Skip to main content
Log in

Bioaccumulation of metals in three freshwater mussel species exposed in situ during and after dredging at a coal ash spill site (Tennessee Valley Authority Kingston Fossil Plant)

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

On December 22, 2008, a dike containing coal fly ash at the Tennessee Valley Authority Kingston Fossil Plant (TN, USA) failed, and within months, dredging operations began to remove ash-contaminated sediments. The purpose of this study was to investigate differences in the bioaccumulation of metals in three mussel species during and after dredging operations. Mussels were caged for approximately 1 year during dredging and after, and then mussel condition index values and As, Cd, Cr, Pb, Ni, Se, Hg, U, Fe, Mg, Al, Sb, Ba, Be, Co, Cu, Mn, Mo, Ag, Sr, Tl, V, and Zn concentrations in soft tissue were determined via inductively coupled plasma–mass spectrometery. Overall, the differences observed in metal bioaccumulation and mussel health suggest that mussels in the immediate downstream area of the dredging site may have been impacted, as evidenced by a significant decrease in mussel condition index values, but that this impact did not result in increased tissue concentrations of metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aldridge, D. W., Payne, B. S., & Miller, A. C. (1987). The effects of intermittent exposure to suspended solids and turbulence on 3 species of freshwater mussels. Environmental Pollution, 45, 17–28.

    Article  CAS  Google Scholar 

  • Andral, B., Stanisiere, J. Y., Sauzade, D., Damier, E., Thebault, H., Galgani, F., & Boissery, P. (2004). Monitoring chemical contamination levels in the Mediterranean based on the use of mussel caging. Marine Pollution Bulletin, 49(9), 704–712.

    Article  CAS  Google Scholar 

  • Bartov, G., Deonarine, A., Johnson, T. M., Ruhl, L., Vengosh, A., & Hsu-Kim, H. (2012). Environmental impacts of the Tennessee Valley Authority Kingston coal ash spill. 1. Source apportionment using mercury stable isotopes. Environmental Science Technology, 47(4), 2092–2099.

    Article  Google Scholar 

  • Baumann, P. C., & Gillespie, R. B. (1986). Selenium bioaccumulation in gonads of largemouth bass and bluegill from three power plant cooling reservoirs. Environmental Toxicology Chemistry, 5(7), 695–701.

    Article  CAS  Google Scholar 

  • Beck, M. L., Hopkins, W. A., & Jackson, B. P. (2013). Spatial and temporal variation in the diet of tree swallows: implications for trace-element exposure after habitat remediation. Archives Environmental Contamination and Toxicology, 65(3), 575–587.

    Article  CAS  Google Scholar 

  • Bednar, A. J., Chappell, M. A., Seiter, J. M., Stanley, J. K., Averett, D. E., Jones, W. T., Pettway, B. A., Kennedy, A. J., Hendrix, J. A., & Steevens, J. A. (2010). Geochemical investigations of metals release from submerged coal fly ash using extended elutriate tests. Chemosphere, 81(11), 1393–1400.

    Article  CAS  Google Scholar 

  • Bednar, A. J., Averett, D. E., Seiter, J. M., Lafferty, B., Jones, W. T., Hayes, C. A., Chappell, M. A., Clarke, J. U., & Steevens, J. A. (2013). Characterization of metals released from coal fly ash during dredging at the Kingston ash recovery project. Chemosphere, 92, 1563–1570.

    Article  CAS  Google Scholar 

  • Bridges, T. S., Gustavson, K. E., Schroeder, P., Ells, S. J., Hayes, D., Nadeau, S. C., Palermo, M. R., & Patmont, C. (2010). Dredging processes and remedy effectiveness: relationship to the 4 Rs of environmental dredging. Integrated Environmental Assessment and Management, 6(4), 619–630.

    Article  Google Scholar 

  • Cook, R. B., Suter, G. W., & Sain, E. R. (1999). Ecological risk assessement in a large-river reservoir: 1. Introduction and background. Environmental Toxicology Chemistry, 18(4), 581–588.

    CAS  Google Scholar 

  • Damiens, G., Gnassia-Barelli, M., Loquès, F., Roméo, M., & Salbert, V. (2007). Integrated biomarker response index as a useful tool for environmental assessment evaluated using transplanted mussels. Chemosphere, 66(3), 574–583.

    Article  CAS  Google Scholar 

  • Davenport, J., & Chen, X. (1987). A comparison of methods for the assessment of condition in the mussel (Mytilus edulis L.). Journal of Molluscan Studies, 53, 293–297.

    Article  Google Scholar 

  • DeBoeck, M., Kirsch-Volders, M., & Lison, D. (2003). Cobalt and antimony: genotoxicity and carconogenicity. Mutation Research, 533, 135–152.

    Article  CAS  Google Scholar 

  • Deonarine, A., Bartov, G., Johnson, T. M., Ruhl, L., Vengosh, A., & Hsu-Kim, H. (2013). Environmental impacts of the Tennessee Valley Authority Kingston coal ash spill. 2. Effect of coal ash on methylmercury in historically contaminated river sediments. Environmental Science & Technology, 47(4), 2100–2108.

    Article  CAS  Google Scholar 

  • FDA. (1993). Guidance document for arsenic (or cadmium, /chromium/lead/nickel) in shellfish. Washington: Department of Health and Human Services, Public Health Services, Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Seafood.

    Google Scholar 

  • FDA. (1996). Fish, shellfish, crustaceans and other aquatic animals – fresh, frozen, or processed – methyl mercury (CPG 7108.07). Sec. 540.600 (rev 3/95). Compliance Policy Guides, August 1996. 237. Washington: Department of health and Human Services, Food and Drug Administration.

    Google Scholar 

  • Gascho Landis, A. M., Haag, W. R., & Stoeckel, J. A. (2012). High suspended solids as a factor in reproductive failure of a freshwater mussel. Freshwater Science, 32(1), 70–81.

    Article  Google Scholar 

  • Greeley, M. S., Jr., Elmore, L. R., McCracken, M. K., & Sherrard, R. M. (2014). Effects of sediment containing coal Ash from the Kingston Ash release on embryo-larval development in the fathead minnow, Pimephales promelas (Rafinesque, 1820). Bulletin of Environmental Contamination and Toxicology, 92(2), 154–159.

    Article  CAS  Google Scholar 

  • Gunther, A. J., Davis, J. A., Hardin, D. D., Gold, J., Bell, D., Crick, J. R., & Stephenson, M. (1999). Long-term bioaccumulation monitoring with transplanted bivalves in the San Francisco Estuary. Marine Pollution Bulletin, 38(3), 170–181.

    Article  CAS  Google Scholar 

  • Gustavson, K. E., Burton, G. A., Francingues, N. R., Jr., Reible, D. D., Vorhees, D. J., & Wolfe, J. R. (2008). Evaluating the effectiveness of contaminated-sediment dredging. Environmental Science & Technology, 42(14), 5042.

    Article  CAS  Google Scholar 

  • Henley, W. F., Patterson, M. A., Neves, R. J., & Lemly, A. D. (2000). Effects of sedimentation and turbidity on lotic food webs: a concise review for natural resource managers. Reviews in Fisheries Science, 8(2), 125–139.

    Article  Google Scholar 

  • Hopkins, W. A., Rowe, C. L., & Congdon, J. D. (1999). Elevated trace element concentrations and standard metabolic rate in banded water snakes (Nerodia fasciata) exposed to coal combustion wastes. Environmental Toxicology and Chemistry, 18(6), 1258–1263.

    Article  CAS  Google Scholar 

  • Hull, M. S., Cherry, D. S., & Neves, R. J. (2006). Use of bivalve metrics to quantify influences of coal-related activities in the Clinch River watershed, Virginia. Hydrobiologia, 556(1), 341–355.

    Article  CAS  Google Scholar 

  • Lafabrie, C., Pergent, G., Kantin, R., Pergent-Martini, C., & Gonzalez, J. L. (2007). Trace metals assessment in water, sediment, mussel and seagrass species–Validation of the use of Posidonia oceanica as a metal biomonitor. Chemosphere, 68(11), 2033–2039.

    Article  CAS  Google Scholar 

  • Liu, Y. T., Chen, T. Y., Mackebee, W. G., Ruhl, L., Vengosh, A., & Hsu-Kim, H. (2013). Selenium speciation in coal Ash spilled at the Tennessee Valley Authority Kingston Site. Environmental Science & Technology, 47(24), 14001–14009.

    Article  CAS  Google Scholar 

  • Lohner, T. W., Reash, R. J., Willet, V. E., & Rose, L. A. (2001). Assessment of tolerant sunfish populations (Lepomis sp.) inhabiting selenium-laden coal Ash effluents. Ecotoxicology and Environmental Safety, 50(3), 203–216.

    Article  CAS  Google Scholar 

  • Lourenço, J., Castro, B. B., Machado, R., Nunes, B., Mendo, S., Gonçalves, F., & Pereira, R. (2010). Genetic, biochemical, and individual responses of the teleost fish Carassius auratus to uranium. Archives of Environmental Contamination and Toxicology, 58(4), 1023–1031.

    Article  Google Scholar 

  • Mubiana, V. K., Vercauteren, K., & Blust, R. (2006). Influence of body size, condition index and tidal exposure on the variability in metal bioaccumulation in Mytilus edulis. Environmental Pollution, 144(1), 272–279.

    Article  CAS  Google Scholar 

  • Nagle, R. D., Rowe, C. L., & Congdon, J. D. (2001). Accumulation and selective maternal transfer of contaminants in the turtle Trachemys scripta associated with coal ash deposition. Archives of Environmental Contamination and Toxicology, 40(4), 531–536.

    Article  CAS  Google Scholar 

  • National Research Council (US) (2007) Committee on Sediment Dredging at Superfund Megasites. Sediment dredging at Superfund megasites: assessing the effectiveness. National Academies Press

  • O'Connor, T. P. (1996). Trends in chemical concentrations in mussels and oysters collected along the US coast from 1986 to 1993. Marine Environmental Research, 41(2), 183–200.

    Article  Google Scholar 

  • Osterling, M. E., Bergman, E., Greenberg, L. A., Baldwin, B. S., & Mills, E. L. (2007). Turbidity-mediated interactions between invasive filter-feeding mussels and native bioturbating mayflies. Freshwater Biology, 52(8), 1602–1610.

    Article  Google Scholar 

  • Otter, R. R., Bailey, F. C., Fortner, A. M., & Adams, S. M. (2012). Trophic status and metal bioaccumulation differences in multiple fish species exposed to coal ash-associated metals. Ecotoxicology and Environmental Safety, 85, 30–36.

    Article  CAS  Google Scholar 

  • Otter, R. R., Hayden, M., Mathews, T., Fortner, A., & Bailey, F. C. (2013). The use of tetragnathid spiders as bioindicators of metal exposure at a coal ash spill site. Environmental Toxicology and Chemistry, 32(9), 2065–2068.

    Article  CAS  Google Scholar 

  • Pampanin, D. M., Volpato, E., Marangon, I., & Nasci, C. (2005). Physiological measurements from native and transplanted mussel (Mytilus galloprovincialis) in the canals of Venice. Survival in air and condition index. Comparative Biochemistry and Physiology A, 140(1), 41–52.

    Article  Google Scholar 

  • Peltier, G. L., Wright, M. S., Hopkins, W. A., & Meyer, J. L. (2009). Accumulation of trace elements and growth responses in Corbicula fluminea downstream of a coal-fired power plant. Ecotoxicology and Environmental Safety, 72(5), 1384–1391.

    Article  CAS  Google Scholar 

  • Reash, R. J., Lohner, T. W., & Wood, K. V. (2006). Selenium and other trace metals in fish inhabiting a fly ash stream: implications for regulatory tissue thresholds. Environmental Pollution, 142(3), 397–408.

    Article  CAS  Google Scholar 

  • Rowe, C. L., Hopkins, W. A., & Congdon, J. D. (2002). Ecotoxicological implications of aquatic disposal of coal combustion residues in the United States: a review. Environmental Monitoring and Assessment, 80(3), 207–276.

    Article  CAS  Google Scholar 

  • Rodriguez-Mercado, J. J., & Altamirano-Lozano, M. A. (2013). Genetic toxicology of thallium: a review. Drug and Chemical Toxicology, 36(3), 369–383.

    Article  CAS  Google Scholar 

  • Roméo, M., Frasila, C., Gnassia-Barelli, M., Damiens, G., Micu, D., & Mustata, G. (2005). Biomonitoring of trace metals in the Black Sea (Romania) using mussels Mytilus galloprovincialis. Water Research, 39(4), 596–604.

    Article  Google Scholar 

  • Ruhl, L., Vengosh, A., Dwyer, G. S., Hsu-Kim, H., Deonarine, A., Bergin, M., & Kravchenko, J. (2009). Survey of the potential environmental and health impacts in the immediate aftermath of the coal ash spill in Kingston, Tennessee. Environmental Science & Technology, 43(16), 6326–6333.

    Article  CAS  Google Scholar 

  • Ruhl, L., Vengosh, A., Dwyer, G. S., Hsu-Kim, H., & Deonarine, A. (2010). Environmental impacts of the coal ash spill in Kingston, Tennessee: an 18-month survey. Environmental Science & Technology, 44(24), 9272–9278.

    Article  CAS  Google Scholar 

  • Saurel, C., Petersen, J. K., Wiles, P. J., & Kaiser, M. J. (2013). Turbulent mixing limits mussel feeding: direct estimates of feeding rate and vertical diffusivity. Marine Ecology Progress Series, 485, 105–121.

    Article  Google Scholar 

  • Schintu, M., Durante, L., Maccioni, A., Meloni, P., Degetto, S., & Contu, A. (2008). Measurement of environmental trace-metal levels in Mediterranean coastal areas with transplanted mussels and DGT techniques. Marine Pollution Bulletin, 57(6), 832–837.

    Article  CAS  Google Scholar 

  • Simon, O., Mottin, E., Geffroy, B., & Hinton, T. (2011a). Effects of dietary uranium on reproductive endpoints—fecundity, survival, reproductive success—of the fish Danio rerio. Environmental Toxicology and Chemistry, 30(1), 220–225.

    Article  CAS  Google Scholar 

  • Simon, O., Floriani, M., Cavalie, I., Camilleri, V., Adam, C., Gilbin, R., & Garnier-Laplace, J. (2011b). Internal distribution of uranium and associated genotoxic damages in the chronically exposed bivalve Corbicula fluminea. Journal of Environmental Radioactivity, 102(8), 766–773.

    Article  CAS  Google Scholar 

  • Sorensen, E. M. (1988). Selenium accumulation, reproductive status, and histopathological changes in environmentally exposed redear sunfish. Archives of Toxicology, 61(4), 324–329.

    Article  CAS  Google Scholar 

  • Souza, M. J., Ramsay, E. C., & Donnell, R. L. (2013). Metal accumulation and health effects in raccoons (Procyon lotor) associated with coal fly ash exposure. Archives of Environmental Contamination and Toxicology, 64(4), 529–536.

    Article  CAS  Google Scholar 

  • Stanley, J. K., Kennedy, A. J., Bednar, A. J., Chappell, M. A., Seiter, J. M., Averett, D. E., & Steevens, J. A. (2013). Impact assessment of dredging to remove coal fly ash at the Tennessee Valley Authority Kingston Fossil plant using fathead minnow elutriate exposures. Environmental Toxicology and Chemistry, 32(4), 822–830.

    Article  CAS  Google Scholar 

  • Strupp, C., & Beryllium metal II. (2011). A review of the available toxicity data. Annals of Occuppational Hygiene, 55(1), 43–56.

    Article  CAS  Google Scholar 

  • Tennessee Valley Authority (TVA) (2009) Action Memorandum: Request for Removal Action at the TVA Kingston Fossil Fuel Plant Release Site, Roane County, Tennessee. <http://www.tva.gov/kingston/memo.htm> (accessed 03.09.13)

  • Tennessee Valley Authority (TVA) (2010a) Regulatory Submittal for Kingston Fossil Plant: Summary of changes to surface water monitoring plan: surface water monitoring plan for the Emory, Clinch and Tennessee Rivers (non-time-critical removal action). <http://www.tva.gov/kingston/admin_record/pdf/NTC/NTC10.pdf>, (accessed 12.10.2014).

  • Tennessee Valley Authority (TVA) (2010b) Time critical removal action completion report for the river system phase II nature and extent of ash investigation. <http://www.epakingstontva.com/Work%20Plan%20Approvals/Nature%20and%20Extent%20Investigations/Time%20Critical%20Removal%20Action%20PhaseII%20Nature%20and%20Extent.pdf> (accessed 03.15.14)

  • Tennessee Valley Authority (TVA) (2011a) Fact Sheet, Kingston Ash Recovery Project, December 7, 2011a. < http://www.tva.gov/kingston/pdf/KIF_Fact_Sheet.pdf> (accessed 03.09.13)

  • Tennessee Valley Authority (TVA) (2011b) Regulatory Submittal for Kingston Fossil Plant: Non-time-critical removal action surface water monitoring plan EPA-AL-038. < http://www.tva.gov/kingston/admin_record/pdf/NTC/NTC27.pdf>, (accessed 12.10.2014)

  • Tsangaris, C., Hatzianestis, I., Catsiki, V. A., Kormas, K. A., Strogyloudi, E., Neofitou, C., & Galgani, F. (2011). Active biomonitoring in Greek coastal waters: application of the integrated biomarker response index in relation to contaminant levels in caged mussels. Science of the Total Environment, 412, 359–365.

    Article  Google Scholar 

  • United States Environmental Protection Agency (USEPA) (2004) Draft for selenium. Office of Water. EPA-822-D-04-001.

  • Wang, N., Ingersoll, C. G., Kunz, J. L., Brumbaugh, W. G., Kane, C. M., Evans, R. B., & Bakaletz, S. (2013). Toxicity of sediments potentially contaminated by coal mining and natural gas extraction to unionid mussels and commonly tested benthic invertebrates. Environmental Toxicology and Chemistry, 32(1), 207–221.

    Article  CAS  Google Scholar 

  • Yudovich, Y. E., & Ketris, M. P. (2005). Arsenic in coal: a review. International Journal of Coal Geology, 61(3), 141–196.

    Article  CAS  Google Scholar 

  • Yudovich, Y. E., & Ketris, M. P. (2006). Selenium in coal: a review. International Journal of Coal Geology, 67(1), 112–126.

    Article  CAS  Google Scholar 

  • Zhong, H., Kraemer, L., & Evans, D. (2013). Influence of body size on Cu bioaccumulation in zebra mussels Dreissena polymorpha exposed to different sources of particle-associated Cu. Journal of Hazardous Material, 261, 746–752.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

For technical assistance, we would like to thank David Simms, Shannon Otter, Chris Bowman, and Frank Bailey. Funding for this study was provided by the Tennessee Wildlife Resources Agency, Division of Environmental Services.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan R. Otter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Otter, R.R., McKinney, D., Brown, B. et al. Bioaccumulation of metals in three freshwater mussel species exposed in situ during and after dredging at a coal ash spill site (Tennessee Valley Authority Kingston Fossil Plant). Environ Monit Assess 187, 334 (2015). https://doi.org/10.1007/s10661-015-4578-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4578-3

Keywords

Navigation