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Abstract Understanding patients’ travel behavior for
seeking hospital care is fundamental for understanding
healthcare market and planning for resource allocation.
However, few studies examined the issue comprehensively
across populations by geographical, demographic, and
health insurance characteristics. Based on the 2011 State
Inpatient Database in Florida, this study modeled patients’
travel patterns for hospital inpatient care across geographic
areas (by average affluence, urbanicity) and calendar sea-
sons, and across subpopulations (by age, gender,
race/ethnicity, and health insurance status). Overall, travel
patterns for all subpopulations were best captured by the
log-logistic function. Patients in more affluent areas and
rural areas tended to travel longer for hospital inpatient care,

so did the younger, whites, and privately insured. Longer
travel distancesmay be a necessity for rural patients to cope
with lack of accessibility for local hospital care, but for the
other population groups, it may indicate rather better mo-
bility and more healthcare choices. The results can be used
in various healthcare analyses such as accessibility assess-
ment, hospital service area delineation, and healthcare re-
source planning.

Keywords Distance decay function . Hospital inpatient
care . State Inpatient Database (SID) . Hospital
utilization . Florida

Introduction

Spatial interaction models generally assume an inverse
relationship between distance and interaction. Different
population groups may exhibit distinctive travel patterns
for healthcare visits, which can be analytically captured by
distance decay functions. This study examines differential
effects of distance decay on hospital inpatient visits among
subpopulations. The differences may stem from their
varying responses to physical distance to healthcare
facilities such as hospitals, and reflect variable group
mobility and possible scopes of healthcare choices.

Different travel patterns for hospitalization between the
elderly and the overall population lead to different
configuration of hospital markets. Jia et al. (2015) found
that the commonly usedDartmouth HSAs, produced solely
based on the Medicare hospitalization records (Center for
Evaluative Clinical Sciences 1999), differed significantly
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from the hospital service areas (HSAs) based on the overall
hospitalization records. Specifically, the number of
Medicare-derived HSAs is higher (and thus a smaller area
for each HSA on average) than the all-population-based
HSAs since most of hospitalization of the elderly (aged ≥
65) have occurred locally within a smaller spatial range (Jia
2016). Other studies suggest that spatial interactions be-
tween patients and hospitals are also affected by patients’
health insurance status, location of residence, and socio-
demographic characteristics such as gender, race, and so-
cioeconomic status (SES) (Basu and Cooper 2000; Biello
et al. 2010; O’Neill 2004). Disparities in travel patterns can
have an indirect and long-term impact on health outcomes
for patients (O’Neill 2004). For example, compared to
younger or overall patients, the healthcare travel behavior
of elderly patients are more sensitive to increased distance
to hospitals (Jia et al. 2017a). Moreover, travel behavior
indicates howmuch patients rely on local hospitals for care
and how vulnerable they are in responses to changes of
local hospital market (e.g., reduced number of beds, hospi-
tal closures) (Escarce and Kapur 2009). Others focus on
various factors affecting health-seeking behavior such as
the study of outpatients in New York (Basu and Cooper
2000) and the research on inpatients in rural Pennsylvania
and California (Escarce and Kapur 2009; O’Neill 2004).

In healthcare studies, at least three major issues
need to be informed of the distance decay behavior
of the population under investigation. Much of the
debate on the best model for measuring spatial ac-
cessibility of healthcare services can only be settled
by deriving Bthe best function to capture the distance
decay behavior^ in real-world healthcare utilization
(Wang 2012). When using the Huff (1964) model
for delineating HSAs, a critical task is to identify the
spatial behavior of patients for hospital visits, which
may not be best captured by a power function as
assumed in the classic Huff model (Jia et al. 2017b).
Furthermore, differing distance decay behaviors for
general versus specialized care visits (i.e., a steeper-
declining gradient for patients for general hospital
care than those for more specialized care) lead to
different average travel ranges, and thus form the
theoretical foundation of a hierarchal central place
structure in hospital systems (Jia et al. 2017a).

To our knowledge, few studies have examined the
issue comprehensively across populations by geograph-
ical, demographic, and health insurance characteristics.
The aim of this study is twofold: to identify the best-
fitting distance decay functions for subpopulations and

to examine how the distance decay behaviors differed
among the subpopulations. The paper focuses on possi-
ble variability across geographic areas of average afflu-
ence and urbanicity levels, across calendar seasons, and
across population subgroups in terms of age, gender,
race/ethnicity, and health insurance status.

Data sources and processing

Florida is situated in the southeastern US with three
facets bordered by water: the Gulf of Mexico to the
west, the Florida Straits between the USA and Cuba to
the south, and the North Atlantic Ocean to the east.
Hence, the edge effect regarding the tendency of pa-
tients to travel across state boundaries for hospital care is
considered limited in Florida. This makes Florida an
ideal study area for investigating patients’ healthcare
travel patterns. According to the 2010 Census, Florida
had a total population of roughly 18.8 million, with
57.9% whites, 16% blacks, 22.5% Hispanics, and
2.4% Asians.

Our primary data source was the State Inpatient Data-
base (SID), as part of the Healthcare Cost and Utilization
Project (HCUP) (Agency for Healthcare Research and
Quality 2011). A total number of 2,376,743 inpatient
discharge records from 22 acute long-term care hospitals
and 199 general medical and surgical hospitals were
extracted for Florida in 2011. Each record represents
one inpatient discharge and includes a range of individual
socio-demographic factors of the patient, such as age,
gender, race/ethnicity, expected source of payment (e.g.,
health insurance type), ZIP code of residence (the finest
level at which patients’ location of residence is available
in SID), and hospital and diagnostic information for the
visit, such as hospital identifier, primary and secondary
diagnoses and procedures, admission and discharge date
and status, length of stay, and total charges.

We also used other datasets such as the 2010 US ZIP
code boundaries, 2010 US census block boundaries
with the number of total population and the population
in each racial/ethnic category, and 2014 primary and
secondary road networks (including maximum roadway
speed) by the Florida Department of Transportation. The
2013 American Hospital Association’s (AHA) survey
files were used to match with the SID file to define
information on hospitals, such as hospital type and
number of beds. Figure 1 uses different sizes of circles
to represent hospital bed sizes.
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There are three census units smaller than ZIP
codes, though not completely nested within the
boundaries of ZIP codes. In Florida, there were
4245 census tracts, 11,442 block groups, and
484,481 census blocks, but only 983 ZIP codes.
Three data processing tasks were discussed else-
where (Jia et al. 2018), but merit some discussion
here. One was to estimate population at the ZIP code
level (not directly available from the census). The
areal weighting interpolator (Goodchild and Lam
1980) was used to interpolate population from cen-
sus blocks (the smallest geographic units with cen-
sus population counts) to ZIP codes. By overlaying
the ZIP code and block layers, if a block was split
among multiple ZIP code areas (termed intersected
zones), its population was apportioned to each
intersected zone based on its areal proportion over
the block. The est imated population in all
intersected zones within each ZIP code was then
summed up to yield the population in that ZIP code.
Another task was to generate the population-
weighted centroids, instead of simply geographic
centroids, to represent the locations of ZIP codes.
This is particularly necessary in rural or peripheral
suburban areas where population or business tend to
concentrate in limited space (Luo and Wang 2003).
Since census blocks are much smaller than ZIP
codes (i.e., about 493 blocks in one ZIP code on
average), it is acceptable to compute the population-
weighted centroids of ZIP codes Bbased on block-
level population data^ (Wang 2015). The third issue
was the computation of travel time between patients
and hospitals. This study used the ArcGIS Network
Analyst module to estimate the shortest path drive
time between each pair of ZIP code centroids and
hospitals.

In preparing for subsequent analysis of the gravity
model in BModeling hospital visits by gravity model,^
patient hospital visits were aggregated by the unique
pairs of ZIP codes (origins) and hospitals (destinations),
i.e., O-D pairs. In other words, it was the volume of
discharges from hospital j to ZIP code i, denoted by Tij.
For the analysis of distance decay patterns by population
subgroups in BHospital utilization patterns by popula-
tion subgroups,^ patient hospital visits were first
grouped by the subgroups and then cumulated inversely
by travel time in minutes. For example, for all visits by
male patients, the numbers of patient visits were obtain-
ed for traveling ≥ 60′, then ≥5 9′, ≥ 58′, and so on.

Modeling hospital visits by gravity model

The analysis of distance decay in hospital inpatient visits
begins with modeling the volumes of patient flows
between patients and hospitals, and possible variability
across geographic areas by average affluence levels and
by urbanicity, and across calendar seasons.

Gravity model and its estimation

The interaction between residents and hospitals, mea-
sured in the volume of discharges from hospital j to ZIP
code i, denoted by Tij, is formulated as a gravity model:

Tij ¼ μPα
i S

σ
j f dij
� � ð1Þ

where Pi is total population in ZIP code i, Sj is number of
beds in hospital j, α and σ are parameters describing the
effects of ZIP code population and hospital size upon the
interaction, respectively, μ is a scalar, dij is travel time
from ZIP code i to hospital j in minutes, and f(dij) is a
generalized distance decay function. In this study, Pi, the
population in ZIP code i, was interpolated from the
block level, with its location represented by the
population-weighted centroid, the address of hospital j
was geocoded for its location, and travel time dij be-
tween them was estimated via the shortest path on the
road network by assuming that travelers followed the
posted speed limits.

The remaining question here is how to define the
distance decay function f(dij). In addition to the power
function used in the classic Huff model, three other
popular functions can be found in the literature. For
example, Hodgson (1988) used a negative exponential
function to explore the rural accessibility to healthcare in
a developing country, Guagliardo (2004) used a Gauss-
ian function to examine the accessibility of primary care
providers within their practical service areas, and
Delamater et al. (2013) used a log-logistic function to
describe the distance decay of hospital utilization in
Michigan. In summary, a total of four functions
(power, exponential, Gaussian, and log-logistic) were
tested in this study. As shown in Table 1, βwas the only
parameter in power and exponential functions, θwas the
only parameter in Gaussian function, and log-logistic
function had both parameters β and θ.

With Tij, Pi, Sj, and dij in Eq. (1) all assigned, we used
the nonlinear least square (NLLS) regression to estimate
the parameters α, σ, β, θ, and μ for each function. Note
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that the NLLS differs from the more commonly used
ordinary least square (OLS) on a linearized form of the
original nonlinear function. Take f(dij) defined by a
power function as an example, Eq. (1) could be trans-
formed into a linear function by taking logarithms on
both sides such as follows:

lnTij ¼ lnμþ αlnPi þ σlnS j−βlndij

It may be estimated by a regular OLS by minimizing
the sum square error of lnTij. It is different from the
NLLS regression, which is to minimize the sum square
error of Tij. The resulting estimate values for the param-
eters can be significantly different between NLLS and
OLS, and their goodness-of-fit measures are also not
comparable. This research used the NLLS regression to

estimate the four distance decay functions, as we em-
phasized the fitness for the patient flow volume Tij
directly rather than its log-transform lnTij. Furthermore,
when f(dij) takes the form of a Gaussian or log-logistic
function, Eq. (1) cannot be linearized by log transfor-
mation and thus cannot be estimated by OLS. For com-
parability of the four functions, we also needed to use
NLLS regression.

For OLS regression, a popular measure for a model’s
goodness of fit is R2 (coefficient of determination),
defined as the portion of dependent variable’s variation
(termed Btotal sum squared (TSS)^) explained by a
regression model (termed Bexplained sum squared
(ESS)^), i.e., R2 = ESS/TSS = 1 − RSS/TSS. However,
R2 is no longer applicable to nonlinear regression as the
identity BESS + RSS = TSS^ no longer holds and the

Fig. 1 Hospitals across counties (by urbanicity) in Florida
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residuals do not add up to 0. Here, we used a pseudo-R2

(defined similarly as 1 − RSS/TSS) as Ban approximate
measure of goodness of fit^ (Wang 2015:124). Another
index for measuring the performance of a regression is
Akaike information criterion (AIC), which measures the
relative quality of the models due to varying complex-
ities of four functions. In our case, there are four param-
eters in power, exponential and Gaussian models, and
five parameters in log-logistic model. A smaller AIC
indicates a simpler model, and is thus preferred. The
model with the maximum pseudo-R2 and minimumAIC
was selected as the best model. The NLLS regressions
were implemented in R (Development Core Team
2011).

The pseudo-R2 and minimum AIC values for regres-
sions of various functions are reported in Table 2. Note
that the number of observations in each model was the
number of non-zero patient flows between a ZIP code
area and a hospital. For overall patients, the log-logistic
function edged out the exponential function with the
maximum pseudo-R2 and minimum AIC (top row in
Table 1), and thus considered the best-fitting one. The
estimated parameters in the log-logistic function are
reported in Table 3.

Variability by geographic areas and by calendar season

To examine the variability of the distance decay effect,
we further estimated the gravity model in Eq. (1) on
various groupings based on patients’ ZIP code areas.
First, all 983 ZIP codes were classified into four groups
by a national quartile classification of the ZIP code
median household income, as a proxy for measuring
average socioeconomic status (SES) in neighborhoods.
The quartiles are defined as 1 (< $39,000/year), 2
($39,000—47,999), 3 ($48,000—62,999), and 4
(≥ $63,000). Secondly, the ZIP code areas were grouped
into four urbanicity categories: large metropolitan (≥ 1

million residents), small metropolitan (50,000—1 mil-
lion residents), micropolitan (10,000—49,999 resi-
dents), or rural areas. Figure 1 shows four different
urbanicity levels at the county level in Florida. Thirdly,
all records were divided into four calendar seasons in
which each hospital visit occurred (January–March,
April–June, July–September, and October–December).

Based on the regression results on the fitness of
various functions reported in Table 2, the log-logistic
model had the highest pseudo-R2 and lowest AIC with a
slight edge over the exponential model among most
subpopulations, except those in small metropolitan and
the second and fourth SES quartiles where the exponen-
tial function performed slightly better. The power func-
tion traditionally adopted in a gravity model produced
the lowest pseudo-R2 and the highest AIC. For consis-
tency and comparison across all subpopulations, we
chose the log-logistic model as the best-fitting model
for subsequent discussions. The regression results in-
cluding estimated parameter values for the log-logistic
model are reported in Table 3.

Figures 2 and 3 were designed to illustrate various
travel patterns captured by the fitted log-logistic func-
tions. The optimal log-logistic curve for each subgroup
was drawn with Pi and Sj set as 10,000 and 100, respec-
tively, for highlighting the effects of increasing travel
time on decreasing hospital visits. In general, an in-
crease in α or/and σ, as an exponent of the number of
population within ZIP codes and of the number of
hospital beds respectively, leads to a larger number of
hospital visits from a ZIP code to a hospital. An increase
in θ similarly results in more hospital visits. However, as
β increases, the distance decay effect becomes stronger
with a more rapid decline in the number of hospital
visits with travel time. Given the same α, σ, and θ, an
increase in β leads more patients to travel shorter and
fewer patients to travel longer for hospital visits. The
synergetic effects caused by respective changes in these
four parameters are more complex, which can be ob-
served through comparison of the fitted curves.

In addition, average travel time for patients in each
subgroup was calculated and reported in Table 3. For
example, the average travel time was 17.6′ for all pa-
tients, and 13.3′ for patients traveling 60 min or less. We
chose 60 min as an importance benchmark since most
patients traveled no more than 60 min for hospital visits
(Delamater et al. 2013). The average travel time gives us
some intuitive understanding of the travel burden for the
group relative to other groups. However, one needs to

Table 1 Distance decay functions

Distance decay function Formula f(dij) Parameter(s)

Power (P)
d−βij

β

Exponential (E)
e−βdij

β

Gaussian (G)
e− dij=θð Þ2=2

θ

Log-logistic (L) 1/(1 + (dij/θ)
β ) β, θ
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consult the analytic functions and their visualized pat-
terns in Figs. 2 and 3 to have a complete picture of the

whole spectrum of distribution across various travel
ranges.

Table 2 Fitness of the gravity model by geographic areas and calendar seasons

No. obs. (n) pseudo-R2 Akaike Information Criterion (AIC)

P E G L P E G L
All ZIP code areas 37,216 0.29 0.50 0.47 0.50 509,491 496,514 498,070 496,504

Median household income

0–25th 11,564 0.38 0.54 0.54 0.55 159,648 156,030 156,232 155,974

26th–50th 10,339 0.30 0.50 0.48 0.49 142,977 139,524 139,930 139,577

51st–75th 10,026 0.23 0.46 0.43 0.46 136,295 132,841 133,362 132,783

76th–100th 4780 0.41 0.50 0.47 0.49 59,582 58,817 59,051 58,859

Urbanicity

Large metro 20,964 0.33 0.52 0.50 0.52 287,935 280,780 281,780 280,779

Small metro 11,913 0.27 0.71 0.70 0.70 163,582 152,728 153,078 152,853

Micropolitan 2894 0.63 0.82 0.83 0.84 35,644 33,577 33,478 33,297

Rural 1445 0.25 0.35 0.29 0.37 17,212 17,020 17,137 16,982

Calendar season

Jan–Mar 20,402 0.29 0.47 0.45 0.47 235,335 229,309 230,222 229,263

Apr–Jun 20,732 0.29 0.48 0.45 0.48 232,770 226,553 227,474 226,489

Jul–Sep 20,652 0.30 0.48 0.46 0.48 235,933 229,627 230,575 229,554

Oct–Dec 20,608 0.29 0.47 0.45 0.47 236,250 230,158 231,048 230,103

P, E, G, and L for power, exponential, Gaussian, and log-logistic distance decay function, respectively; the best-fitting model (max pseudo-
R2 and min AIC) in italics

Table 3 Average travel time, and parameters in the log-logistic function in the gravity model by geographic areas and calendar seasons

No. patients T_alla T_60b μ α σ θ β
All ZIP code areas 2,376,743 17.6 13.3 0.20 0.66 0.40 6.29 2.14

Median household income

0–25th 827,281 16.4 11.4 0.59 0.57 0.36 6.56 2.52

26th–50th 718,694 17.7 13.7 1.00 0.48 0.46 6.53 2.14

51st–75th 617,952 18.3 14.5 0.06 0.77 0.40 6.12 2.02

76th–100th 207,852 20.0 15.2 4.3e-5 1.37 5.26 7.59 2.22

Urbanicity

Large city 1,497,608 13.9 12.1 0.01 0.90 0.45 5.97 2.22

Small city 719,150 20.5 14.3 0.02 0.85 0.47 12.06 2.55

Micropolitan 109,831 34.2 20.2 3.7e-3 1.12 0.40 14.53 3.20

Rural 50,154 50.9 28.0 0.02 0.83 0.73 11.20 1.82

Calendar season

Jan–Mar 608,851 17.5 13.3 0.10 0.61 0.38 5.96 2.01

Apr–Jun 583,737 17.7 13.3 0.08 0.63 0.39 6.01 2.01

Jul–Sep 588,641 17.7 13.3 0.06 0.65 0.40 6.08 2.02

Oct–Dec 595,514 17.7 13.3 0.07 0.64 0.39 6.15 2.03

a T_all, average travel time in minutes for all patients; b T_60, average travel time in minutes for patients traveling ≤ 60 min
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For ZIP code areas, average travel time increased
from the first to fourth income levels for both overall
patients (from 16.4 to 20.0 min) and those only
traveling 60 min or less (from 11.4 to 15.2 min).
Also, the distance decay factor β decreased from
the first to third bracket and bounded up in the fourth
(Table 3), implying a gradually decreasing distance
decay effect before reaching the most affluent neigh-
borhoods. As shown in Fig. 2, a larger number of
hospital visits occurred within 15 min from patients’
residence in the first quartile, and much fewer of
them occurred beyond 15 min relative to other
quartiles.

There were 190 out of 221 hospitals (86%) located in
metropolitan areas, with 123 out of the 190 hospitals
(65%) in areas with a population of over 1 million. For
the overall patients, the average travel time gradually
increased with residential location becoming less urban-
ized, from large metropolitan (13.9 min), small metro-
politan (20.5 min), and micropolitan (34.2 min), to rural
areas (50.9 min) (Table 3). A consistent trend was also
observed among patients traveling 60 min or less, from
12.1 min in large metropolitan areas to 28.0 min in rural
areas. As shown in Fig. 3, hospital visits by patients in
different subgroups tended to be concentrated at differ-
ent locations along the axis of travel time. Most hospi-
talization in large metropolitan areas occurred within
10 min from patients’ residence, especially within
5 min where few hospital visits occurred for patients in
other subgroups. Most patients in small metropolitan
areas spent 5–20 min traveling to hospitals, while most
micropolitan patients spend 15–30 min on traveling.
Although hospitalization of some rural patients occurred
at a closer distance from their residence relative to
micropolitan patients, an apparently larger proportion
of rural patients spent ≥ 30 min than any other urban
subgroup. In terms of distance decay effect, the number
of hospital visits declined most rapidly with time in
micropolitan areas (β = 3.20), followed by small (β =
2.55) and then large metropolitan areas (β = 2.22). Rural
patients showed the weakest distance decay effect (β =
1.82), but also with the lowest fitting power (pseudo-
R2 = 0.37).

There were no significant differences found in
travel patterns among patients discharged in four
calendar seasons. The distance decay factor was
fairly stable, ranging from 2.01 during January–
March to 2 .03 dur ing October–December
(Table 3).

Hospital utilization patterns by population
subgroups

Cumulative probability approach

The numbers of subpopulations with different ages,
genders, races/ethnicities, and health insurance coverage
are not available at the census block level, and thus
cannot be transferred to ZIP codes. Therefore, it is not
feasible to model the patient-hospital interaction based
on the gravity model in Eq. (1). Here, we adopt the
cumulative probability approach (Delamater et al.
2013), equivalent to a reversed cumulative distribution
function, for describing the decay effects of hospital
utilization with travel time in those subpopulations.
The distance decay function is correspondingly re-
formulated as follows:

Yd ¼ μf dð Þ ð2Þ

where d is travel time from hospitals to patients’ home
ZIP codes in minutes, Yd is the total proportion of
discharges from hospitals that are more than d minutes’
drive from their home ZIP codes, where Yd approaches 1
as d approaches 0 while approaching 0 as d approaches
the longest travel time by the patients included; f(d)
represents a generalized distance decay function, with
four candidates in this study (Table 1); and μ is a scalar
parameter to be estimated together with other parame-
ters in f(d).

As explained in BData sources and processing,^ pa-
tient hospital visits were aggregated inversely by travel
time in minutes, and corresponding cumulative ratios
(probabilities) were calculated. For example, as shown
in Fig. 4, the cumulative probabilities for all patients
declined with travel time in minutes. The data points
were defined for every minute for the range [0′, 30′] (31
points), every 5 min from (30′, 60′] (6 points), and then
every 10 min for (60′, 120′] (6 points). As travel time
increased, the number/proportion of patients traveling
beyond that time became smaller, and thus points were
set farther apart with longer intervals. Therefore, the
number of observations (n) was 31 + 6 + 6 = 43 for the
overall model and each subgroup (Table 4). Similarly,
the NLLS regression was used to estimate the parame-
ters, and pseudo-R2 and AIC were calculated to identify
the best-fitting models. Based on the regression results
reported in Table 4, the log-logistic function produced
the best fit with a pseudo-R2 as high as 0.9999. A good
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fit for regression by the cumulative probability approach
is common since the values on the y-axis are cumulative
and monotonically decline. A similar study (Delamater
et al. 2013) also reported Ban excellent curve fit^ by the
same function. The near-perfect fitting by the log-
logistic function across all subpopulations in this study
was impressive, and demonstrated its advantage over
other functions (Table 4).

The optimal log-logistic curve for each subpopula-
tion was also drawn for highlighting the effects of
increasing travel time on decreasing hospital visits. Each

parameter independently influenced the shape of the
curve in a different way. As β increased, the decay effect
became more intensive with more hospitalization occur-
ring close to the residence of patients. A standalone
increase in μ or θ, with other parameters remaining
constant, both corresponded to a larger proportion of
hospitalization occurring away from patients’ residence.
Unlike Tij with a relatively unlimited upper bound, Yd
represented a proportion over a fixed number of pa-
tients, thus the changes occurring on the end of short
travel time also affected the proportion on the end of

Fig. 2 Travel patterns of patients
across ZIP code SES subgroups,
fitted by the log-logistic function

Fig. 3 Travel patterns of patients
across ZIP code urbanicity
groups, fitted by the log-logistic
function
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long travel time. This resulted in more complex syner-
getic effects on the shape of curves by the change of
each parameter, let alone the changes in all parameters,
which, however, were subsequently scrutinized in pat-
terns among subpopulations by health insurance
coverage.

Variability by subpopulations

A general trend of increasing distance decay effects with
increasing age of patients was observed, with the elderly
(age ≥ 75) most affected and the younger group (age <
18) least affected by the increased travel time to hospi-
tals (Fig. 5). The distance decay curve representing
those younger than 12 declined less sharply after ex-
cluding birth visits. No apparent differences were ob-
served between genders, although females were slightly
less likely to travel longer than males (Fig. 6).

Blacks and Hispanics had a similar hospital utiliza-
tion trend which declined fastest, and the hospital utili-
zation decreased faster with travel time among Asians
than whites (Fig. 7). Native Americans included in this
study traveled the longest time on average (23.9 min) for
hospitalization services. Whites spent the second lon-
gest travel time to hospitals on average (19.2 min),
followed by Asians (16.7 min), blacks (14.7 min), and
Hispanics (14 min). A considerable number of whites
traveled more than 30 min to get to hospitals, while the
numbers of patients in other racial/ethnic groups started
to decline to a similar level when the required travel time
increased to about 30 min (Fig. 7). For patients traveling
60 min or less, whites (14.2 min) and Asians (13.4 min)
on average consistently traveled the longest, but His-
panics (11.6 min) conversely traveled longer than blacks
(11.5 min) on average, which corresponded to the order
of distance decay effects. Due to relatively small num-
bers of discharge records fromAsians and Native Amer-
icans, especially an extremely low pseudo-R2 for Native
Americans, results for those two subgroups may not be
representative of their entire racial groups, and hence
needed to be treated with caution.

Patients paid by different health insurance plans for
hospital services demonstrated diverse patterns
(Table 5). The no-charge patients, those discharged
without paying hospital bills, spent the shortest time to
hospitals on average (12.6 min), followed by Medicare
beneficiaries (16.0), self-pay patients (17.5), Medicaid
beneficiaries (17.6), and privately insured (20.8). A
consistent order among subpopulations was also

observed in average travel time of those traveling
60 min or less (Table 5) and from the optimal curves
for patterns of hospital utilization (Fig. 8).

Discussion

Patients’ travel behavior for seeking healthcare services
underlies the healthcare market. More importantly, un-
derstanding differences in travel behavior among di-
verse subpopulations is vital for equitable health re-
source allocation. This study examined patients’ travel
patterns of hospital utilization for diverse subpopula-
tions, and compared them under each primary category
(age, gender, race/ethnicity, SES, health insurance sta-
tus, urbanicity, and calendar season). The log-logistic
function was found to best capture the distance decay
effects in patterns of patients’ travel for hospital visits in
nearly all subpopulations, which is consistent with pre-
vious findings for the overall population (Delamater
et al. 2013; Jia et al. 2017a, b).

The comparison among racial/ethnic subgroups
reveals that mobility for seeking hospital services is
more limited for blacks and Hispanics than for whites
and Asians. Compared with a previous study focus-
ing on the healthcare travel patterns of only conges-
tive heart failure patients (Jia and Xierali 2015), this
study found a similar pattern among racial/ethnic
groups. The longest average travel time by Native
Americans should be interpreted with caution due to
a smaller sample size of this group. The fact that most
Native Americans live in rural areas may provide
additional explanations for a longer average travel
time to hospitals (Lester 1999). Further research
using datasets with larger numbers of Native Amer-
icans (also more Asians) is needed to better reveal
their travel patterns for hospital visits.

There are at least three reasons that could help ex-
plain that rural patients may disproportionately travel
longer for hospitalization services. First, rural residents
are generally farther from their nearest hospitals than
others. Secondly, while there are not many rural hospi-
tals, most are small (< 100 beds) and provide limited
services. Rural patients on average are much older,
poorer and sicker, and have more complex health ser-
vice needs that are only available in larger hospitals in
major cities. Thirdly, rural residents are more likely to be
uninsured than their urban counterparts (24% versus
18%) (Foundation 2003), and hence might bypass the
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nearest hospitals to seek care in other non-for-profit
hospitals for lower charges (Jackson et al. 2002).
Roughly 20% of the US population live in rural areas
(Escarce and Kapur 2009), and their rural hospital by-
pass behavior has been of great interest to some re-
searchers. In Colorado, about 45% of rural patients
bypassed their local hospitals during the 1990s (Roh
and Lee 2006). According to the inpatient discharge
data from seven states, bypass rates among rural patients
in 1991 (1996) are 29% (32%) in California, 35% (36%)
in Florida, 25% (27%) in Maine, 25% (25%) in New
York, 32% (30%) in Oregon, 32% (30%) in South
Carolina, and 34% (34%) in Washington (Radcliff
et al. 2003). In 2000, two thirds of rural hospitalization
records were discharged from urban hospitals in Cali-
fornia (Escarce and Kapur 2009). A study in England
revealed that rural patients traveled longer than urban
patients, where the 75th percentile in the distribution of
distance traveled by rural patients was equivalent to the
90th percentile by urban patients (Propper et al. 2007).
Rural patients normally perceive urban providers to be
more qualified for delivering complex surgical services
(Radcliff et al. 2003). These previous studies may also
support the finding of this study. This creates a major
challenge for rural hospitals as they may suffer from a
heavy loss of patients and revenue, have to cut back on
services, and then are under pressure to close.

Patients from wealthier neighborhoods were found
more likely to travel longer than those from poorer
neighborhoods. On one side, the wealthier neighbor-
hoods are usually at a farther distance away from hos-
pitals than are inner-city poor neighborhoods. A pleth-
ora of wealthy neighborhoods do not even have any
hospital within their own ZIP codes, thus have to bear
with this longer distance. On the other side, patients
from neighborhoods of higher average socioeconomic
status tend to have better mobility and can afford trav-
eling longer for better services, instead of being limited
to services provided by local hospitals only. A study of
inpatients in England consistently revealed that the poor
patients still traveled shorter than their affluent counter-
parts, after controlling for distance to hospital (Propper
et al. 2007). In addition to a direct effect on the afford-
ability of high costs caused by long travel (e.g., car
ownership, patients’ travel cost, and family members’
visit costs), SES could also underlie or associate with
other factors such as race/ethnicity, health insurance
status, and location of residence to affect the travel
behavior of the patients indirectly and health inequalities
ultimately (Link and Phelan 1995).

Our results about travel behavior across health insur-
ance coverage reinforce the previous findings that, pa-
tients covered by private insurance or managed care
plans were more likely to bypass local hospitals and

Fig. 4 Hospital utilization
patterns of all patients, fitted by
the log-logistic function
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travel longer for hospitalization than Medicare and
Medicaid beneficiaries and the uninsured (e.g., self-
pay and no-charge patients) (Escarce and Kapur 2009;
Radcliff et al. 2003). There are two types of no-charge
patients, charity care and bad debt. Hospitals normally
know at the time of admission that it is unlikely to be
paid for the former, but do not know for the latter
(Jackson et al. 2002). The main reason of failure tomake
payment for no-charge patients is lack of financial
means or health insurance. The proportion of uninsured
populations has been negatively associated with the

level of household income (Jackson et al. 2002), which
reflects the underlying impacts of SES on health insur-
ance and hospital payment.

Black and Hispanics are significantly more likely than
whites to be uninsured, so they are more likely to end up
with no charge at the time of discharge, which explains
the strongest distance decay effect of the no-charge
subgroup from a racial, or more basically, socioeconom-
ic aspect. Despite chance of lack of health insurance,
self-pay patients may have a better ability to travel than
the no-charge uninsured patients. The possibility cannot

Table 4 Fitness of four distance decay functions for hospital utilization of subpopulations by age, gender, and health insurance coverage

No. obs. (n) pseudo-R2 Akaike information criterion (AIC)

P E G L P E G L
Overall 43 0.1559 0.9928 0.9575 0.9999 17.546 187.510 110.930 353.748

Age

< 12 43 0.1283 0.9889 0.9749 0.9997 23.632 164.052 128.915 320.540

< 12* 43 0.1213 0.9909 0.9544 0.9994 20.355 176.046 106.907 291.979

12–17 43 0.1199 0.9894 0.9610 0.9993 21.699 168.408 112.301 285.406

18–24 43 0.1451 0.9911 0.9618 0.9997 19.668 176.536 113.940 327.926

25–34 43 0.1411 0.9910 0.9706 0.9998 21.282 174.571 123.882 335.221

35–44 43 0.1500 0.9925 0.9607 0.9999 18.693 184.881 113.495 354.470

45–54 43 0.1597 0.9927 0.9488 0.9998 16.159 187.992 104.167 344.917

55–64 43 0.1582 0.9923 0.9489 0.9998 16.364 185.307 104.104 332.716

65–74 43 0.1583 0.9926 0.9518 0.9998 16.546 186.944 106.412 333.815

≥ 75 43 0.1770 0.9928 0.9582 0.9997 14.633 188.917 113.548 319.110

Gender

Male 43 0.1550 0.9907 0.9361 0.9997 7.567 312.621 175.721 565.894

Female 43 0.1550 0.9927 0.9610 0.9999 18.157 185.929 114.076 356.452

Race/ethnicity

White 43 0.1504 0.9932 0.9539 0.9998 17.552 190.456 107.715 350.319

Black 43 0.1664 0.9900 0.9652 0.9997 17.717 172.448 118.810 322.553

Hispanic 43 0.1670 0.9923 0.9732 0.9990 17.723 183.753 130.126 268.489

Asian 43 0.1409 0.9856 0.9829 0.9992 23.354 152.463 144.953 276.025

Native 43 0.1458 0.9835 0.9296 0.9965 15.640 154.031 − 91.664 218.778

Others 43 0.1347 0.9890 0.9681 0.9993 21.059 166.722 120.898 282.416

Health insurance

Medicare 43 0.1688 0. 0.9535 0.9997 15.433 187.778 108.584 328.147

Medicaid 43 0.1502 0.9926 0.9605 0.9999 18.965 185.123 113.038 356.729

Private 43 0.1336 0.9901 0.9695 0.9997 21.713 170.622 122.122 326.438

Self-pay 43 0.1651 0.9930 0.9494 0.9998 15.413 190.383 105.171 347.304

No charge 43 0.1774 0.9911 0.9745 0.9992 16.346 178.100 133.068 278.631

Numbers in italics indicate the best fitting model in pseudo-R2 and AIC

P, power function; E, exponential function; G, Gaussian; L, log-logistic function
*Newborn hospital visits were excluded
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be ruled out that, in some cases, patients may withhold
their health insurance status from hospital for getting the
discounted prices (i.e. cash price), which could be sig-
nificantly lower than the contract rate if paying coinsur-
ance. Age, severity of illness, and bill charge may also
confound the results; a comparison of hospital utilization
patterns between no-charge and self-pay patients needs
to be examined in future studies. Additionally, the inter-
play between the insured and uninsured may play a role
in diverse travel patterns: no-charge patients may prefer
to go to local hospitals they are more familiar with for

saving the costs of traveling; hence, hospitals may charge
the insured more than expected to cover the costs of the
uninsured and balance their revenue (Buntin 2014),
which could turn more insured patients away from local
hospitals. Yet, this needs more longitudinal studies on
hospital charges to confirm. Some other intra-insurance
trends are not examined in this study due to lack of
relevant information, such as shorter distances traveled
by Medicare HMO (health maintenance organization)
enrollees than Medicare FFS (fee-for-service) inpatients
(O’Neill 2004).

Fig. 5 Hospital utilization
patterns of patients across age
groups, fitted by the log-logistic
function

Fig. 6 Hospital utilization
patterns of patients across gender
groups, fitted by the log-logistic
function
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It is worth noting that Florida is a special case in
terms of population composition within the USA,
where a number of seasonal residents originally from
other states only spend their winter in Florida, espe-
cially the elder population that are more vulnerable to
many health risks than other groups. The SID data do
not identify whether a patient is a seasonal or perma-
nent resident in Florida, so it is not feasible to directly
examine possible differences in travel behavior be-
tween seasonal and permanent residents. However,
SID data contain a time stamp marking the calendar
season in which each hospital visit occurred (Janu-
ary–March, April–June, July–September, or October–
December), which enables us to examine variation in
travel patterns among four calendar seasons. Our re-
sults reported a stable travel pattern across four cal-
endar seasons, which strictly speaking, however, can-
not infer any differences between permanent and sea-
sonal residents in their travel behavior in seeking
hospital care. Also, this seasonal stability in travel
behavior may not be generalizable to other states with
a harsh winter climate without caution.

Here, a couple of caveats merit clarification. The
population numbers within ZIP codes were estimated
without detailed information of population distribu-
tion, which could be improved by using new methods
and additional ancillary data (Jia et al. 2014; Jia and
Gaughan 2016; Krivoruchko et al. 2011). Travel time
was estimated as driving time on roadways with
posted speed limits. A previous study by Wang and

Xu (2011) suggested that ArcGIS (ESRI: Redland
CA) tended to underestimate the travel time which
drivers actually experienced when road conditions
were considered (e.g., by Google Maps), but discrep-
ancies were largely consistent with a gap close to
5 min. Therefore, the estimated travel time was ap-
propriate for planning purposes as our study focused
on the difference in travel impedance across ZIP
codes. The main limitation is rather the lack of con-
sideration of other travel modes such as public tran-
sits, upon which various disadvantaged groups may
disproportionately rely. Also, the SID did not contain
patient address information and precluded us from
such an analysis. Furthermore, this study classified
the 983 ZIP codes into four SES subgroups based on
a national (instead of Florida’s) quartile classification
of the median household income, available in the
SID. However, such a strategy was considered ac-
ceptable given a similar median household income in
Florida ($47,507) as the national one ($47,999), and
similar counts of ZIP codes in four quartiles yielded
by this classification.

Concluding remarks

This study provides a comprehensive examination of travel
behaviors of hospital inpatient visits across demographic,
socioeconomic, geographic, and health insurance sub-
groups of patients. A major finding is that the log-logistic

Fig. 7 Hospital utilization
patterns of patients across racial/
ethnic groups, fitted by the log-
logistic function
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function better fits the patterns of patients’ travel and
hospital utilization in almost all subgroups. A continuous
distance decay function is an analytic and more accurate
characterization of the complexity of patients’ travel be-
haviors than a simple measure of their mean travel time.
Five key trends among subpopulations are observed:

1) Distance decay effects generally increased as the
age of the patients increased.

2) Whites spent the longest travel time to hospitals
on average, followed by Asians, blacks, and
Hispanics.

3) Patients’ average travel time increased and distance
decay effects decreased as their SES improved.

4) Patients spent longer travel time to hospitals on
average as the urbanicity level of their residence
decreased from large metropolitan to rural areas.

5) No-charge patients spent the shortest travel time to
hospitals on average, followed by Medicare benefi-
ciaries, self-pay patients, Medicaid beneficiaries,
and the privately insured.

The results and methods used in this study can (1)
help researchers choose the best-fitting distance decay
function in modeling patients’ healthcare-seeking be-
havior in accessibility study, modeling patient flows,
and defining hospital service areas; (2) identify distinc-
tive Bactivity space^ for hospital inpatient visits by

Table 5 Average travel time, and parameters and fitness of the log-logistic function for hospital utilization patterns of subpopulations by
age, gender, race/ethnicity, and health insurance coverage

No. patients T_alla T_60b μ θ β
Overall 2,376,743 17.6 13.3 0.992 10.725 1.870

Age

< 12 278,094 19.8 15.5 0.992 13.332 2.056

< 12 (no newborn)* 75,696 26.3 17.4 1.005 15.566 1.769

12–17 35,232 25.3 17.3 1.003 15.387 1.852

18–24 126,525 19.4 14.0 0.997 11.573 1.912

25–34 222,157 18.2 14.2 0.989 11.912 2.011

35–44 190,860 18.5 13.7 0.993 11.211 1.892

45–54 273,250 18.2 13.2 0.999 10.437 1.788

55–64 313,738 18.6 13.3 1.000 10.577 1.789

65–74 353,623 18.1 13.3 0.995 10.602 1.817

≥ 75 583,227 14.3 11.5 0.983 8.993 1.933

Gender

Male 1,026,589 18.3 13.4 0.998 10.695 1.790

Female 1,350,140 17.1 13.2 0.990 10.710 1.914

Race/ethnicity

White 1,489,589 19.2 14.2 0.993 11.528 1.809

Black 400,428 14.7 11.5 0.997 9.152 2.027

Hispanic 399,395 14.0 11.6 0.974 9.540 2.089

Asian 19,837 16.7 13.4 0.977 11.526 2.263

Native 3343 23.9 14.2 1.017 12.208 1.631

Others 41,976 21.3 14.9 0.990 13.032 1.964

Health insurance

Medicare 1,074,328 16.0 12.3 0.990 9.632 1.867

Medicaid 498,513 17.6 13.6 0.996 11.055 1.896

Private 531,698 20.8 15.2 0.991 12.987 1.977

Self-pay 144,432 17.5 12.6 0.998 9.951 1.797

No charge 45,300 12.6 10.7 0.974 8.641 2.146

a T_all, average travel time in minutes for all patients; b T_60, average travel time in minutes for patients traveling ≤ 60 min
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various subpopulations, which to some extent reflects
their corresponding mobility capacity and scope of
healthcare choices; and (3) help to assess possible im-
pacts of various hospital planning scenarios on specific
target population groups, such as hospital closure,
scaling-down or expansion of existing hospitals, and
opening of new hospitals.

Future studies seem warranted to examine the fol-
lowing points. First, it remains unclear how different
demographic, socioeconomic, and geographical deter-
minants interplay with each other and influence pa-
tients’ travel patterns simultaneously. One way is to
examine in depth the intra-variability of travel patterns
in each population subgroup. For example, the poor
rural patient may travel short distances to local hospitals,
if any, but the affluent rural patient may bypass the local
ones. Another approach is to employ a multivariate
regression model to examine the collective effects of
various attributes of patients. Secondly, the degree of
dependency on local hospitals needs to be quantified for
different population subgroups. Given that some disad-
vantaged populations coincide socioeconomically or
geographically, their synergic effects on healthcare trav-
el patterns could be amplified. For example, the poor
rural people may undergo double stress from limited
economic capacities and geographical isolation, which
requires them to overcome more barriers than their
inner-city counterparts. Thirdly, more hospital charac-
teristics other than the number of hospital beds should
be integrated with the current measurement of hospital

attractiveness for predicting patient’s travel patterns.
The reasons for some patients’ long distance travels to
certain hospitals may be attributable to their healthcare
plans that do not cover local hospitals. In this case, some
interventions need to be initiated to encourage
healthcare plans to include local hospitals for patients’
convenience without compromising their quality of
care. Fourthly, the interaction among the degree of mor-
bidity, patients’ travel patterns, and hospital charges will
be examined in future studies. Finally, future research
should also consider outpatient ambulatory care, emer-
gency department visits, and breakdowns on various
inpatient visits to obtain a fuller spectrum of medical
services provided by hospitals.
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