicating that the par-
ticipant did not understand the suggestion. It also received a positive report. Related to this
recommendation, in the exit questionnaire, two participants suggested that linting notebooks
should occur in two phases: a phase for supporting exploratory analyses with skips in the
cell execution counter and a phase to guarantee the reproducibility.

The recommendation H6 appears when a cell uses a variable that is not defined in the
notebook. A participant sent a textual report indicating that the recommendation was not
appropriate because the variable was actually defined. When we analyzed the notebook

Fig. 23 Solved and unsolved lints
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code, we noted that a widget uses IPython functions to change the global state. As this
is a very unusual situation, we suggest using Julynter filters for this type of false-positive
recommendation.

In the Import group, participants solved the least the recommendation I2 (adding packages
to “requirements.txt”) and two of them sent textual reports indicating that they do not use these
files. Once again, #12 sent both positive and negative reports in different notebooks. The other
recommendation (I1—moving imports to the beginning) also received feedback. A participant
sent a negative report without indicating why, but two participants sent positive reports. #10
sent a textual report indicating that imports should indeed stay in the first cell, but the issue
would not be fixed as the notebook was designed by someone else.

The recommendation to not use absolute Paths (P1) only appeared for two participants.
One could not solve it due to a bug that Julynter had during Phase II in Windows. The
participant who experienced the bug sent a positive report about the suggestion, though.

Finally, the Invalid Title group had the recommendations the participants solved the least:
T5 (title with special characters), T4 (title with blank spaces), and T2 (title with “Untitled”).
A participant sent a negative report about T4, asking why the title could not have blank
spaces. The same participant sent a positive report about T2.

In the exit questionnaire, we asked the participants to indicate the extent to which they
are satisfied with each linting recommendation group. Figure 24 presents the results. In this
figure, we filtered out groups that did not appear for the participant. The participants are
mostly satisfied with the recommendations, and the only groups that caused dissatisfaction
are the Confuse Notebook and Hidden States. The participants that did not like these groups
are the ones that sent negative feedback to C5, H1, and H4.

Usability We used the System Usability Score (SUS) (Brooke 1996) to evaluate the usabil-
ity of Julynter. This score is calculated based on ten standard statements presented in the
exit questionnaire. The user can select answers ranging on a Likert scale from 1 (completely
disagree) to 5 (completely agree). We calculated an average SUS score of 77.5 on a scale
between 0 and 100. According to Bangor et al. (2008), this is a good score in the accept-
ability range. The minimum score was 52.5, which is close to the minimum OK score in the

Fig. 24 Satisfaction with the lint groups
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acceptability range. On the other hand, the maximum score was 100, which is categorized
as the best imaginable score (Bangor et al. 2008).

Figure 25 presents a word cloud representing the Microsoft Product Reaction
Cards (Benedek and Miner 2002) we presented in the exit questionnaire. The most selected
cards are usable and useful. These cards are a positive indication that the participants see
value in the adoption of Julynter and that this adoption does not have a high barrier.

In Fig. 25, the usable word was more prevalent among the participants of Phase III. It
occurred because we made many changes to improve the tool based on the reports that
the participants submitted using the tool and the exit questionnaire of Phase II: we fixed
several bugs, improved the interface, and introduced several new features, including the
possibility of checking the reproducibility of notebooks and validating the recommendations
in a command-line interface. We also contacted the participants of Phase II after the changes
and asked them what they thought about the changes. #1 did not reply. #3 had an issue
updating and running Julynter and also did not give feedback. The other four participants
liked the changes.

Besides tool-related reports, some participants of both phases expressed concerns about
the data intrusiveness of the experiment itself. Some even suggested designing a controlled
remote experiment in a virtual machine or Binder for security reasons. We considered it
when designing the experiment, but we anticipated it would be artificial and would not
detect which recommendations occur in the wild nor whether the recommendations are good
enough for users to apply in their own notebooks. Moreover, some indicated that they use
Jupyter Notebook instead of Jupyter Lab daily and did not run the experiment much. Finally,
some participants reported bugs that were not caused by Julynter. A participant indicated
that despite all effort with linting, “the biggest problem remains the lack of training of
scientists in software engineering”.

5.5 Threats to Validity

The Julynter experiment also has some threats to validity that we depict below.

Internal We selected participants for Phase II based on our previous knowledge that they
used Jupyter. This may bias the selection of participants to close contacts. In an attempt
to mitigate this threat, we distributed the invitation for Phase III to public data science

Fig. 25 Chosen words in the Microsoft Product Reaction Cards (Benedek and Miner 2002). The colors vary
according to the experiment phase in a gradient. Mixed colors indicate that participants of both phases chose
the word and the mixing intensity indicates the proportion
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and research groups in Telegram and Whatsapp, to the official Jupyter Lab Gitter, and on
Twitter. According to Twitter’s current statistics, the tweet was retweeted 22 times, people
saw the invitation tweet 4,049 times, and 326 people interacted with the tweet, despite only
12 filling the initial form—the remaining two participants came from Phase II invitations.
Nonetheless, the selection is also biased towards our reach in social media.

Construct Due to the COVID-19 pandemic, we had to design a remote experiment instead
of a lab experiment to evaluate Julynter. In this experiment, we distributed Julynter to par-
ticipants, for them to use at their own pace with their own notebooks. They may have had
very distinct usages and different goals that may not justify the usage of Julynter. In fact,
during the experiment, some participants used Julynter in scratchpad notebooks that usu-
ally do not have a high requirement of quality. Despite this threat, these participants had a
positive feeling about Julynter overall.

External We had a small number of participants. Even though we listened to their feedback
to improve the tool, the number is not significant to draw conclusions on which are the best
recommendations and how users would use the tool in the wild.

6 RelatedWork

Neglectos (2018) analyzed 2,702 Jupyter Notebooks written in Python and reported on the
most commonly-used modules and modules that are used together. Their results for the
most used modules are similar to ours (see Fig. 10). In both analyses, numpy and matplotlib
appear as the most imported modules, in this order. Additionally, six other modules appear
in both analyses (pandas, sklearn, os, scipy, tensorflow, and IPython), but in distinct orders.
They show warnings and collections in the top 10, while we indicate seaborn and time.

Kery et al. (2018) interviewed 21 data scientists and surveyed 45 data scientists to under-
stand how they use notebooks. They identified three types of use cases for notebooks: (i)
scratchpad notebooks, (ii) notebooks with code that is later extracted to scripts, and (iii)
notebooks for sharing results and knowledge. The existence of use cases not too related to
literate programming (i and ii) indicates why some notebooks do not have Markdown cells.
For those notebooks that have Markdown cells, Kery et al. (2018) identified that data scien-
tists go through a cleaning phase, in which they reduce the notebook size by merging small
cells into bigger ones, adding Markdown annotations, and organizing the linearity of the
execution.

Kery et al. (2018) also identified good and bad practices on notebooks. As a bad software
engineering practice, they recognized that data scientists tend to copy and paste the code for
reuse, instead of extracting the code to a function. As a good practice, they identified that
data scientists do not let their notebooks grow too much beyond their scope. However, this
good practice occurs mainly due to notebook constraints in performance and navigability.

Rule et al. (2018) performed three analyses over notebooks. In the first one, they analyzed
1.23 million notebooks from 191,402 GitHub repositories. While their goal on this analysis
was to extract insights on the usage of notebooks, our goal is to dive into evidences of
best practices. Nonetheless, we obtained similar results when we analyzed the distribution
of notebooks by repository, the most used programming languages, the distribution of cell
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types in the notebook, the size of Markdown cells, and the top three most imported Python
modules.

In the second analysis, Rule et al. (2018) sampled 221 notebooks from 52 repositories
with an academic reference in the README to understand the narrative of academic note-
books. Most of these repositories contained not only the notebook files, but also raw data,
figures, and manuscript files. They identified two types of notebooks: full analysis and tuto-
rial notebooks. Both are related to the literate programming use case. They also identified
that while 55% of notebooks had introductory Markdown text, only 3% had a conclusion.

Finally, in the third analysis, Rule et al. (2018) interviewed 15 data analysts that recog-
nized the importance of cleaning and annotating notebooks and indicated four reasons for
reusing a notebook: tracking provenance, code reuse, reproducibility of experiments, and
presentation of results. However, our results suggest that the reproducibility of notebooks
is far from ideal with only 4.90% to 15.04% of Python notebooks being replicated success-
fully. Additionally, since we identified a high amount of hidden state cells in our analysis,
notebooks may not be very suitable for tracking provenance by themselves. Instead, it
is better to use a tool designed for provenance tracking (Koop and Patel 2017; Pimentel
et al. 2015; Samuel and König-Ries 2018; Brachmann et al. 2020). Pimentel et al. (2019a)
provides a comprehensive list of tools for tracking provenance from scripts.

Since the publication of our first study (Pimentel et al. 2019b), some studies have been
carried out to analyze some quality aspects of notebooks (Wang et al. 2020; Koenzen et al.
2020; Källén et al. 2020).

Wang et al. (2020) analyzed the quality in programming style and code contents of 1,982
notable projects curated by the Jupyter team. They found many problems on notebooks,
such as not following PEP8 code style guidelines, defining variables and not using them,
and using deprecated functions.

Koenzen et al. (2020) studied a sample of 1,000 repositories containing at least one note-
book each and observed 8 participants doing a set of tasks to analyze the code duplication
and reuse in notebooks. They found that 1 in 13 code cells in notebooks are duplicates,
and they indicate that the users prefer to reuse code from online sources instead of reusing
from existing notebooks. Moreover, they found that no participant reused code from the Git
repository.

In a work that has not been peer-reviewed yet, Källén et al. (2020) analyzed 2.7 million
notebooks to identify code clones. They found that clones are usually small and tend to
occur more among notebooks of distinct repositories. They also found that more than 70%
of code snippets are copies of other snippets, but many of these copies are accidental (e.g.,
two notebooks importing the same libraries appear as a clone).

Samuel and König-Ries (2020) built ReproduceMeGit on top of the analysis tools we
developed in the previous study (Pimentel et al. 2019b) to calculate and report quality and
reproducibility statistics for individual repositories.

Unlike prior work, we analyze not only the quality, but also the reproducibility of Jupyter
Notebooks, and try to identify (and quantify the use of) practices that hinder reproducibility.
Additionally, we extend the quality analyses of our first study by sampling and extracting a
set of popular notebooks, which provide insights into the context of these practices.

Moreover, we propose Julynter, a linter tool for Jupyter Lab. While traditional linters
already exist for linting code on Jupyter cells (McNutt 2019; Krassowski 2019), Julynter
goes further and considers characteristics in the structure of notebooks and the presence of
hidden-states. Hence, Julynter is complementary to traditional linters.
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7 Conclusion

This paper has four main contributions. First, it analyzes evidence of good and bad practices
on the development of Jupyter Notebooks regarding quality and reproducibility by going
through the main criticisms that the format receives (Grus 2018; Mueller 2018; Pomogajko
2015). Second, it presents a detailed study that measures the reproducibility rate of note-
books under different settings (RQ7). Third, it proposes a set of good practices that aim
to minimize the criticisms and improve the reproducibility rate for notebooks (Section 4).
Finally, it proposes and evaluates Julynter, a Jupyter Lab linting extension (Section 5) that
helps users maintain the quality and reproducibility of their notebooks.

In our experimental results, we found evidence of both good and bad practices. As
good practices, we found the usage of literate programming aspects of notebooks (e.g.,
Markdown cells and visualizations), the application of abstractions on notebooks that have
more complex control flows, and the usage of descriptive filenames. As bad practices, we
found that most notebooks do not test their code and that a large number of notebooks has
characteristics that hinder the reasoning and the reproducibility, such as out-of-order cells,
non-executed code cells, and the possibility of hidden states.

While we discussed many criticisms of notebooks in this paper, we did not cover all of
them. Other criticisms relate to the versioning (Pomogajko 2015; Mueller 2018), security
risks (Pomogajko 2015), lack of IDE features (Grus 2018; Mueller 2018), lack of support
for long asynchronous tasks (Mueller 2018), and lock-in aspects of Jupyter (Grus 2018).

In the reproducibility study (RQ7), we explored distinct environments to run the note-
books: shared environments with installations, isolated environments, and isolated bloated
environments with pre-installed dependencies. We achieved a reproducibility rate that
ranged from 4.90% to 15.04%. Further software reproducibility research could explore other
environments such as defining different levels of bloated environments, installing depen-
dencies on isolated environments, or guessing the dependencies on repositories that do not
declare them to install in either of these environments.

Similarly, we ran notebooks following either the execution counter order or the top-
down order and found that the top-down order was more reproducible. However, we foresee
exploring other execution orders, such as executing cells with imports first, then following
the cell execution order.

Not all types of notebooks are meant to be reproducible. We collected a representative
sample of our corpus, and manually categorized the sample—correctly categorizing the
whole corpus in an automatic way would be challenging. Most of the sample falls into the
“education” category (course exercises, tutorials, etc.) and are thus toy projects. However,
users that have no intention to have quality and reproducibility in toy projects may still
benefit from knowing what makes a notebook reproducible and practicing it in their toy
projects for the moment they move to more professional projects.

As another look into the problem of analyzing notebooks that are not meant to be repro-
ducible, we selected a subset of our corpus containing only popular notebooks. We did this
in the hopes that popular notebooks receive more attention and should be meant to be more
reproducible. When comparing this popular subset with our original corpus, we noticed that,
in fact, they are more reproducible and have more quality features than the general group.

Other reproducibility questions are also worth investigating. We intend to investi-
gate strategies to assess the different types of projects (e.g., student notebooks, tutorial
notebooks, research notebooks, scratchpads, dashboards, among others) to compare their
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metrics. We also foresee comparing notebooks to general-purpose scripts to understand
whether one or another has better quality and reproducibility measures.

In addition to studying the reproducibility of existing notebooks, we also envision an
opportunity to propose tools to improve the reproducibility rate by managing notebooks’
dependencies and reducing the mess in their organization. Julynter is a small step towards
this goal. Still, it has many improvement opportunities, such as improving the dependency
inference through program slicing, adding more quality checks, and suggesting users to
abstract and test code. Additionally, we foresee developing a cleaning tool that could help to
transform scratchpad notebooks with bad practices into clean and reproducible notebooks
for publishing.

The data, scripts, and notebooks used in this study are available at https://doi.org/10.
5281/zenodo.3519618.
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