Skip to main content
Log in

Manure removal system influences the abundance and composition of airborne biotic contaminants in swine confinement buildings

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Little is known about the factors influencing the abundance and community composition of airborne biotic contaminants in swine confinement buildings (SCBs). Microbial air samples were collected from three different SCBs equipped with three different types of manure removal systems (deep-pit manure removal with slats, scraper removal system, and deep-litter bed system). The abundance and composition of airborne biotic contaminants of all the collected air samples were analyzed using cultivation-independent methods. The V1–V3 region of the 16S rRNA gene was amplified from the extracted DNA and sequenced using 454-pyrosequencing. The abundances of 16S rRNA genes and six tetracycline resistance genes (tetB, tetH, tetZ, tetO, tetQ, and tetW) were quantified using real-time PCR. The abundance of 16S rRNA gene and tetracycline resistance genes were significantly higher in SCBs equipped with a deep-pit manure removal system with slats, except for tetB gene. This contrasts with the opposite trend found previously by culture-based studies. The aerial bacterial community composition, as measured by pairwise Bray–Curtis distances, varied significantly according to the manure removal system. 16S rRNA-based pyrosequencing revealed Firmicutes (72.4 %) as the dominant group with Lactobacillus as the major genus, while Actinobacteria constituted 10.7 % of the detectable bacteria. Firmicutes were more abundant in SCBs with deep pit with slats, whereas Actinobacteria were highly abundant in SCBs with a deep-litter bed system. Overall, the results of this study suggest that the manure removal system plays a key role in structuring the abundance and composition of airborne biotic contaminants in SCBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Blake, D., Hillman, K., Fenlon, D., & Low, J. (2003). Transfer of antibiotic resistance between commensal and pathogenic members of the Enterobacteriaceae under ileal conditions. Journal of Applied Microbiology, 95(3), 428–436.

    Article  CAS  Google Scholar 

  • Chang, C., Chung, H., Huang, C.-F., & Su, H.-J. J. (2001). Exposure of workers to airborne microorganisms in open-air swine houses. Applied and Environmental Microbiology, 67(1), 155–161.

    Article  CAS  Google Scholar 

  • Clarke, K. R., & Gorley, R. N. (2006). PRIMER v6: user manual/tutorial. Plymouth, UK: Primer-E Ltd.

    Google Scholar 

  • Cole, D., Todd, L., & Wing, S. (2000). Concentrated swine feeding operations and public health: a review of occupational and community health effects. Environmental Health Perspectives, 108(8), 685.

    Article  CAS  Google Scholar 

  • Donham, K. J., Merchant, J. A., Lassise, D., Popendorf, W. J., & Burmeister, L. F. (1990). Preventing respiratory disease in swine confinement workers: intervention through applied epidemiology, education, and consultation. American Journal of Industrial Medicine, 18(3), 241–261.

    Article  CAS  Google Scholar 

  • Duan, H., Chai, T., Liu, J., Zhang, X., Qi, C., Gao, J., et al. (2009). Source identification of airborne Escherichia coli of swine house surroundings using ERIC-PCR and REP-PCR. Environmental Research, 109(5), 511–517.

    Article  CAS  Google Scholar 

  • Dumas, M. D., Polson, S. W., Ritter, D., Ravel, J., Gelb, J., Jr., Morgan, R., et al. (2011). Impacts of poultry house environment on poultry litter bacterial community composition. PLoS ONE, 6(9), e24785.

    Article  CAS  Google Scholar 

  • Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C., & Knight, R. (2011). UCHIME improves sensitivity and speed of chimera detection. Bioinformatics, 27(16), 2194–2200.

    Article  CAS  Google Scholar 

  • Fries, R., Akcan, M., Bandick, N., & Kobe, A. (2005). Microflora of two different types of poultry litter. British Poultry Science, 46(6), 668–672.

    Article  CAS  Google Scholar 

  • Heuer, H., Krögerrecklenfort, E., Wellington, E., Egan, S., van Elsas, J., Overbeek, L., et al. (2002). Gentamicin resistance genes in environmental bacteria: prevalence and transfer. FEMS Microbiology Ecology, 42(2), 289–302.

    Article  CAS  Google Scholar 

  • Hong, P. Y., Li, X., Yang, X., Shinkai, T., Zhang, Y., Wang, X., et al. (2012). Monitoring airborne biotic contaminants in the indoor environment of pig and poultry confinement buildings. Environmental Microbiology, 14(6), 1420–1431.

    Article  CAS  Google Scholar 

  • Kim, K. Y., Ko, H. J., Kim, H. T., Kim, Y. S., Roh, Y. M., Lee, C. M., et al. (2007). Monitoring of aerial pollutants emitted from swine houses in Korea. Environmental Monitoring and Assessment, 133(1–3), 255–266.

    Article  CAS  Google Scholar 

  • Kristiansen, A., Saunders, A. M., Hansen, A. A., Nielsen, P. H., & Nielsen, J. L. (2012). Community structure of bacteria and fungi in aerosols of a pig confinement building. FEMS Microbiology Ecology, 80(2), 390–401.

    Article  CAS  Google Scholar 

  • KFDA (Korean Food and Drug Administration) (2006). Establishment of control system of antibiotics for livestocks. 19–35.

  • Kumari, P., & Choi, H. L. (2014). Seasonal variability in airborne biotic contaminants in swine confinement buildings. PLoS ONE, 9(11), e112897.

    Article  Google Scholar 

  • Lee, S.-A., Adhikari, A., Grinshpun, S. A., McKay, R., Shukla, R., & Reponen, T. (2006). Personal exposure to airborne dust and microorganisms in agricultural environments. Journal of Occupational and Environmental Hygiene, 3(3), 118–130.

    Article  Google Scholar 

  • Leser, T. D., Amenuvor, J. Z., Jensen, T. K., Lindecrona, R. H., Boye, M., & Møller, K. (2002). Culture-independent analysis of gut bacteria: the pig gastrointestinal tract microbiota revisited. Applied and Environmental Microbiology, 68(2), 673–690.

    Article  CAS  Google Scholar 

  • Levy, S. B., McMurry, L. M., Barbosa, T. M., Burdett, V., Courvalin, P., Hillen, W., et al. (1999). Nomenclature for new tetracycline resistance determinants. Antimicrobial Agents and Chemotherapy, 43(6), 1523–1524.

    CAS  Google Scholar 

  • Martin, S. A., McCann, M. A., & Waltman, W. D. (1998). Microbiological survey of Georgia poultry litter. The Journal of Applied Poultry Research, 7(1), 90–98.

    Article  Google Scholar 

  • Nehmé, B., Gilbert, Y., Létourneau, V., Forster, R. J., Veillette, M., Villemur, R., et al. (2009). Culture-independent characterization of archaeal biodiversity in swine confinement building bioaerosols. Applied and Environmental Microbiology, 75(17), 5445–5450.

    Article  Google Scholar 

  • Nehme, B., Létourneau, V., Forster, R. J., Veillette, M., & Duchaine, C. (2008). Culture-independent approach of the bacterial bioaerosol diversity in the standard swine confinement buildings, and assessment of the seasonal effect. Environmental Microbiology, 10(3), 665–675.

    Article  CAS  Google Scholar 

  • Nonnenmann, M., Bextine, B., Dowd, S., Gilmore, K., & Levin, J. (2010). Culture-independent characterization of bacteria and fungi in a poultry bioaerosol using pyrosequencing: a new approach. Journal of Occupational and Environmental Hygiene, 7(12), 693–699.

    Article  CAS  Google Scholar 

  • Olson, D., & Bark, S. (1996). Health hazards affecting the animal confinement farm worker. AAOHN Journal, 44(4), 198.

    CAS  Google Scholar 

  • Pearson, C., & Sharples, T. (1995). Airborne dust concentrations in livestock buildings and the effect of feed. Journal of Agricultural Engineering Research, 60(3), 145–154.

    Article  Google Scholar 

  • Predicala, B. Z., Urban, J. E., Maghirang, R. G., Jerez, S. B., & Goodband, R. D. (2002). Assessment of bioaerosols in swine barns by filtration and impaction. Current Microbiology, 44(2), 136–140.

    Article  CAS  Google Scholar 

  • Robbins, C. A., Swenson, L. J., Nealley, M. L., Kelman, B. J., & Gots, R. E. (2000). Health effects of mycotoxins in indoor air: a critical review. Applied Occupational and Environmental Hygiene, 15(10), 773–784.

    Article  CAS  Google Scholar 

  • Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B., et al. (2009). Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 75(23), 7537–7541.

    Article  CAS  Google Scholar 

  • Smalla, K., Heuer, H., Götz, A., Niemeyer, D., Krögerrecklenfort, E., & Tietze, E. (2000). Exogenous isolation of antibiotic resistance plasmids from piggery manure slurries reveals a high prevalence and diversity of IncQ-like plasmids. Applied and Environmental Microbiology, 66(11), 4854–4862.

    Article  CAS  Google Scholar 

  • Unno, T., Jang, J., Han, D., Kim, J. H., Sadowsky, M. J., Kim, O. S., et al. (2010). Use of barcoded pyrosequencing and shared OTUs to determine sources of fecal bacteria in watersheds. Environmental Science and Technology, 44(20), 7777–7782. doi:10.1021/Es101500z.

    Article  CAS  Google Scholar 

  • Whyte, R. T. (1993). Aerial pollutants and the health of poultry farmers. World’s Poultry Science Journal, 49, 139–153.

    Article  Google Scholar 

  • Yao, H., Choi, H., Lee, J., Suresh, A., & Zhu, K. (2010). Effect of microclimate on particulate matter, airborne bacteria, and odorous compounds in swine nursery houses. Journal of Animal Science, 88(11), 3707–3714.

    Article  CAS  Google Scholar 

  • Yao, H., Choi, H., Zhu, K., & Lee, J. (2011). Key volatile organic compounds emitted from swine nursery house. Atmospheric Environment, 45(15), 2577–2584.

    Article  CAS  Google Scholar 

  • Zejda, J. E., Barber, E., Dosman, J. A., Olenchock, S. A., McDuffie, H. H., Rhodes, C., et al. (1994). Respiratory health status in swine producers relates to endotoxin exposure in the presence of low dust levels. Journal of Occupational and Environmental Medicine, 36(1), 49–56.

    CAS  Google Scholar 

  • Zhu, Y.-G., Johnson, T. A., Su, J.-Q., Qiao, M., Guo, G.-X., Stedtfeld, R. D., et al. (2013). Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proceedings of the National Academy of Sciences, 110(9), 3435–3440.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry, and Fisheries (IPET) from the Ministry of Agriculture, Food, and Rural Affairs (MAFRA) through project no. 312036-03-2-HD030 and in part by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) from the Ministry of Trade, Industry and Energy (MOTIE) through project no. 2012-3020090040. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Priyanka Kumari was supported by a scholarship from the BK21 Plus Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Lim Choi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, P., Choi, H.L. Manure removal system influences the abundance and composition of airborne biotic contaminants in swine confinement buildings. Environ Monit Assess 187, 537 (2015). https://doi.org/10.1007/s10661-015-4759-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4759-0

Keywords

Navigation