
Vol.:(0123456789)

Distributed and Parallel Databases (2021) 39:415–444
https://doi.org/10.1007/s10619-020-07295-x

1 3

A framework for dependency estimation in heterogeneous
data streams

Edouard Fouché1  · Alan Mazankiewicz1 · Florian Kalinke1 · Klemens Böhm1

Published online: 6 June 2020
© The Author(s) 2020

Abstract
Estimating dependencies from data is a fundamental task of Knowledge Discov-
ery. Identifying the relevant variables leads to a better understanding of data and
improves both the runtime and the outcomes of downstream Data Mining tasks.
Dependency estimation from static numerical data has received much attention.
However, real-world data often occurs as heterogeneous data streams: On the one
hand, data is collected online and is virtually infinite. On the other hand, the various
components of a stream may be of different types, e.g., numerical, ordinal or cate-
gorical. For this setting, we propose Monte Carlo Dependency Estimation (MCDE),
a framework that quantifies multivariate dependency as the average statistical dis-
crepancy between marginal and conditional distributions, via Monte Carlo simula-
tions. MCDE handles heterogeneity by leveraging three statistical tests: the Mann–
Whitney U, the Kolmogorov–Smirnov and the Chi-Squared test. We demonstrate
that MCDE goes beyond the state of the art regarding dependency estimation by
meeting a broad set of requirements. Finally, we show with a real-world use case
that MCDE can discover useful patterns in heterogeneous data streams.

Keywords  Data Mining · Multivariate Statistics · Exploratory Data Analysis

1  Introduction

The discovery of relationships between attributes is fundamental to many Data
Mining applications, e.g., Feature Selection [32], Clustering [31] or Outlier
Detection [21], and it is a prominent topic in the database community [6, 18, 46].
Identifying groups of dependent features is critical to deal with high dimensional-
ity and helps to filter out the features irrelevant for the task at hand. One typically

 *	 Edouard Fouché
	 edouard.fouche@kit.edu

	 Klemens Böhm
	 klemens.boehm@kit.edu

1	 Karlsruhe Institute of Technology (KIT), Am Fasanengarten 5, 76131 Karlsruhe, Germany

http://orcid.org/0000-0003-0157-7648
http://crossmark.crossref.org/dialog/?doi=10.1007/s10619-020-07295-x&domain=pdf

416	 Distributed and Parallel Databases (2021) 39:415–444

1 3

estimates the ‘relevance’ of a feature by estimating its ‘dependence’ on a given
target to predict. To do so, one often leverages well-known ‘dependency estima-
tors’ such as the Pearson correlation coefficient, or Mutual Information [37].

Most dependency estimators only deal with numerical data, and one assumes
that all relevant observations are available during estimation. In the real world,
however, data often consists of an open-ended, ever-evolving stream of meas-
urements or indicators of various types, e.g., numerical, ordinal, or categori-
cal observations. Such data sources are known as Heterogeneous Data Streams
(H-DS) [45]. Knowledge Discovery in H-DS is known as one of the most chal-
lenging problems in Data Mining [8]. The streaming nature of the data constrains
system design in several ways, laid out by Domingos and Hulten [9] as follows:

–	 Efficiency (C1) The system must spend a short constant time and a constant
amount of memory to process each incoming record.

–	 Single Scan (C2) The system may perform at most one scan over the data
since access to past observations is often unavailable or impractical.

–	 Adaptation (C3) Whenever the data distribution changes over time—a phe-
nomenon that is known as ‘concept drift’ [1]—the system must adapt, e.g., by
forgetting outdated information.

–	 Anytime (C4) The system must be available at any point in time, with an out-
put ideally equivalent (or nearly identical) to the one of a non-streaming sys-
tem, operating without the streaming constraints.

Most approaches designed for streams can only handle numerical data. Since data
may be of other types as well, heterogeneity is on our list of constraints:

•	 Heterogeneity (C5) The system must handle not only numerical types but ide-
ally all data types such as strings, categories, ordinal values.

That being said, and orthogonally to the streaming setting, modern dependency
estimators have their own desirable features:

–	 Multivariate (F1) Bivariate measures only apply to two entities (i.e., vari-
ables, vectors). Estimating the dependency between more than two entities is
useful as well, but existing attempts to generalise bivariate measures lack effi-
ciency or effectiveness [43].

–	 General-purpose (F2) Dependency estimators should not restrict to specific
types of dependencies. Otherwise, they may miss relevant attribute relation-
ships. Existing multivariate estimators are typically limited to, say, monoto-
nous or functional dependencies.

–	 Intuitive (F3) A method is intuitive if its parameters are easy to set, i.e., users
understand their impact on the estimation. Existing solutions tend to have
unintuitive parameters, and the suggestion of ‘good’ parameter values happens
(or does not happen) at the discretion of the inventors.

417

1 3

Distributed and Parallel Databases (2021) 39:415–444	

–	 Non-parametric (F4) Since real data can exhibit virtually any kind of distribu-
tion, it is not reasonable to use measures relying on parametric assumptions. The
risk is to miss relevant effects systematically.

–	 Interpretable (F5) The results of dependency estimators should be interpreta-
ble. In particular, the returned estimate should have a maximum and a minimum,
so that one can interpret and compare two given estimates.

–	 Sensitive (F6) Dependency estimation is not only about detecting the existence
of a relationship, but also about quantifying its strength. Data points generally
are observations sampled from a potentially noisy process. The same dependency
should get a higher score when observed with more observations, as the size of
the observed effect—the ‘effect size’—is larger.

–	 Robust (F7) Real-world data may be of poor quality. Measuring devices often
have limited precision, so that values are rounded or trimmed, leading to points
with the same values. It is also common to discretise attributes, for a more com-
pact representation. Such artefacts can have a negative influence on the estima-
tion. Thus, estimators need to be robust against duplicates and imprecision.

To our knowledge, no existing solution satisfies all these requirements. In this paper,
we propose an approach that fulfils them all.

2 � Contributions

We present Monte Carlo Dependency Estimation (MCDE), a framework which
satisfies both the constraints of heterogeneous data streams and the desirable fea-
tures of dependency estimation. Over a given time window, MCDE estimates the
dependency of an attribute set as the average discrepancy between marginal and
conditional distributions, via Monte Carlo (MC) simulations. In each MC simula-
tion, MCDE applies a condition on each attribute. Then a statistical test quantifies
the discrepancy between the marginal and conditional distributions. We determine a
lower bound for the quality of our estimates, which only depends on the number of
MC simulations. Such bound allows users to trade estimation accuracy for a compu-
tational advantage.

We explore three instantiations of MCDE, i.e., three new dependency meas-
ures, dubbed Mann–Whitney-P (MWP), Kolmogorov–Smirnov-P (KSP) and Chi-
Squared-P (CSP), which base on the corresponding statistical test. We show that
using them in combination allows dealing with heterogeneous data. We describe
their implementation and compare them in our experiments.

We introduce index structures for MWP, KSP, and CSP, to speed up contrast
estimation. Our indexes support insertion/deletion operations for efficient estimation
in streaming settings, e.g., over a sliding window.

We feature a use case against real-world data from BioliqⓇ , a pyrolitic power
plant [33], and show how one can leverage MCDE to discover interesting and useful

418	 Distributed and Parallel Databases (2021) 39:415–444

1 3

patterns. We release our source code and experiments on GitHub,1 with documenta-
tion to ensure reproducibility.

This work extends our previous study [14]. A first novelty is that we propose
instantiations based on further statistical tests, i.e., KSP and CSP. Next, we explic-
itly address the H-DS setting: The streaming index operations and our real-world
use case are new in this article.

Outline Section 3 reviews the related work. Section 4 describes MCDE and its
instantiations as MWP, KSP and CSP and introduces our index operations for the
streaming setting. Section 5 evaluates our approach and presents our use case. Sec-
tion 6 concludes. We refer the reader to [14] for formal proofs and comparison with
other methods.

3 � Related work

Estimating correlation has been of interest for more than a century. Many bivariate
measures exist, e.g., [35, 38]. Some of them also target at quantifying the associa-
tion between two vectors which are possibly multivariate [2, 17, 25, 39]. However,
they can only quantify the dependency between two entities—not between several
ones (F1). They also may have other drawbacks. The Pearson correlation coeffi-
cient, for instance, is parametric (F4), targets at linear dependencies (F2) and is only
applicable to numerical data (C5).

There are attempts to extend bivariate dependency measures to the multivariate
case. Schmid and Schmidt [36] propose an extension of Spearman’s � to multivari-
ate data, but it is limited to monotonous relationships (F2). Several authors also pro-
pose multivariate extensions of Mutual Information [40]. For example, Interaction
Information [27] quantifies the ‘synergy’ or ‘redundancy’ in a set of variables. Simi-
larly, Total Correlation [44] quantifies the total amount of information. However,
information-theoretic measures are difficult to estimate, as they require knowledge
about the underlying probability distributions. Density estimation methods, either
based on kernels, histograms or local densities, all require to set unintuitive param-
eters (F3) and may be computationally expensive (C1). Next, with many attributes,
density estimation becomes meaningless due to the curse of dimensionality [3].
Information-theoretic measures also are difficult to interpret (F5), since they usually
correspond to a number of bits or nats, which is theoretically unbounded.

More recently, Cumulative Mutual Information [31], Multivariate Maximal Cor-
relation [30], and Universal Dependency Score [28] were proposed as multivariate
dependency measures. They are remotely related to concepts from information the-
ory, as they rely on the so-called Cumulative Entropy [7]. However, these measures
are computationally expensive (C1) and unintuitive (F3). They also are difficult to
interpret, because their theoretical maximum and minimum vary with the number of
attributes (F5).

1  https​://githu​b.com/edoua​rdfou​che/MCDE-EXTEN​DED.

https://github.com/edouardfouche/MCDE-EXTENDED

419

1 3

Distributed and Parallel Databases (2021) 39:415–444	

Another approach, High Contrast Subspaces (HiCS) [21], is somewhat similar to
ours. It uses subspace slicing as a heuristic to quantify the potential of subspaces to
contain outliers. Nevertheless, HiCS only addresses static numerical data, and is not
suitable as a dependency estimator.

The current state of the art to handle heterogeneity (C5) is to rely on discretisa-
tion, using methods such as the one proposed in [12]. Then one can compute an
information-theoretic measure, as in [29]. However, any discretisation inevitably
results in an information loss and may not work as dimensionality increases.

A new line of work focuses on estimating Mutual Information on numerical data
streams. MISE [22] is a data summarisation technique to estimate Mutual Informa-
tion over arbitrary time windows. Vollmer et al. [42] provide dynamic data struc-
tures to maintain Mutual Information over a sliding window. Vollmer and Böhm [41]
extend this method to propose an anytime estimator for Mutual Information. How-
ever, the resulting estimates inherit the qualities and caveats of Mutual Information.

4 � The MCDE framework

Dependency estimation determines to which extent a relationship differs from ran-
domness. In this spirit, MCDE quantifies dependence, i.e., an extent of independ-
ence violation, based on marginal and conditional distributions.

4.1 � Preliminaries

An H-DS is a set of attributes/dimensions/variables D = {s1,… , sd} and an open list
of observations B = (�1, �2,…) , where �i = ⟨xij⟩j∈{1,…,d} is a vector of values with d
attributes, and we see an attribute sj = (x1j, x2j,…) as an open list of values. Since
the stream is virtually infinite, we use the sliding window model: At any time t > 1 ,
we only keep the latest w observations, Wt =

(
�t−w,… , �t

)
 . We assume, without loss

of generality, that observations arrive at equidistant time steps. Note that one could
easily adapt our methods to other summarisation techniques, such as the landmark
window or reservoir sampling [16].

We call a subspace S a projection of the current window W on d′ attributes, with
S ⊆ D and d′ ≤ d . To formalise our framework, we treat an attribute si ∈ D as a
random variable Xsi

 . We also make the distinction between numerical, ordinal and
categorical attributes:

–	 We say that si is of numerical type ( si ∈ Num ) if one can see Xsi
 as a continuous

variable on a given interval.
–	 We say that si is of ordinal type ( si ∈ Ord ) if one can see Xsi

 as a discrete vari-
able, i.e., it can take a finite number of ordered values.

–	 We say that si is of categorical type ( si ∈ Cat ) if one can see Xsi
 as a categorical

variable, with a fixed number of nominal categories.

420	 Distributed and Parallel Databases (2021) 39:415–444

1 3

Naturally, knowing whether a given attribute is of numerical, ordinal or categorical
type requires domain knowledge. Typically, ordinal attributes have many tying val-
ues, while values from a numerical attribute are unique, given enough precision. On
the other hand, values from categorical attributes might not be numeric and do not
have any meaningfully ordering.

p(X) is the joint probability distribution function (pdf) of a random vector
X =

⟨
Xsi

⟩
si∈S

 , and p̂(X) denotes the empirical estimation of this distribution. We
use psi(X) and p̂si(X) for the marginal pdf and its estimation for each variable si . P(S)
is the power set of S, i.e., the set of all attribute subsets. For any subset S� ∈ P(S) , its
random vector is XS� =

⟨
Xsi

⟩
si∈S

�
 , and its complement random vector is

XS� = XS⧵S� =
⟨
Xsi

⟩
si∈S⧵S

�
 . In our algorithms, ‘ ⊕ ’ and ‘ ∧ ’ stand for concatenation

and element-wise logical conjunction.

4.2 � Theory behind MCDE

4.2.1 � Quantifying dependency via contrast

A set of variables is independent or uncorrelated if and only if all variables are pair-
wise mutually independent. By treating the attributes of a subspace as random vari-
ables, we can define the independence assumption of a subspace:

Definition 1  (Independence Assumption) The independence assumption A of a sub-
space S holds if and only if the random variables {Xsi

∶ si ∈ S} are mutually inde-
pendent, i.e.:

Under the independence assumption, the joint distribution of subspace S is
expected to be equal to the product of its marginal distributions. We can define a
degree of dependency based on the degree to which A does not hold:

Definition 2  (Degree of Dependency) The degree of dependency D of a subspace
S is the discrepancy, abbreviated as ‘disc’, between the observed joint distribution
po(X) and the expected joint distribution pe(X):

The discrepancy is a random variable. While one can estimate it between two
probability distributions, for instance, using the Kullback-Leibler divergence, this is
not trivial here because po(X) and pe(X) are a priori unknown. We work around this
as follows:

Lemma 1  The independence assumption A of subspace S states that the joint distri-
bution for all S′ ⊂ S is equal to its conditional distribution on S ⧵ S′:

(1)A(S) ⇔ p(X) =
∏
si∈S

psi(X)

(2)D(S) ≡ disc(po(X), pe(X))

421

1 3

Distributed and Parallel Databases (2021) 39:415–444	

See [14] for proofs of this and the following lemmas.

Lemma 1 provides an alternative definition of A . However, it still has issues:
First, multivariate density estimation is required to estimate p(XS�) and p(XS� |XS�)
with |S′| ≥ 1 . Second, even if one could estimate p(XS�) and p(XS� |XS�) , estimating
the densities for all S� ∈ P(S) is intractable. We instead relax the problem by consid-
ering only subspaces with |S�| = 1 , i.e., we only look at the marginal distribution of
single variables.

Definition 3  (Relaxed Independence Assumption) The relaxed independence
assumption A∗ of a subspace S states that the marginal distribution psi(X) of each
variable si ∈ S equals psi(X|Xsi

) , i.e., the conditional distribution of si:

Lemma 2  (Independence Assumption Relaxation) A(S) ⇒ A
∗(S) , i.e., we can relax

A into A∗ for any subspace S.

Loosely speaking, the relaxed independence assumption holds if and only if the
values of all variables but si do not reveal any information on si.

Next, A(S) ⇒ A
∗(S) , then ¬A∗(S) ⇒ ¬A(S) , i.e., showing that A∗ does not hold

is sufficient but not necessary to show that A does not hold. Thus, we can define a
relaxed degree of dependency D∗ of a subspace S, namely the discrepancy disc of
the observed marginal distribution po

si
(X) and the expected one pe

si
(X) . Under the

relaxed independence assumption A∗ , we have pe
si
(X) = po

si
(X|Xsi

) . We define D∗ as
the expected value �[.] of this discrepancy:

Definition 4  (Relaxed Degree of Dependency)

This definition includes a whole class of dependency estimators, e.g., [21], which
aim at quantifying the so-called contrast of a subspace. D∗—or contrast—is a vari-
ant of D which is much easier to estimate: First, it relies on the comparison of mar-
ginal against conditional distributions, i.e., multivariate density estimation is not
required. Second, the number of degrees of freedom of A∗(S) increases linearly with
|S|, but exponentially for A(S) . Thus, estimating D∗ instead of D is in line with the
strict efficiency requirements of data streams.

By definition, D∗ does not take the dependency between multivariate subsets into
account, but only of each variable versus all others. However, we argue that this
relaxation is not problematic, and it even supports interpretability. In real-world sce-
narios, the detection of dependency is only interesting as long as we can observe

(3)A(S) ⇔ p(XS� |XS�) = p(XS�) ∀S� ∈ P(S)

A
∗(S) ⇔ psi(X|Xsi

) = psi(X) ∀si ∈ S

(4)D
∗(S) ≡ �

si∈S

[
disc

(
po
si
(X), po

si
(X|Xsi

)
)]

422	 Distributed and Parallel Databases (2021) 39:415–444

1 3

effects w.r.t. the marginal and conditional distributions: one is typically looking for
interpretable influences of particular variables on the system and vice versa [19].

4.2.2 � Estimating conditional distributions

The difficulty when estimating D∗ is estimating the conditional distributions,
because the underlying data distributions are unknown. As proposed in [21], one can
simulate conditional distributions by applying a set of conditions to S, in a process
called subspace slicing. We handle heterogeneity by differentiating between numeri-
cal, ordinal and categorical attributes:

Definition 5  (Subspace Slice) A slice ci in a subspace S w.r.t. attribute si is a list of
|S| − 1 conditions Cj which restricts the values of each sj ∈ S ⧵ si:

where
[
lj, uj

]
 is a continuous interval,

[
lj … uj

]
 is a discrete interval, and

{
vj ∶ vj ∈ sj

}

is a set of values of sj . w′ < w is the number of observations per condition. We call si
the reference attribute, the only attribute without a condition. We write that �k ∈ ci
if �k fulfils all the conditions in ci . We define ci as the complementary slice, i.e., it
contains all observations which are not in ci . psi|ci (X) and psi|ci(X) denote the condi-
tional distribution of the observations in the slice ci and its complement ci respec-
tively. Pc(S) is the set of all possible slices in subspace S.

We choose each condition in a slice randomly, but so that they contain w′ obser-
vations. Note that ordinal and categorical attributes (e.g., gender) may have many
tying values. In such a case, a random condition might not precisely have w′ ele-
ments. Our solution is to take a random condition containing at least w′ observations
and remove elements from the condition until only w′ observations remain.

We set w� =
�
w �S�−1√�

�
 with � ∈ (0, 1) , so that, under the independence assump-

tion, the expected share of observations in the slice equals � . As a result, subspace
slicing happens in a dimensionality-aware fashion. When � is a constant, the
expected number of observations per slice does not change between subspaces with
different dimensionalities. Thus, subspace slicing is a dynamic grid-based method
based on the dimensionality of the subspace.

Under the A∗-assumption, the conditional distribution psi|ci is equal to the mar-
ginal distribution psi , for any attribute si and slice ci . For brevity, we omit ‘(X)’ in
psi(X) and psi|cj (X) in the following.

ci =
�
C1,… ,Ci−1,Ci+1,… ,C�S�

�
, where

Cj =

⎧⎪⎨⎪⎩

�
lj, uj

�
s.t.

���
�
�k ∶ xkj ∈

�
lj, uj

����� = w� if sj ∈ Num�
lj … uj

�
s.t.

���
�
�k ∶ xkj ∈

�
lj … uj

����� = w� if sj ∈ Ord�
vj ∶ vj ∈ sj

�
s.t.

���
�
�k ∶ xkj ∈

�
vj ∶ vj ∈ sj

����� = w� if sj ∈ Cat

∀j ∈ {1,… , �S�} ⧵ i

423

1 3

Distributed and Parallel Databases (2021) 39:415–444	

Lemma 3  (A∗ and Conditional Distributions)

4.2.3 � Discrepancy estimation

In reality, one only has a limited number of observations, i.e., one only has access to
empirical distributions. A solution is to use a statistical test T :

However, the number of observations is finite, and the observations that we use to
estimate p̂si|ci are part of the ones used to estimate p̂si so far. This is problematic, as
statistical tests assume the samples to be distinct. Plus, when � ≈ 1 , p̂si|ci converges
to p̂si , i.e., the two populations are nearly the same. Conversely, � ≈ 0 yields spu-
rious effects, since the sample from p̂si|ci then is small. We solve the problem by
observing that psi|ci and psi|ci , the conditional distribution from the complimentary
slice ci , are equal under A∗.

Theorem 1  (A∗ and Complementary Conditions)

Hence, one can evaluate A∗ by looking at the discrepancies between the condi-
tional distribution and its complementary conditional distribution. When doing so,
the samples obtained from both distributions are distinct.

Our dynamic slicing scheme is defined based on a parameter � , the expected
share of observations in the slice ci . Thus, the expected share of observations � in ci
equals 1 − � . As a result, we set � = 0.5 so that � = � . This choice is judicious for
statistical testing, as having samples of equal size leads to higher statistical stability,
and we get rid of parameter �.

We illustrate slicing in heterogeneous subspaces in Fig. 1, with an exemplary
numerical and categorical subspace in the left half and a heterogeneous subspace
in the right half. The black lines show a random slice. The points in dark blue are
in ci , and the points in light orange are in ci . Figure 1a represents a numerical lin-
ear dependency. We can see from the histograms that, after slicing, the distribution
of the points in each sample are very different. Figure 1b depicts the absolute fre-
quencies of observing various symptoms {U…Z} in different groups of patients
{A…F} . Since there is no ordering within symptoms and patient groups, slicing
consists of selecting categories at random, here {B,C,E} . By comparing the abso-
lute frequencies after slicing, we can determine whether there is a statistical asso-
ciation between groups and symptoms. Naturally, the statistical test that we use to
estimate the discrepancy between psi|ci and psi|ci might differ depending on the type
of the reference attribute, as we will discuss later.

(5)A
∗(S) ⇔ psi|ci = psi ∀si ∈ S, ∀ci ∈ P

c(S)

(6)disc
(
p̂si , p̂si|ci

)
≡ T

(
p̂si , p̂si|ci

)

(7)A
∗(S) ⇔ psi|ci = psi|ci ∀si ∈ S, ∀ci ∈ P

c(S)

424	 Distributed and Parallel Databases (2021) 39:415–444

1 3

Different attribute types can also be part of the same subspace, as we show in
Fig. 1c and d. We graph the height from a sample of individuals of two sexes. When
we slice on the x-axis, the slice is a numerical interval. On the y-axis, in turn, the
slice is a category drawn at random.

Intuitively, ordinal attributes share features from both numerical and categorical
attributes: There exists an ordering between values, but typically also a large number
of tied values. In this case, we recommend to use a similar slicing methodology as
for numerical attributes, by selecting a discrete interval (see Definition 5), and a sta-
tistical test that is robust to tying values.

4.2.4 � Properties of contrast

A statistical test T
(
B1,B2

)
 between two samples B1 and B2 typically yields a p-value,

which one uses to determine the statistical significance of a hypothesis. Conversely,
p = 1 − p is known as the confidence level. The rationale behind estimating the
degree of dependency D∗ is to yield values quantifying the independence violation.
We define contrast, abbreviated as C , as the expected value of the confidence level of
a statistical test T between the samples from the conditional distributions for all the
possible attributes si and slices ci:

Definition 6  (Contrast C)

where T yields p-values, and B(ci),B(ci) are the samples resulting from slicing. We
draw the conditions in ci randomly and independently, w.r.t. any reference attribute si
in subspace S. By definition, T ∼ U[0, 1] when the two samples are independent, and
T ≈ 1 as the evidence against independence increases. The properties of C follow:

1.	 C converges to 1 as the dependency in S increases.
2.	 C converges to 0.5 when S is independent, since T ∼ U[0, 1].
3.	 C is bounded between 0 and 1.

(8)C(S) ≡ �
ci∈P

c(S)

[
T
(
B(ci),B(ci)

)]

0 1
0

1

(a) Numerical

A B C D E F

U

V

W

X

Y

Z

14 36 30 29 29 29

40 25 23 32 26 21

25 26 28 26 25 37

27 22 29 27 34 28

30 25 25 25 32 29

31 33 32 28 20 22

95U
72U

74V
93V

79W
88W

85X
82X

82Y
84Y

85Z
81Z

(b) Categorical

1.4m 1.6m 1.8m

W

M

211W
289W

288M
212M

(c) Heterogeneous i.

1.4m 1.6m 1.8m

W

M

(d) Heterogeneous ii.

Fig. 1   Slicing in numerical, categorical, and heterogeneous subspaces, with d = 2

425

1 3

Distributed and Parallel Databases (2021) 39:415–444	

4.2.5 � Monte Carlo approximation

It is impossible to compute C exactly; one would need to know the distribution of
B(ci) and B(ci) for every slice. Instead, we approximate C via Monte Carlo (MC)
simulations, with M iterations. In each iteration, we choose the reference attribute si
and slice ci at random. We define the approximated contrast Ĉ:

Definition 7  (Approximated contrast Ĉ )

where ci
m
∼ P

c(S) means that we draw ci randomly from Pc(S) in iteration m.

Interestingly, we can bound the quality of the approximation. From Hoeffding’s
inequality [20], we derive a bound on Ĉ w.r.t. C , which decreases exponentially with
increasing M:

Theorem 2  (Hoeffding’s Bound of Ĉ)

where M is the number of MC iterations, and 0 < 𝜀 < 1 − C.

This bound is very useful. For instance, when M = 200 , the probability of Ĉ to
deviate more than 0.1 from its expected value is less than 2e−4 ≈ 0.04 , and this bound
decreases exponentially with M. Thus, one can adjust the computational requirements
of Ĉ given the available resources, the desired quality level, or the rate of arrival of
new observations in a stream. In other words, users can set M intuitively, as it leads to
an expected quality level and vice versa. Observe that M is our only parameter.

4.2.6 � Instantiating MCDE

Finally, one must instantiate a suitable statistical test as T  . Ideally, this test is non-
parametric (F4) and suitable for the type of the reference attribute (numerical,
ordinal, categorical). To facilitate meaningful experiments, we investigate instan-
tiations of MCDE based on three well-known non-parametric tests: the Kolmogo-
rov–Smirnov, the Mann–Whitney U and the Chi-Squared test. We call the respective
instantiations KSP, MWP and CSP.

The Kolmogorov–Smirnov test assumes the data to be continuous, i.e., it should
be adequate for numerical attributes. The Mann–Whitney U test explicitly handles
tying values. Thus it might work well with ordinal attributes. Lastly, the Chi-Squared
test bases on frequencies from a finite number of categories, i.e., we hypothesise it
to be suitable for categorical attributes.

(9)Ĉ(S) =
1

M

M∑
m=1

[
T
(
B
(
ci
)
,B

(
ci
))

∶ ci
m
∼ P

c(S)
]

(10)Pr
(|||Ĉ − C

||| ≥ �
)
≤ 2e−2M�2

426	 Distributed and Parallel Databases (2021) 39:415–444

1 3

Algorithm 1 MCDE (S = {s1 d,...,s })
1: I ← ConstructIndex(S) ; result ← 0
2: for m ← 1 to M do
3: r ← random integer in [1, d]
4: slice ← Slice(I, r)
5: result ← result + Test(I, slice, r)
6: return (result/M)∈ (0, 1)

Algorithm 1 summarises the general idea behind MCDE for any arbitrary sub-
space S = {s1,… , sd} of dimensionality |S| = d . In practice, we can significantly
improve the efficiency of slicing operations, which require the values of each attrib-
ute to be ordered, with an index structure (Line 1). Afterwards, for M iterations, we
slice the data (Line 4) and carry out the statistical test (Line 5). The final estimate
is the average of the test outcomes over M iterations. In what follows, we present the
specifics of constructindex, slice and test for each instantiation of MCDE.

4.3 � Instantiation as Mann–Whitney‑P (MWP)

We first consider the instantiation of T as a two-sided Mann–Whitney U test [26].
An advantage of this test is that it does not assume the data to be continuous, as it
operates on ranks. So it is robust and applicable to virtually any kind of numeric or
ordinal measurements.

4.3.1 � Marginal restriction

In a nutshell, the Mann–Whitney U test compares the difference between the median
of the two samples. However, it is known that the ability of this test to detect depend-
ency—the so-called ‘statistical power’—declines in the case of unequal variance of
the two samples [11, 47]. To alleviate this issue, we include an additional step into
the slicing process. It restricts the domain of the reference attribute si to a share � of
observations. Formally, we define the marginal restriction as follows:

Definition 8  (Marginal Restriction) A marginal restriction is a condition on
the reference attribute si , i.e., an interval ri ∶ [li, ui] or ri ∶ [li … ui] , so that
�{�j ∶ xji ∈ ri}� = ⌈� ⋅ w⌉ = ⌈w�⌉ and the subspace slice becomes ci ∪ ri.

We illustrate in Fig. 2 the impact of the marginal restriction. We show in the left
half a circular dependency and in the other half a linear dependency. Two grey lines
show a marginal restriction (in Fig. 2b, d), and two vertical dashed lines stand for
the median of each sample. After slicing, both samples have highly unequal vari-
ance (see Fig. 2a, c). However, in Fig. 2a, the median of both distributions are
nearly equal. Thus, this dependency remains undetected. The marginal restriction
solves this problem, as we see in Fig. 2b. However, there is almost no difference
between Fig. 2c and d. Intuitively, the marginal restriction ‘breaks the symmetry’

427

1 3

Distributed and Parallel Databases (2021) 39:415–444	

between both distributions. Because of that, the MWP estimator with marginal
restriction has higher statistical power against certain dependency types.

4.3.2 � Implementation details

Algorithm 2 is the pseudo-code for the index construction. The index I is a one-
dimensional structure containing the adjusted ranks and tying value corrections
for each attribute. It consists of |S| = d elements {I1,… , Id} , where Ii is an array of
4-tuples [(l1i, x̃1i, a1i, b1i),… , (lwi, x̃wi, awi, bwi)] ordered by si in ascending order. In
this index, li are the row numbers, x̃i are the sorted values of si , ai are the adjusted
ranks and bi the accumulated correction terms. Ii[j] stands for the j-th tuple of Ii , and
lji , x̃ji , aji , bji are its components.

Algorithm 2 MWP-ConstructIndex
1: for i = 1 to d do
2: ri ← [0, . . . , w − 1]
3: (li, x̃i) ← sort (ri, xi) by si in ascending order, break ties randomly
4: Ii ← [(l1i, x̃1i, r1i), . . . , (lwi, x̃wi, rwi)]
5: j ← 1 ; correction ← 0
6: while j ≤ w do
7: k ← j ; t ← 1 ; adjust ← 0
8: while (k < w − 1) ∧ (si[lki] = si[lk+1,i]) do
9: adjust ← adjust + rki
10: increment k and t
11: if k > j then
12: adjusted ← (adjust + rki)/t
13: correction ← correction + t3 − t
14: for m ← j to k do Ii[m] ← (lmi, x̃mi, adjusted , correction)
15: else Ii[j] ← (lji, x̃ji, rji, correction)
16: j ← j + t
17: return I : {I1, . . . , Id} with Ii : (li, x̃i, ai, bi)

(S = {s1 d,...,s })

Algorithm 3 shows the slicing process. We successively mask the row num-
bers based on a random condition for all but one reference attribute sr . Additionally,
we ensure that the condition boundaries do not split any tying values and that each

(a) without MR (b) with MR (c) without MR (d) with MR

Fig. 2   Marginal restriction (MR) w.r.t. a circular and linear dependency ( d = 2)

428	 Distributed and Parallel Databases (2021) 39:415–444

1 3

condition has w′ observations. The algorithm returns a slice , i.e., a list of w Boolean
values, so we write slice ∈ ℤ

w
2
.

Algorithm 3 MWP-Slice(I : {I1, . . . ,Id}, r ∈ {1, . . . , d})
1: w′ ←

⌈
w · d−1√α

⌉

2: for Ii ∈ I \ Ir do
3: slicei ← Array of w Boolean values initialised to false
4: start ← random integer in [1, w − w′]
5: end ← start + w′

6: while rstart,i = rstart−1,i do start = start − 1
7: while rend,i = rend+1,i do end = end + 1
8: for j ← start to end do slice[lji] ← true
9: if end − start > w′ then
10: nb ← end − start − w′

11: exclude ← draw nb sample from [start , end] without replacement
12: for el ∈ exclude do slice[el] ← false
13: slicer ← Array of w Boolean values initialised to true
14: slice ← slice1 ∧ · · · ∧ sliced
15: return slice ∈ Zw

2

Algorithm 4 MWP-Test(I : {I1, . . . ,Id}, slice ∈ Zw
2 , r ∈ {1, . . . , d})

1: start ← random integer in [1, w · (1 − α)]
2: end ← start + �w · α�
3: R1 ← 0 ; n1 ← 0
4: for j ← start to end do
5: if slice[ljr] = true then
6: R1 ← R1 + ajr
7: n1 ← n1 + 1
8: w′ ← end − start
9: if n1 = 0 or n1 = w′ return 1

10: U1 ← R1 − start · n1
11: n2 ← w′ − n1
12: µ ← (n1 · n2)/2
13: correction ← (bend−1,r − bstart−1,r)/(w′ · (w′ − 1))
14: σ ←

√
((n1 · n2)/12) · (w′ + 1 − correction)

15: return Φ1/2(|U1 − µ|/σ) ∈ (0, 1)

Algorithm 4 implements the statistical test based on our index. We determine a
restriction [start, end] on sr and sum the adjusted ranks of the observations in the
slice. Since the ranks in this subset may not start from 0, we adjust the sum of the
ranks R1 (Line 10). Then we compute a correction term (Line 13) using the cumula-
tive correction br to adjust � for ties (Line 14). Φ1∕2 is the cumulative distribution
function of the half-Gaussian distribution.

429

1 3

Distributed and Parallel Databases (2021) 39:415–444	

4.4 � Instantiation as Kolmogorov–Smirnov‑P (KSP)

We now describe another instantiation of MCDE, which uses the two-sample Kol-
mogorov–Smirnov (KS) test as a statistical test for T  . The (two-sample) KS test is
non-parametric and tests the equality of two continuous one-dimensional probability
distributions. It is adequate in case the reference attribute is numerical. However,
the KS test has less power in the presence of ties [24]. So it may not work well with
ordinal attributes.

In a nutshell, the two-sample Kolmogorov–Smirnov statistic D is the supremum
of the absolute differences of the empirical cumulative distribution functions F1(x)
and F2(x) of Samples 1 and 2 with n1 and n2 elements:

HiCS [21] employed this test statistic to quantify the contrast of a subspace. How-
ever, to comply with the MCDE framework, one must first derive the corresponding
p-value. The p-values are not trivial to obtain, because the distribution of D does
not have any known closed form, and the time required for an exact computation
increases with n1 and n2 in particular.

We approximate the p-values using the asymptotic Kolmogorov–Smirnov distri-
bution proposed in [10]:

Empirically, we found that summing up the first 1000 terms of the expansion pro-
vides enough accuracy for our application, without much impact on the execution
time. Using this approximation is common practice within most modern statistical
software, such as R [34].

Algorithm 5 is the pseudo-code for the index construction. The difference to MWP
is that we do not need to adjust ranks or precompute tie correction, because the Kol-
mogorov–Smirnov test assumes no tying values. The resulting data structure contains
the indexes li and the values xi of each attribute si , ordered by si in ascending order.

Algorithm 5 KSP-ConstructIndex
1: for i = 1 to d do
2: ri ← [0, . . . , w − 1]
3: (li, x̃i) ← sort (ri, xi) by si in ascending order, break ties randomly
4: Ii ← [(l1i, x̃1i), . . . , (lwi, x̃wi)]
5: return I : {I1, . . . , Id} with Ii : (li, x̃i)

(S = {s1 d,...,s })

Similarly, Algorithm 6 is responsible for slicing but does not require any further step
to handle ties. Algorithms 2 and 5, as well as Algorithms 3 and 6 behave in the same
way whenever the data does not have ties.

(11)D = sup
x

||F1(x) − F2(x)
||

(12)Pr

(
D

√
n1 ⋅ n2

n1 + n2
≤ x

)
= 1 − 2

∞∑
i=1

(−1)i−1e−2i
2x2

430	 Distributed and Parallel Databases (2021) 39:415–444

1 3

Algorithm 6 KSP-Slice(I : {I1, . . . ,Id}, r ∈ {1, . . . , d})
1: w′ ←

⌈
w · d−1√α

⌉

2: for Ii ∈ I \ Ir do
3: slicei ← Array of w Boolean values initialised to false
4: start ← random integer in [1, w − w′]
5: end ← start + w′

6: for j ← start to end do slice[lji] ← true
7: slicer ← Array of w Boolean values initialised to true
8: slice ← slice1 ∧ · · · ∧ sliced
9: return slice ∈ Zw

2

Algorithm 7 implements the KS test. We compute the statistic D, i.e., the maximal

difference of the two empirical cumulative distribution functions in Lines 7–10. Then
we approximate the p-value with Eq. 12 in Line 12.

Algorithm 7 KSP-Test(I : {I1, . . . ,Id}, slice ∈ Zw
2 , r ∈ {1, . . . , d})

1: n1 ← |{i : i ∈ [1 . . . w] ∧ slice[lir] = true}|
2: n2 ← w − n1
3: if n1 = 0 or n2 = 0 return 1
4: u ← 1/n1 ; v ← 1/n2
5: ζ1 ← 0 ; ζ2 ← 0
6: D ← 0;φ ← 0
7: for i ← 1 to w do
8: if slice[lir] = true then ζ1 ← ζ1 + u
9: else ζ2 ← ζ2 + v

10: D ← max{D, |ζ2 − ζ1|}
11: z ← D

√
n1n2/(n1 + n2)

12: for i ← 1 to 1000 do φ ← φ + (−1)i−1e−2i2z2

13: return 1 − 2φ ∈ ,(0 1))(

4.5 � Instantiation as Chi‑Squared‑P (CSP)

The Chi-Squared test, also known as Pearson’s Chi-Squared test, perhaps is the most
famous non-parametric statistical test. In short, it determines whether there is a signifi-
cant difference between the expected frequencies and the observed frequencies of a set
of categories.

For a reference variable si ∈ Cat with categories A = {a1,… , a|A|} , we sketch the
contingency table w.r.t. the two samples B(ci) and B(ci) in Table 1, where oi

j
 is the abso-

lute frequency of Category aj in Sample i, and we have:

(13)
|A|∑
i=1

o
j

i
= oj j ∈ {1, 2}

431

1 3

Distributed and Parallel Databases (2021) 39:415–444	

Then we can compute the test statistic Q as follows:

where ej
i
= oi ⋅ o

j∕w is the expected absolute frequency.
Under independence, Q follows the �2 distribution with cumulative distribu-

tion function �2
k
∶ ℝ

+
↦ [0, 1] , where k = |A| − 1 is the number of degrees of

freedom. Thus, �2
k
(Q) leads to the p-value that we use for CSP.

Similarly to the other instantiations, we improve the execution time by con-
structing an index. It contains the position of each occurrence of a categorical
value binned into its respective category. Algorithm 8 is our pseudo-code for its
construction. We can construct the index in linear time with a single pass over
each attribute, as it does not require any sorting.

Algorithm 8 CSP-ConstructIndex
1: for i = 1 to d do
2: Define Ii as a mapping of categories to

{
positions ⊂ {0, . . . , w − 1}, counts ∈ N+

}

3: for xji ∈ si do
4: if Ii[xji] �= ∅ do Ii[xji] ← {Ii[xji].positions ⊕ x, Ii[xji].counts + 1}
5: else Ii[xji] ← {j, 1}
6: return I : {I1, . . . , Id} where Ii : el ∈ si �→ N+

(S = {s1 d,...,s })

Algorithm 9 is our slicing procedure for CSP. The main difference to MWP
and KSP is that the values of the index do not have any meaningful ordering.
Thus, slicing consists of selecting a random set of categories per attribute. The
algorithm ensures that exactly w′ observations are part of each condition.

(14)
2∑
j=1

o
j

i
= oi i ∈ {1,… , |A|}

(15)Q =

|A|∑
i=1

2∑
j=1

(
o
j

i
− e

j

i

)2

e
j

i

Table 1   Exemplary contingency
table between two samples

a
1

a
2

... a|A| Total

Sample 1: B(ci) o1
1

o1
2

... o1|A| o1

Sample 2: B(ci) o2
1

o2
2

... o2|A| o2

Total o
1

o
2

... o|A| w

432	 Distributed and Parallel Databases (2021) 39:415–444

1 3

Algorithm 9 CSP-Slice(I : {I1, . . . ,Id}, r ∈ {1, . . . , d})
1: w′ ←

⌈
w · d−1√α

⌉

2: for Ii ∈ I \ Ir do
3: slicei ← Array of w Boolean values initialised to false
4: slicesize ← 0 ; positions ← ∅
5: categories ← Ii.keys
6: while slicesize < w′ do
7: category ← draw a random category from categories
8: categories ← categories \ category
9: slicesize ← slicesize + Ii[category].counts
10: positions ← positions ⊕ Ii[category].positions
11: if slicesize > w′ then
12: Delete slicesize − w′ random elements from positions
13: for pos ∈ positions do
14: slicei[pos] ← true
15: slicer ← Array of w Boolean values initialised to true
16: slice ← slice1 ∧ · · · ∧ sliced
17: return slice ∈ Zw

2

Finally, Algorithm 10 shows how to compute the Chi-Squared statistic, based
on the information from the index and a subspace slice.

Algorithm 10 CSP-Test(I : {I1, . . . ,Id}, slice ∈ Zw
2 , r ∈ {1, . . . , d})

1: Q = 0 ; k = 0
2: o1 = |{pos ∈ [0 . . . w − 1] : slice[pos] = true}|
3: o2 = w − o1
4: for {positions, counts} ∈ Ir do
5: o1x = |{pos ∈ positions : slice[pos] = true}|
6: o2x = counts − o1x
7: ox = o1x + o2x
8: e1x = ox · o1/w
9: e2x = ox · o2/w

10: k = k + 1
11: Q = Q + (o1x − e1x)2/e1x + (o2x − e2x)2/e2x
12: return χ2

k−1(Q) ∈ (0, 1)

4.6 � MCDE in heterogeneous data streams (H‑DS)

4.6.1 � Heterogeneity

For simplicity, we have described KSP, MWP and CSP, assuming a homogeneous
data set, being numerical, ordinal and categorical respectively.

Each of our algorithms treats the attributes of a subspace independently. So we
can easily extend Algorithm 1 to the heterogeneous setting, as we show in Algo-
rithm 11. We construct the index of each attribute depending on its type (Lines 1–3)
and use the corresponding slicing methodology (Lines 7–9). The resulting slice is
the element-wise conjunction for each type (Line 10). The type of the reference

433

1 3

Distributed and Parallel Databases (2021) 39:415–444	

attribute determines which test we should use (Lines 11–13). Independently from the
underlying statistical test, the p-values have the properties described in Sect. 4.2.4.
So the final MCDE score is the average of the p-values over each iteration.

Algorithm 11 Heteorogeneous-MCDE
1: IN ← KSP-ConstructIndex({si ∈ S : si ∈ Num})
2: IO ← MWP-ConstructIndex({si ∈ S : si ∈ Ord})
3: IC ← CSP-ConstructIndex({si ∈ S : si ∈ Cat})
4: result ← 0
5: for m ← 1 to M do
6: r ← random integer in [1, d]
7: sliceN ← KSP-Slice(IN , r)
8: sliceO ← MWP-Slice(IO, r)
9: sliceC ← CSP-Slice(IC , r)

10: slice ← sliceN ⊕ sliceO ⊕ sliceC
11: if sr ∈ Num do result ← result + KSP-Test(IN , slice, r)
12: if sr ∈ Ord do result ← result + MWP-Test(IO, slice, r)
13: if sr ∈ Cat do result ← result + CSP-Test(IC , slice, r)
14: return (result/M) ∈ (0,1)

(S = {s1 d,...,s })

4.6.2 � Adaptation to the streaming setting

To deal with streams, we adopt the well-known sliding window model, i.e., we
only consider the w most recent observation. A naive way to support this model
is to recompute the index at the arrival of each new observation. Instead, we pro-
pose efficient insertion and deletion operations for our indexes.

Furthermore, to maintain a dependency estimate over time, we propose to per-
form a number M of MC iterations periodically and report the exponential mov-
ing average:

where � is the so-called decaying factor, and Δ is the step size.
We update the MWP index in Algorithm 12 in two steps: step 1: insert/delete

and step 2: refresh. Our algorithm maintains two data structures: a queue, which
determines for each new point the value of the point to delete in the current win-
dow, in a first-in-first-out fashion, and a variant of our static index which supports
binary search. In the first step, we store the values for each attribute in a queue, in
chronological order. Then we find the positions where to insert the new point and
where to delete the oldest point in the index via binary search. In the second step,
we recompute the adjusted ranks and cumulative correction as in Algorithm 2.

Using a data structure like a binary tree, step 1 only has logarithmic complexity,
while step 2 has linear complexity. Besides this, one must perform step 1 for each
new point, but step 2 only once before slicing. So when re-estimating contrast only
every Δ-th step, we perform step 1 for each point, but step 2 lazily. As a result, we
can update the index in O(d ⋅ log(w)) in step 1 for each new observation and post-
pone step 2, which is in O(d ⋅ w) , to contrast estimation. Updating the KSP index

(16)MCDEt = � ⋅MCDE(Wt−Δ) + (1 − �) ⋅MCDE(Wt)

434	 Distributed and Parallel Databases (2021) 39:415–444

1 3

is somewhat simpler because KSP does not handle tying values. The CSP index is
unsorted and thus step 1 only requires constant time. We summarise the complexity
of each step in Table 2 and refer the interested reader to our source code.2

For efficiency, Algorithm 12 simultaneously inserts and deletes observations.
Note that one could also perform the insert and delete operations via two independ-
ent methods, i.e., effectively handling time-based windows, in which observations
may arrive at arbitrary time steps, or in batches.

Algorithm 12 MWP-Update(I : {I1, . . . , Id},xnew = 〈xnew ,i〉i∈{1,...,d})
1: for i = 1 to d do
2: {Step 1: Insert/Delete}
3: queuei.insert(xnew,i) ; xold,i = queuei.pop()
4: offseti = offseti + 1
5: insert = binarysearch(Ii, xnew,i)
6: delete = binarysearch(Ii, xold,i)
7: if insert < delete for x ← insert to delete do Ii[x + 1] = Ii[x]
8: else for x ← delete to insert do Ii[x] = Ii[x + 1]
9: Ii[insert] = (w + offseti, xnew,i,−1,−1)

10: {Step 2: Refresh}
11: for pos ← 1 to w do Ii[pos] = (lpos,i − offseti, x̃pos,i, pos, 0)
12: offseti ← 0 ; j ← 1 ; correction ← 0
13: while j ≤ w do
14: k ← j ; t ← 1 ; adjust ← 0
15: while (k < w − 1) ∧ (si[lki] = si[lk+1,i]) do
16: adjust ← adjust + aki
17: increment k and t
18: if k > j then
19: adjusted ← (adjust + aki)/t
20: correction ← correction + t3 − t
21: for m ← j to k do Ii[m] ← (lmi, x̃mi, adjusted , correction)
22: else Ii[j] ← (lji, x̃ji, aji, correction)
23: j ← j + t
24: return I : {I1, . . . , Id} with Ii : (li, x̃i, ai, bi)

Table 2   Algorithmic complexity MWP KSP CSP

Index Construction O(d ⋅ w ⋅ log(w)) O(d ⋅ w ⋅ log(w)) O(d ⋅ w)

Slicing O(d ⋅ w) O(d ⋅ w) O(d ⋅ w)

Test O(w) O(w) O(w)
Update (step 1) O(d ⋅ log(w)) O(d ⋅ log(w)) O(1)
Update (step 2) O(d ⋅ w) O(d ⋅ w) O(d ⋅ w)

2  https​://githu​b.com/edoua​rdfou​che/MCDE-EXTEN​DED.

https://github.com/edouardfouche/MCDE-EXTENDED

435

1 3

Distributed and Parallel Databases (2021) 39:415–444	

5 � Experiments

To evaluate our dependency estimators, i.e., MWP, KSP and CSP, we look at the
scores they produce w.r.t. an assortment of dependencies. See Fig. 3; we scale the
dependencies to [0, 1]. For each dependency, we repeatedly draw n objects with d
dimensions, to which we add Gaussian noise with standard deviation � , which we
call noise level. Intuitively, noise-free dependencies should lead to higher scores
than noisier ones.

We also show that MCDE is robust and handles heterogeneity by simulating
numerical, ordinal, and categorical attributes. To simulate ordinal attributes, we
discretise numerical attributes into a number Ω of values from 1 to 20. To simu-
late categorical attributes, we randomly permute the discretised values, to mimic
the absence of an order.

Similarly to other studies [23, 28, 35], we compute the statistical power,
defined as follows:

Definition 9  (Power) The power of an estimator E w.r.t. dependency O with � , n and
d is the probability of the score of E to be larger than a �-th percentile of the scores
w.r.t. the independent subspace I:

Inst
O,�
n×d

 is a random instantiation of a subspace as dependency O with noise
level � , which has n objects and d dimensions. {x}P� stands for the �-th percentile
of the set {x} , i.e., a value v so that �% of the values in {x} are smaller than v.

The attributes of the independent subspace I are i.i.d. in U[0, 1] . Note that,
since the attributes of I are independent, adding noise does not have any effect on

(17)Pr
(
E
(
Inst

O,𝜎
n×d

)
>
{
E
(
Inst

I,0

n×d

)}P𝛾

)

Fig. 3   An assortment of 12 dependencies (displayed here with three dimensions, � = 0 ). C cross, Dl dou-
ble linear, H Hourglass, Hc hypercube, HcG hypercube Graph, Hs hypersphere, L linear, P parabolic, S1
Sine (P=1), S5 Sine (P=5), St Star, Zi Z inversed

436	 Distributed and Parallel Databases (2021) 39:415–444

1 3

dependence, so we set noise to 0 when instantiating I. To estimate the power, we
draw two sets of 500 estimates from O , � and I respectively:

Then we count the elements in ΣE

O,�
 greater than

{
ΣE

I

}P�:

One can interpret ‘power’ as the probability to correctly reject the independence
hypothesis with �% confidence. I.e., the power quantifies how well a dependency
measure can differentiate between the independence I and a given dependency O
with noise level � . For our experiments, we set � = 95 , n = 1000 . We let the noise
� vary linearly from 0 to 1, with 30 distinct levels. We consider dependencies with
dimensionality d from 2 to 20.

In our figures, OΩ denotes each dependency, where O stands for the depend-
ency type (e.g., L stands for ‘Linear’), and Ω is the discretisation level, i.e., the
number of distinct values; O means that the attributes are numerical. d=x indi-
cates the dimensionality, and O∗

Ω
 indicates that the attributes are categorical, with

a number Ω of nominal values.

5.1 � Specifics of attribute types

We first observe how MCDE handles numerical, ordinal, and categorical attributes.
Figure 4 displays the empirical distribution of MWP, KSP and CSP iterations w.r.t. a
2-dimensional independent (I) and a linearly dependent (L) space. We visualise each
distribution as a histogram from 10 000 independent iterations. The vertical dashed
lines show the means of the distributions, and we display a scatter plot illustrating
the respective scenario.

ΣE

O,�
∶
{
E
(
Inst

O,�
n×d

)}500

i=1
ΣE

I
∶
{
E
(
Inst

I,0

n×d

)}500

i=1

power
O,𝜎
n×d,𝛾

(E) =

||||
{
x ∶ x ∈ ΣE

O,𝜎
∧ x >

{
ΣE

I

}P𝛾

}||||
500

Fig. 4   Distribution of the contrast estimation iterations ( d = 2)

437

1 3

Distributed and Parallel Databases (2021) 39:415–444	

According to Fig. 4a, MWP, KSP and CSP values are uniformly distributed in the
case of an independent subspace, with a few exceptions: First, the CSP values are
all close to 0 in the case of numerical attributes. In this setting, each point is unique,
i.e., the Chi-Squared test treats each observation as a distinct category, and thus does
not have power. We do the same observation with L (in Fig. 4b). Second, we see that
the values of MWP and CSP are also 0 with I 1 , which corresponds to the desired
behaviour. Every observation in the subspace is equal, so contrast is undefined. KSP
assumes that values are continuous, and thus does not handle this case.

Also, we can see from Fig. 4b that the KSP values are generally closer to 1 with L
and L 10 , which indicates more power than MWP and CSP. However, we can see that
the CSP distribution does not change between L 10 and L ∗

10
 , while the mean of the

MWP and KSP distribution decreases significantly. Thus, CSP detects dependency
from categorical attributes better than MWP/KSP.

5.2 � Statistical power of MWP, KSP and CSP

We first look at the statistical power of MWP, KSP and CSP with confidence level
� = 0.95 against a linear dependency of increasing dimensionality d, discretisa-
tion level Ω , and noise level � . From Fig. 5, we see that MWP without marginal

Fig. 5   Power against continuous and discrete linear distributions (d from 2 to 20)

438	 Distributed and Parallel Databases (2021) 39:415–444

1 3

restriction does not work well in high-dimensional and highly discretised spaces.
The marginal restriction alleviates this problem to some extent, in particular for
numerical subspaces. In fact, as dimensionality increases, it becomes more and more
likely that the points selected in the slice are ‘in the centre’ of the distribution. The
mean of the points in the slice and outside of the slice become nearly equal, lead-
ing to the low power of the Mann–Whitney U test, and thus a slight performance
decrease of MWP. This calls for further research on the MWP slicing scheme, or
alternatives to the Mann–Whitney U test. Nonetheless, the results indicate that
MWP with marginal restriction works well against numerical attributes.

Next, we see that KSP has high power in every case, although slightly decreasing
with Ω . CSP does not work with numerical spaces but has more power in discrete
spaces. CSP works best with categorical attributes.

We now compare the power of MWP, KSP, and CSP against the assortment of
dependencies from Fig. 3. CSP does not apply to numerical attributes. Thus, for
comparability, we discretise the values with Ω = 10 . We can see from Fig. 6 that
KSP consistently has more power than MWP. CSP generally has less power than
KSP but can detect categorical dependencies.

To summarise, our experiments show that MWP has a slight performance
decrease in high-dimensional discrete spaces. KSP seems to perform better, but its
statistical power decreases with discretisation. Overall, we recommend to use KSP
against both numerical and ordinal data but to use CSP for categorical data. MWP
still is a valid alternative with numerical attributes.

Fig. 6   Power of MWP/KSP/CSP against a dependency assortment (d from 2 to 20)

439

1 3

Distributed and Parallel Databases (2021) 39:415–444	

5.3 � Scalability

We evaluate the scalability of index construction for each approach, by increasing
the size of the sliding window w from 102 to 105 in an independent space I with three
dimensions. The red line (‘Construction’) is the average time for creating the index
with window size w (Algorithms 2/5/8). The other lines show the average time to
insert a new point into the window.

In Fig. 7, we can see that the construction time of each index increases almost
linearly with increasing window size w. The KSP index is less expensive to update
than MWP, regarding step 2 in particular. The first step of the CSP index update
is very efficient, as it requires more or less constant time, cf. Table 2. We can see
that only performing step 1 in our update operations, while delaying step 2 to the
contrast estimation step, reduces the execution time by up to 3 orders of magnitude,
compared to standard index construction. So we can significantly speed up the mon-
itoring of MCDE contrast using the index update operations.

In Fig. 8, we compare the execution time of contrast estimation for MWP, KSP, and
CSP, with increasing window size w. We can see that the three approaches have a com-
parable execution time. KSP is slightly slower for small window sizes because the p
-values are more expensive to obtain than with the other approaches. However, as the
window size increases, KSP and MWP have the same execution time. CSP contrast esti-
mation appears to be slightly slower as the window size increases but does scale as well.

Fig. 7   Time required for index construction and update w.r.t. window size w 

Fig. 8   Time required for contrast estimation w.r.t. window size w 

440	 Distributed and Parallel Databases (2021) 39:415–444

1 3

5.4 � Deployment to the streaming setting

We monitor contrast in a subspace in which the dependency gradually evolves. We
simulate this setting by concatenating 100 three-dimensional linear dependencies
with 1000 observations each and a level of noise � linearly increasing from 0 to 1.
We use the approach described in Sect. 4.6.2, Eq. 16 and instantiate MCDE with
MWP. We estimate the dependency over a sliding window of size w = 1000 and
with a decaying factor � = 0.99.

We let the step size Δ vary from 1 to 1000 and the number of iterations M from
1 to 500. We compare each configuration to a baseline, which is the most expensive
configuration ( Δ = 1 , M = 500 ), without the benefit of our update operations. When
Δ > 1 , we simply set the current contrast estimate to the value from the latest esti-
mation. We define the following measures:

–	 The Absolute Error is the average absolute difference between the values
obtained with the tested configuration and the values from the baseline.

–	 The Relative Time is the ratio of the time required by the tested configuration
over the time required by the baseline.

–	 The Index Speedup is the ratio between the time required by the tested configu-
ration without/with our index update operations.

We can see from Fig. 9 that the absolute error decreases with Δ , while the relative
execution time increases. The speedup obtained by our index operations is mainly
responsible for this gain of efficiency. As we increase the number of iterations M,
the errors tend to decrease, but at the same time, contrast estimation dominates the
overall execution time. In such cases, we see less benefit from our efficient insert/
delete operations.

We identify the configuration M = 50 , Δ = 50 as a sweet spot: For an absolute
error as small as ≈ 0.01 , the computational burden is reduced by up to 100 times,
with a consistent index speedup of 3. We mark this configuration with a star ∗.

5.5 � Pattern discovery

We now apply MCDE to a real-world multivariate time series. We collected the
data during a 4-day production campaign at Bioliq, a pyrolysis plant in the sur-
roundings of Karlsruhe [33]. It contains one measurement per second, i.e., 345 600
observations, from a selection of 20 physical sensors in various components of the
plant. We monitored the evolution of dependency between each sensor pair with
w = 1000,Δ = 50 , M = 50 , as just explained. We obtained the evolution of depend-
ency between the 20 sensors using a single CPU core in about 2 hours. Note that it
would be easy to shorten the computation time significantly by parallel processing.

We have presented the results of our monitoring technique to the plant operators.
They have identified several patterns which they deemed ‘interesting’, i.e., patterns
yielding insights that could help with plant operation.

441

1 3

Distributed and Parallel Databases (2021) 39:415–444	

Figure 10 displays one of these patterns. It is the result of monitoring two sensors,
namely the pressure at the reactor input, and the oxygen concentration at the output.
As we see, the dependency between these two measures changes significantly over
time. Some of the changes, marked in the figure from 1 to 4, appear to represent dif-
ferent stages in the production process. A better understanding of the dynamics of
the physical measures involved in the reaction will help the plant owners to operate
smoothly and efficiently.

5.6 � Discussion

Our experiments show that MCDE fulfils all H-DS requirements and has the desir-
able features of a framework for dependency estimation.

First, we can see that MCDE is efficient (C1), and, thanks to the index update
operations, one can use it in combination with the sliding window model to mine
data streams in a single scan (C2) and adapt (C3) the contrast estimation over time,
taking concept drift into account. Second, one can also reduce or increase the num-
ber of MC iterations M to trade between accuracy and computation time, in an any-
time (C4) fashion. So our method also is intuitive to use (F3) and interpretable (F5).
The different instantiations of MCDE allow dealing with various attribute types
within the same data stream (C5). Last, MCDE is non-parametric (F4) by design.
Our experiments against an assortment of dependencies show that it is multivari-
ate (F1), general-purpose (F2) and robust (F7). MCDE is sensitive (F6) because

Fig. 9   Quality and speed of contrast estimation with concept drift (* ≡ sweet spot)

442	 Distributed and Parallel Databases (2021) 39:415–444

1 3

estimates are the average of statistical p-values. Our previous work [15] has shown
the superiority of MWP over other methods.

6 � Conclusions

In this paper, we have proposed a framework to estimate multivariate dependency
in heterogeneous data streams. It fulfils all requirements one would expect from a
state-of-the-art dependency estimator. MCDE provides high statistical power on a
large panel of dependencies while being very efficient. Furthermore, we introduced
index operations for the streaming setting and illustrated the benefits of our frame-
work against a real-world use case.

Future work could focus on improving our monitoring scheme: While updating
the MCDE score via an exponential moving average appears to be a valid option,
MCDE could benefit from a more flexible update mechanism, using for instance a
sliding window of adaptive size [4]. Finally, we have only considered three instan-
tiations of MCDE; it would be interesting to study the integration of further statisti-
cal tests, e.g., see [13] and [5].

Acknowledgements  We thank Projekt DEAL for providing Open Access funding. We thank the anony-
mous reviewers for their comments; they helped us improve the quality of our manuscript. This work was
supported by the DFG Research Training Group 2153: ‘Energy Status Data—Informatics Methods for
its Collection, Analysis and Exploitation’ and the German Federal Ministry of Education and Research
(BMBF) via Software Campus (01IS17042). We thank the pyrolysis team of the Bioliq process for pro-
viding the data for our real-world use case (see also https​://www.bioli​q.de).

Compliance with ethical standards 

 Conflict of interest  The authors declare that they do not have any conflict of interest.

Fig. 10   Example of an interesting dependency pattern in the pyrolysis data

https://www.bioliq.de/english/

443

1 3

Distributed and Parallel Databases (2021) 39:415–444	

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​mmons​.org/licen​
ses/by/4.0/.

References

	 1.	 Barddal, J. P., Gomes, H. M., Enembreck, F.: A survey on feature drift adaptation. In: Proceedings of the
ICTAI, pp. 1053–1060. IEEE Computer Society (2015)

	 2.	 Belghazi, M.I., Baratin, A., Rajeswar, S., Ozair, S., Bengio, Y., Hjelm, R.D., Courville, A.C.: Mutual
information neural estimation. In: Proceedings of Machine Learning Research ICML, vol. 80, pp. 530–
539. PMLR (2018)

	 3.	 Bellman, R.E.: Dynamic Programming. Princeton University Press, Princeton (1957)
	 4.	 Bifet, A., Gavaldà, R.: Learning from time-changing data with adaptive windowing. In: Proceedings of the

SDM, pp. 443–448. SIAM (2007)
	 5.	 Brunner, E., Munzel, U.: The nonparametric Behrens-fisher problem: asymptotic theory and a small-sam-

ple approximation. Biom. J. 42(1), 17–25 (2000)
	 6.	 Chen, M., Han, J., Yu, P.S.: Data mining: an overview from a database perspective. IEEE Trans. Knowl.

Data Eng. 8(6), 866–883 (1996)
	 7.	 Crescenzo, A.D., Longobardi, M.: On cumulative entropies and lifetime estimations. In: Proceedings of

the of Lecture Notes in Computer Science IWINAC, vol. 5601, pp. 132–141. Springer (2009)
	 8.	 Ditzler, G., Roveri, M., Alippi, C., Polikar, R.: Learning in nonstationary environments: a survey. IEEE

Comp. Int. Mag. 10(4), 12–25 (2015)
	 9.	 Domingos, P., Hulten, G.: A general framework for mining massive data streams. J. Comp. Graph. Stat.

12(4), 945–949 (2003)
	10.	 Durbin, J.: Distribution Theory for Tests Based on Sample Distribution Function. SIAM, New Delhi

(1973)
	11.	 Fagerland, M.W., Sandvik, L.: The Wilcoxon-Mann-Whitney test under scrutiny. Stat. Med. 28(10),

1487–1497 (2009)
	12.	 Fayyad, U.M., Irani, K.B.: Multi-interval discretization of continuous-valued attributes for classification

learning. In: Proceedings of the IJCAI, pp. 1022–1029. Morgan Kaufmann (1993)
	13.	 Fligner, M.A., Policello, G.E.: Robust rank procedures for the Behrens-Fisher problem. J. Am. Stat.

Assoc. 76(373), 162–168 (1981)
	14.	 Fouché, E., Böhm, K.: Monte Carlo dependency estimation. In: Proceedings of the SSDBM, pp. 13–24.

ACM (2019)
	15.	 Fouché, E., Komiyama, J., Böhm, K.: Scaling multi-armed bandit algorithms. In: Proceedings of the

KDD, pp. 1449–1459. ACM (2019)
	16.	 Gama, J.: A survey on learning from data streams: current and future trends. Prog. AI 1(1), 45–55

(2012)
	17.	 Gretton, A., Fukumizu, K., Teo, C.H., Song, L., Schölkopf, B. Smola, A.J.: A Kernel statistical test of

independence. In: Proceedings of the NIPS, pp. 585–592. Curran Associates, Inc (2007)
	18.	 Hall, M.A., Holmes, G.: Benchmarking attribute selection techniques for discrete class data mining.

IEEE Trans. Knowl. Data Eng. 15(6), 1437–1447 (2003)
	19.	 Hastie, T., Tibshirani, R., Friedman, J.H.: The Elements of Statistical Learning: Data Mining, Inference,

and Prediction. Statistics, 2nd edn. Springer, New York (2009)
	20.	 Hoeffding, W.: Probability inequalities for sums of bounded random variables. J. Am. Stat. Assoc.

58(301), 13–30 (1963)
	21.	 Keller, F., Müller, E., Böhm, K.: HiCS: High contrast subspaces for density-based outlier ranking. In:

Proceedings of the ICDE, pp. 1037–1048 (2012)
	22.	 Keller, F., Müller, E., Böhm, K.: Estimating mutual information on data streams. In: Proceedings of the

SSDBM, pp. 3:1–3:12. ACM (2015)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

444	 Distributed and Parallel Databases (2021) 39:415–444

1 3

	23.	 Kinney, J.B., Atwal, G.S.: Equitability, mutual information, and the maximal information coefficient.
Proc. Natl. Acad. Sci. 111(9), 3354–3359 (2014)

	24.	 Lehmann, E.L., Romano, J.P.: Testing Statistical Hypotheses, 3rd edn. Springer, New York (2008)
	25.	 López-Paz, D., Hennig, P., Schölkopf, B.: The randomized dependence coefficient. In: Proceedings of

the NIPS, pp. 1–9 (2013)
	26.	 Mann, H.B., Whitney, D.R.: On a test of whether one of two random variables is stochastically larger

than the other. Ann. Math. Stat. 18(1), 50–60 (1947)
	27.	 McGill, W.: Multivariate information transmission. Trans. IRE Prof. Group Inf. Theory 4(4), 93–111

(1954)
	28.	 Nguyen, H.V., Mandros, P., Vreeken, J.: Universal dependency analysis. In: Proceedings of the SDM,

pp. 792–800. SIAM (2016)
	29.	 Nguyen, H.V., Müller, E., Andritsos, P., Böhm, K.: Detecting correlated columns in relational databas-

eswith mixed data types. In: Proceedings of the SSDBM, pp. 30:1–30:12. ACM (2014a)
	30.	 Nguyen, H. V., Müller, E., Vreeken, J., Efros, P., Böhm, K.: Multivariate maximal correlation analysis.

In: Proceedings of the ICML, pp. 775–783 (2014b)
	31.	 Nguyen, H.V., Müller, E., Vreeken, J., Keller, F., Böhm, K.: CMI: an information-theoretic contrast

measure for enhancing subspace cluster and outlier detection. In: Proceedings of the SDM, pp. 198–
206. SIAM (2013)

	32.	 Peng, H., Long, F., Ding, C.H.Q.: Feature selection based on mutual information: criteria of max-
dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 27(8), 1226–
1238 (2005)

	33.	 Pfitzer, C., Dahmen, N., Tröger, N., Weirich, F., Sauer, J., Günther, A., Müller-Hagedorn, M.: Fast
pyrolysis of wheat straw in the bioliq pilot plant. Energy Fuels 30(10), 8047–8054 (2016)

	34.	 Core Team, R.: R: A Language and Environment for Statistical Computing. R Foundation for Statistical
Computing, Vienna (2019)

	35.	 Reshef, D.N., Reshef, Y.A., Finucane, H.K., Grossman, S.R., McVean, G., Turnbaugh, P.J., Lander,
E.S., Mitzenmacher, M., Sabeti, P.C.: Detecting novel associations in large data sets. Science 334, 6062
(2011)

	36.	 Schmid, F., Schmidt, R.: Multivariate extensions of Spearman’s rho and related statistics. Stat. Probab.
Lett. 77(4), 407–416 (2007)

	37.	 Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379–423 (1948)
	38.	 Spearman, C.: The proof and measurement of association between two things. Am. J. Psychol. 15(1),

72–101 (1904)
	39.	 Székely, G.J., Rizzo, M.L.: Brownian distance covariance. Ann. Appl. Stat. 3(4), 1236–1265 (2009)
	40.	 Timme, N., Alford, W., Flecker, B., Beggs, J.M.: Synergy, redundancy, and multivariate information

measures: an experimentalist’s perspective. J. Comput. Neurosci. 36(2), 119–140 (2014)
	41.	 Vollmer, M., Böhm, K.: Iterative estimation of mutual information with error bounds. In: Proceedings

of the EDBT, pp. 73–84. OpenProceedings.org (2019)
	42.	 Vollmer, M., Rutter, I., Böhm, K.: On complexity and efficiency of mutual information estimation on

static and dynamic data. In: Proceedings of the EDBT, pp. 49–60. OpenProceedings.org (2018)
	43.	 Wang, Y., Romano, S., Nguyen, V., Bailey, J., Ma, X., Xia, S.: Unbiased multivariate correlation analy-

sis. In: Proceedings of the AAAI, pp. 2754–2760 (2017)
	44.	 Watanabe, S.: Information theoretical analysis of multivariate correlation. IBM J. Res. Dev. 4(1), 66–82

(1960)
	45.	 Yang, C., Zhou, J.:. HClustream: A novel approach for clustering evolving heterogeneous data stream.

In: Proceedings of the ICDM Workshops, pp. 682–688 (2006)
	46.	 Zhu, Y., Shasha, D.E.: StatStream: statistical monitoring of thousands of data streams in real time. In:

Proceedings of the VLDB, pp. 358–369 (2002)
	47.	 Zimmerman, D.W.: A warning about the large-sample Wilcoxon-Mann-Whitney test. Underst. Stat.

2(4), 267–280 (2003)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

	A framework for dependency estimation in heterogeneous data streams
	Abstract
	1 Introduction
	2 Contributions
	3 Related work
	4 The MCDE framework
	4.1 Preliminaries
	4.2 Theory behind MCDE
	4.2.1 Quantifying dependency via contrast
	4.2.2 Estimating conditional distributions
	4.2.3 Discrepancy estimation
	4.2.4 Properties of contrast
	4.2.5 Monte Carlo approximation
	4.2.6 Instantiating MCDE

	4.3 Instantiation as Mann–Whitney-P (MWP)
	4.3.1 Marginal restriction
	4.3.2 Implementation details

	4.4 Instantiation as Kolmogorov–Smirnov-P (KSP)
	4.5 Instantiation as Chi-Squared-P (CSP)
	4.6 MCDE in heterogeneous data streams (H-DS)
	4.6.1 Heterogeneity
	4.6.2 Adaptation to the streaming setting

	5 Experiments
	5.1 Specifics of attribute types
	5.2 Statistical power of MWP, KSP and CSP
	5.3 Scalability
	5.4 Deployment to the streaming setting
	5.5 Pattern discovery
	5.6 Discussion

	6 Conclusions
	Acknowledgements
	References

