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Abstract

Interpretable representations are the backbone of many explainers that target black-box

predictive systems based on artificial intelligence and machine learning algorithms.

They translate the low-level data representation necessary for good predictive per-

formance into high-level human-intelligible concepts used to convey the explanatory

insights. Notably, the explanation type and its cognitive complexity are directly con-

trolled by the interpretable representation, tweaking which allows to target a particular

audience and use case. However, many explainers built upon interpretable represen-

tations overlook their merit and fall back on default solutions that often carry implicit

assumptions, thereby degrading the explanatory power and reliability of such tech-

niques. To address this problem, we study properties of interpretable representations

that encode presence and absence of human-comprehensible concepts. We demon-

strate how they are operationalised for tabular, image and text data; discuss their

assumptions, strengths and weaknesses; identify their core building blocks; and scru-

tinise their configuration and parameterisation. In particular, this in-depth analysis

allows us to pinpoint their explanatory properties, desiderata and scope for (malicious)

manipulation in the context of tabular data where a linear model is used to quantify

the influence of interpretable concepts on a black-box prediction. Our findings lead
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to a range of recommendations for designing trustworthy interpretable representa-

tions; specifically, the benefits of class-aware (supervised) discretisation of tabular

data, e.g., with decision trees, and sensitivity of image interpretable representations to

segmentation granularity and occlusion colour.

Keywords Interpretability · Explainability · Surrogates · Post-hoc · Interpretable

representations · Machine learning · Artificial intelligence

1 Introduction

Interpretable representations (IRs) are the foundation of many explainability meth-

ods that target black-box predictive models based on artificial intelligence (AI)

and machine learning (ML) algorithms. They are the core component of surrogate

explainers, which are techniques to approximate the functioning and behaviour of

an unintelligible classifier or regressor with a simpler model (Friedman and Popescu

2008; Ribeiro et al. 2016; Lundberg and Lee 2017; Sokol et al. 2019). More broadly,

IRs facilitate translating the “language” of ML models—low-level data representations

required for good predictive performance, such as raw feature values and their com-

plex embeddings—into high-level concepts that are understandable to humans. IRs,

therefore, create an interface between a computer-readableencoding of a phenomenon

(captured by the collected data) and cognitively digestible chunks of information, thus

establishing a medium suitable for conveying explanations. Notably, interpretable

representations directly control the (perceived) complexity of the ensuing explana-

tions, define the question that these insights answer, and restrict the explanation

types that can effectively communicate this information—e.g., influence or importance

of interpretable concepts, counterfactuals and what-if statements—making IR-based

explainers highly flexible, versatile and appealing. In essence, by customising the

interpretable representation we can adjust the content and comprehensibility of the

resulting explanations and tune them towards a particular audience and application.

The algorithmic process responsible for transforming data from their original

domain into an interpretable representation is usually defined by a human. An IR

of images, for example, can be created with a super-pixel segmentation, i.e., partition-

ing images into non-overlapping clusters of pixels, each one representing an object of

interest or pieces thereof. Similarly, text can be split into tokens denoting individual

words, their stems or collections of words that are not necessarily adjacent. Tabular data

containing numerical features can be discretised to capture meaningful patterns, e.g.,

people belonging to different age groups. Such interpretable representations are often

paired with a simple and inherently transparent model to form a surrogate explainer;

for example, LIME—Local Interpretable Model-agnostic Explanations (Ribeiro et al.

2016)—uses a sparse linear model. IR-based explainers are thus data-universal, in

addition to often being model-agnostic and post-hoc (Sokol and Flach 2020a), which

makes them an attractive choice given that they can be used with pre-existing black-box

ML models.

Given the high complexity of such end-to-end explainers, many of them are com-

posed of generic, thus versatile, algorithmic building blocks and focus on maximising
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their overall performance, hence forgoing selection and optimisation of their individual

parts (Sokol et al. 2019). Moreover, these explainers seek to automate the entire pro-

cess to enable their deployment and evaluation at scale, which understandably requires

components that can be operationalised without human input. Given the vast array of

algorithmic choices in this space—as well as their individual configurations—such

explainers are in fact complex entities suffering from overparameterisation, which

often manifests itself in multiple contributing sources of randomness and low fidelity

of the resulting explanations (Zhang et al. 2019; Rudin 2019; Lakkaraju et al. 2019;

Lakkaraju and Bastani 2020; Sokol et al. 2019; Sokol and Flach 2020b). This obser-

vation is particularly pertinent to interpretable representations, popular examples of

which are: quantile discretisation for numerical features of tabular data; edge-based

super-pixel segmentation for images, e.g., via quick shift (Vedaldi and Soatto 2008);

and whitespace-based tokenisation for text (Ribeiro et al. 2016).

Many deficiencies plaguing such explainers can be attributed to misuse of the

underlying interpretable representation, which can make or break an explainer (Sokol

et al. 2019; Sokol and Flach 2020b; Sokol 2021). These problems can be magnified,

possibly rendering the explainer unusable, through certain pairings of IRs and types

of surrogate models, especially when the implicit assumptions behind both of these

components are at odds. By understanding the characteristics and behaviour of each

interpretable representation and its influence on the resulting explanations—both on its

own and in conjunction with a particular surrogate model family—we can explicate the

theoretical properties of such explainers and assess their applicability and usefulness

for the problem at hand. This area of research is largely under-explored for IRs on their

own and as a part of an explainer, potentially leading to suboptimal design choices and

inadequate explanations. An especially impactful research direction, which we focus

on in this paper, is automatic creation of IRs that are trustworthy, robust and faithful

to enable their creation, optimisation and deployment with minimal human input.

The important tasks of choosing an appropriate interpretable representation and

configuring it are not often considered in the literature. It is common to assume that an

IR is given or to reuse one that was proposed in prior work without much afterthought

or deliberation about its suitability, (implicit) assumptions, properties and caveats

(Laugel et al. 2018; Zhang et al. 2019; Lakkaraju and Bastani 2020). As a result the

interpretable representations introduced along the first explainers utilising them are

still dominating the explainability landscape and are widely used despite possibly

being a subpar choice. Specifically, the most popular use case of IRs—in which they

are deployed to measure the positive or negative influence of each interpretable com-

ponent (more precisely, information that it encodes) on a black-box prediction of a

selected instance—comes with many unaddressed issues. For example, to carry out

this sensitivity analysis, a random subset of IR elements needs to be “removed” a num-

ber of times and the resulting change in the model’s prediction quantified, e.g., by the

coefficients of a (surrogate) linear model. Most black-box models, however, cannot

predict incomplete instances, especially for tabular and image data, in which case this

procedure becomes ill-defined and replaced with a proxy operation—such as segment

occlusion for images—potentially leading to biased and untrustworthy explanations.

In this paper, we investigate the capabilities and limitations of the most common

type of interpretable representations, where presence and absence of interpretable con-
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cepts is encoded with a binary on/off vector. We first overview relevant literature and

introduce popular IRs for text, image and tabular data in Sect. 2, where we also show

example explanations built upon them. This section additionally identifies the core

elements, parameterisation and deficiencies of interpretable representations, which

facilitates their analytical and experimental investigation. Next, in Sect. 3, we study

the influence of suboptimal configuration of IRs and the implications of employing

various algorithmic proxies necessary to make them computationally feasible and

scalable whenever it is impossible or impractical to directly remove information from

the underlying data. We also investigate implicit assumptions such as the locality

of an explanation, which may prevent its completeness, and the stochasticity of the

transformation between the original and interpretable domains (and vice versa), which

may introduce unnecessary randomness, contribute to volatility and reduce fidelity and

soundness of explanations, thereby harming their veracity (Sokol et al. 2019; Sokol and

Flach 2020a). Our findings are supported by a range of experiments that analyse these

factors for quartile-based discretisation and decision tree-based partition of numerical

features for tabular data—where information removal is achieved through a random

allocation of a feature value to one of these attribute ranges—as well as super-pixel

segmentation of images with varying granularity—for which colour-based occlusion

is used as an information removal strategy.

In Sect. 4 we examine the lineage and interpretation of influence-based

explanations—determined by the coefficients of a linear model in a surrogate explainer

setting—with respect to the properties of the underlying interpretable representa-

tion for tabular data with numerical features. In particular, we illustrate the limited

explanatory capabilities of an IR built upon (unsupervised) discretisation of continuous

attributes when paired with Ordinary Least Squares (OLS), i.e., a bare-bones version

of LIME, for which an analytical (closed-form) solution is derived in Appendix A.

Such explainers can lose the precise encoding of the black-box decision boundary and

be (externally) manipulated by altering the distribution of the data sample used to fit

the surrogate OLS, both of which undermine reliability of the ensuing explanations.

As a solution we propose using supervised discretisation algorithms that produce up to

three bins per numerical feature in addition to employing alternative types of surrogate

models—a recommendation supported by a collection of theoretical and experimen-

tal results. Specifically, we investigate decision trees, which prove to be particularly

suitable in this setting since they can both partition (i.e., discretise) the data space

to crate meaningful interpretable concepts, and generate a wide array of appealing

explanations such as exemplars, importance scores and counterfactuals (van der Waa

et al. 2018; Sokol 2021).

All of these findings allow us to create guidelines for building trustworthy, faithful

and algorithmically sound interpretable representations, which we outline in Sect. 5.

This collection of insights is a stepping stone towards automatic generation of robust

IRs with well-known properties and caveats. It also highlights how state-of-the-art

research in fields such as natural language processing, image segmentation and dis-

cretisation of tabular data can inform better design of interpretable representations,

in addition to discussing the beneficial role of humans in this process. Furthermore,

our results demonstrate the importance of developing representative validation crite-

ria and metrics for individual components of explainability algorithms, which is an
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improvement over evaluating only the final, end-to-end explainer (Sokol et al. 2022a;

Sokol and Vogt 2024; Small et al. 2023; Xuan et al. 2023. We conclude this paper with

Sect. 6, which summarises our findings and discusses future research directions.

2 Interpretable representations

The choice of the interpretable representations and surrogate models used for our

analysis is motivated by the popularity of these individual components in the liter-

ature. Specifically, LIME (Ribeiro et al. 2016) and RuleFit (Friedman and Popescu

2008) use a surrogate linear model to estimate influence of interpretable concepts.

Additionally, LIME and SHAP—SHapley Additive exPlanations (Lundberg and Lee

2017)—employ an interpretable representation that encodes presence and absence of

intelligible concepts to formulate their explanations. Similarly, Friedman and Popescu

(2008) experimented with automatic learning of more complex IRs for tabular data by

fitting a random forest and extracting rules from it. These logical statements, which

capture various concepts, are then used as binary meta-features to train a linear model,

thus offering a highly expressive interpretable representation. More recently, Garreau

and Luxburg (2020) analysed theoretical properties and parameterisation of vanilla

LIME for tabular data, including its interpretable representation and surrogate linear

model; however, their work treated the explainer as an end-to-end algorithm and oper-

ated under quite restrictive assumptions, e.g., presupposing linearity of the underlying

black box.

We focus on interpretable representations of tabular, image and text data given

their dominant role in XAI. While the operationalisation of IRs varies across these

data types, their machine representation is usually consistent: a binary vector indi-

cating presence (fact denoted by 1) or absence (foil denoted by 0) of certain

human-understandable concepts for a selected data point. The IRs of image and

text data are relatively intuitive and share many properties. Images are partitioned

into non-overlapping segments called super-pixels, which are then represented in the

interpretable binary space as either preserved (i.e., original pixel values) or removed.

Similarly, text is split into tokens that can encode individual words, their stems or

collections of words, the presence or absence of which is captured by the IR. Tabular

data, on the other hand, are more problematic since, first, numerical attributes need to

be discretised to create a hyper-rectangle partition of the feature space, followed by a

binarisation procedure that for each (now discrete) dimension records whether a data

point is located within or outside of the hyper-rectangle selected to be explained.

The interpretable representations of text and images are reasonably easy to generate

automatically and (when configured correctly) the meaning of the resulting explana-

tions is relatively accessible to a lay audience—a characteristic that is not necessarily

true of tabular data as we will see later. Additionally, the high dimensionality of raw

text and image data does not impair their comprehensibility, but it does for tabular

data as humans are generally confined to three dimensions given the inherent spatio-

temporal limitations of our visual apparatus. Dimensionality reduction for images

and text is thus unnecessary and may even be harmful; removal of super-pixels is an

ill-defined procedure that results in blank spaces, whereas discarding stop words and
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Fig. 1 Depiction of a forward and backward transformation between the original and interpretable rep-

resentations of text data. Panel a shows steps required to represent a sentence as a binary on/off vector;

Panel b illustrates this procedure in the opposite direction. Both transformations are deterministic given a

fixed algorithm responsible for text pre-processing and tokenisation

punctuation marks as well as word transformations can be considered as pruning steps

that should be incorporated directly into the interpretable representation composition

function and executed prior to tokenisation. The process of transforming data from

their original domain into an interpretable representation is in most cases defined by

the user and built into the (surrogate) explainer. Uniquely for tabular data, however,

it can be learnt as part of the explanation generation step depending on the surrogate

model choice (Sokol et al. 2019; Sokol and Flach 2020b; Sokol 2021). Notably, spec-

ifying the foil—i.e., the operation linked to switching off a component of the IR by

setting its binary value to 0—may not always be straightforward or even feasible in

certain domains, requiring a problem-specific information removal proxy (Mittelstadt

et al. 2019).

2.1 Text

The interpretable domain based on presence and absence of tokens in text feels natural

and appealing to humans. Individual words and their groups encode understandable

concepts and their absence may alter the meaning of a sentence, which arguably reflects

how humans comprehend text. A naïve IR can represent text as a bag of words, where

each word becomes a token, thereby forgoing the influence of word ordering and

the information carried by their co-occurrence. We can easily improve upon that and

capture the dependencies between words by including n-gram groupings. Applying

other pre-processing steps, e.g., extracting word stems or lemmatisation, can also

be beneficial for the human-comprehensibility of such interpretable representations.

Machine processing of (natural language) text is a well-established research field

(Manning and Schutze 1999) that can be a rich source of inspiration for designing

appealing and informative IRs.

Once text is pre-processed and tokenised, it is deterministically transformed into

the binary interpretable representation. To this end, a sentence is encoded as a Boolean
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Fig. 2 Example of an influence-based explanation of text with a bag-of-words interpretable representation.

Panel a illustrates a sentence whose (positive) sentiment is being decided by a black-box model. The

colouring of each token in Panel a conveys its influence on the prediction, with Panel b depicting their

respective magnitudes

vector of length equal to the number of tokens in the IR, where 1 indicates presence of

a given token and 0 its absence—see Fig. 1 for a demonstration of this procedure. The

original sentence is thus encoded with an all-1 vector. By flipping some components of

this vector to 0, we effectively remove tokens from the underlying sentence and create

its variations. Notably, the high dimensionality of this representation does not affect

the readability of the resulting explanations since altered text cannot have more tokens

than the original sentence. Explanations based on token influence can be overlaid on

top of text by highlighting each token with a different shade of green (for positive

influence) or red (for negative influence), thus expressing their respective influence on

the explained class—see Fig. 2 for an example.

2.2 Images

Interpretable representations of image data rely on the same premise: images are

algorithmically segmented into super-pixels, often using edge-based methods such as

quick shift (Vedaldi and Soatto 2008; Ribeiro et al. 2016). The presence (1) or absence

(0) of these segments is manipulated by the underlying binary representation, where an

all-1 vector corresponds to the original picture—see Fig. 3 for a reference. However,

since a segment of an image cannot be directly removed given that relevant classifiers

are unable to handle missing data—in contrast to the equivalent procedure for text

IRs—setting one of the interpretable components to 0 is an ill-defined operation.

Instead, a computationally-feasible proxy is commonly used to hide or discard the

information carried by super-pixels; specifically, segments are occluded with a solid
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Fig. 3 Depiction of a forward and backward transformation between the original and interpretable rep-

resentations of image data. Panel a shows steps required to represent a picture as a binary on/off vector;

Panel b illustrates this procedure in the opposite direction. Both transformations are deterministic given

fixed image segmentation and occlusion strategies

Fig. 4 Example of an influence-based explanation of image data with the interpretable representation built

upon segmentation. Panel a illustrates an image that is being classified by a black-box model. The colouring

of each super-pixel in Panel a conveys its influence on the prediction of a user-selected class (Eskimo dog

in this case), with Panel b depicting their respective magnitudes
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colour. For example, LIME uses the mean colour of each super-pixel to mask its

content (Ribeiro et al. 2016). Explanations based on such interpretable representations

communicate the influence of each image segment on the black-box prediction of a

user-selected class as shown in Fig. 4.

This approach comes with its own implicit assumptions and limitations. For one, an

edge-based partition of an image may not capture concepts that are meaningful from a

human perspective. Semantic segmentation or outsourcing this task to the user appears

to yield better results (Sokol and Flach 2020b, c), possibly at the expense of automa-

tion difficulties. Furthermore, the information removal proxy could be improved by

replacing colour-based occlusion of super-pixels with a more meaningful process that

better reflects how humans perceive visual differences in images. For example, the

content of a segment could be occluded with another object, akin to the procedure

proposed by Benchmarking Attribution Methods (Yang and Kim 2019), or retouched

in a context-aware manner, e.g., inpainted with what is anticipated in the background,

thus preserving the integrity and colour continuity of the explained image. While both

of these approaches are intuitive, they are difficult to automate and scale since the

underlying operations are mostly limited to image partitions where each super-pixel

represents a self-contained and semantically coherent object.

2.3 Tabular data

The raw features used by predictive models trained on images and text—e.g., pixel

values and word embeddings—are often difficult to reason about, establishing the

need for interpretable representations. In contrast, tabular data may not require an IR

to become explainable if their attributes are human-comprehensible from the outset.

On the other hand, if the explanation is to answer a specific question—as is the case

for images and text—using an interpretable representation may be helpful. Continuing

with the theme of investigating concept influence, for tabular data we are interested in

how presence and absence of certain binary characteristics, which the explained data

point exhibits, affect its prediction.

One approach is to treat the specific attribute values of the explained instance as

concepts: if a feature value of a data point is identical to the value of the same attribute

in the explained instance, the concept is present (1), otherwise it is absent (0), which

procedure becomes the information removal proxy. For example, if the second feature

x2 of the explained instance x̊ is x̊2 = 70, any instance x whose second attribute has

the same value (70) is assigned x⋆
2 = 1 in the binary IR, and 0 otherwise, i.e.,

x⋆
i =

{

1 if xi = x̊i,

0 otherwise.

While this may be appealing for categorical attributes, considering each and every

unique value of a numerical feature is cumbersome. Moreover, doing so may not

reflect the underlying human thought process: as an example, consider “high sugar

content” in contrast to “70 g of sugar per 100 g of a product”, with both 0 g and 100 g

in the latter case encoded as an absent concept in the corresponding IR.
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Fig. 5 Depiction of a forward and backward transformation between the original and interpretable repre-

sentations of tabular data. Panel a shows the discretisation and binarisation steps required to represent a

data point as a binary on/off vector; Panel b illustrates this procedure in the opposite direction. The forward

transformation is deterministic given a fixed discretisation algorithm (i.e., binning of numerical features);

however, moving from the IR to the original domain is stochastic since it requires random sampling

Fig. 6 Example of an influence-based explanation of tabular data with the interpretable representation

built upon discretisation (x′) of numerical features followed by binarisation (x⋆). Panel a illustrates a

synthetically generated two moons toy data set with two numerical features (x1, x2) and two classes denoted

by grey and green dots. The red ⋆ represents the explained instance x, the dashed blue lines mark the attribute

binning (discretisation), x′ is the (intermediate) discrete representation, and x⋆ encodes the binary IR created

for the ⋆ data point. Panel b depicts the magnitude of the influence that x⋆
1 : 75 ≤ x1 and x⋆

2 : 40 ≤ x2 < 80

have on the underlying black-box model predicting the grey class for the ⋆ instance (and more broadly any

other data point residing within the same hyper-rectangle)
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Building on this observation, a natural extension of such a tabular interpretable

representation is to discretise numerical features into (meaningful) categorical bins,

e.g., x2 < 40, 40 ≤ x2 < 80 and 80 ≤ x2, which procedure establishes high-level

intelligible concepts (Kotsiantis and Kanellopoulos 2006; Garcia et al. 2012). (This

step is not needed for categorical attributes, which already have discrete values.) Since

a binary representation allows to encode only two events for each attribute, we need to

define the corresponding information removal proxy, which determines the meaning

of a discrete concept being present or absent. Given that the IR should be specific to

the explained data point, the binary on/off vector is constructed to indicate whether

a feature value of an arbitrary instance x is of the same (1 for a present concept) or

different (0 for an absent concept) category as the corresponding attribute of the data

point selected to be explained x̊. For example, if the second feature x2 of the explained

instance x̊ is x̊2 = 70, based on the aforementioned bin boundaries, any instance x

whose second attribute is within the 40 ≤ x2 < 80 range is assigned x⋆
2 = 1 in the

binary IR, and 0 otherwise, i.e.,

x⋆
i =











1 if xiand x̊i belong to the same numerical bin or

have the same categorical value,

0 otherwise.

This procedure is depicted in Fig. 5. When paired with a surrogate linear model, this

interpretable representation allows us to investigate the influence of the designated

concepts—i.e., each numerical feature being within the specified range and each cate-

gorical attribute being of the particular value—on the black-box prediction of the data

point selected to be explained, or more precisely any instance located within the same

hyper-rectangle—see Fig. 6 for an example.

Notably, such a binary IR of tabular data is specific to the explained instance (more

generally, its hyper-rectangle), as was the case for images and text. Nonetheless,

the discretisation underlying tabular data can be easily reused for explaining other

instances from the same data set. While a common practice (Ribeiro et al. 2016), it

should be added that such an approach might affect the faithfulness of the resulting

insights since the goal is to produce a local explanation of the selected data point,

hence the discretisation should explicitly model the characteristics of the explained

neighbourhood. Reusing the same discretisation to generate instance-specific IRs for

tabular data can be compared to creating a super-pixel partition of a particular image

and then reapplying it to other, unrelated images, yielding a conceptually flawed inter-

pretable representation. Additionally, selecting the bin boundaries when discretising

tabular data, as well as grouping values of categorical attributes, is non-trivial and

might bias the explanation similar to the influence of text pre-processing and tokeni-

sation steps or image segmentation and occlusion strategies. Since neither globally nor

locally faithful discretisation can capture uniqueness of a black-box decision bound-

ary universally well for an arbitrary data subspace, each explained instance requires

bespoke discretisation of the feature space (Sokol et al. 2019).
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3 Configuring interpretable representations

Interpretable representations of text data that are based on token removal are appealing

from an XAI perspective; they can be easily expanded with relevant natural language

processing techniques without the need for any computational proxy, which makes

these transformations largely consistent with human intuition in the explainability

context. Image data, on the other hand, lack such a seamless operationalisation of IRs,

forcing us to use an occlusion-based proxy to discard information from individual

segments. This poses several challenges for the trustworthiness, robustness and com-

putational soundness of the resulting explanations as well as their consistency with the

explainees’ intuition, especially since segmentation algorithms cannot rely on natural

separation criteria such as whitespace characters and autonomy of words found in text

data. In particular, we are faced with parameterising these IRs based on segmentation

granularity and occlusion strategy, with certain choices possibly exhibiting undesired

properties or being ineffective in “removing” super-pixels. The masking colour may

impact the veracity of explanations, regardless of the underlying occlusion approach,

since these insights rely on an implicit assumption that the black-box model is neu-

tral with respect to the occlusion colour, i.e., none of the modelled classes is biased

towards it (Mittelstadt et al. 2019). Adjusting the segmentation granularity can also

play an important role given high correlation of adjacent super-pixels.

In contrast, tabular data require by far the most complicated interpretable represen-

tation whose explanatory meaning may be difficult to grasp due to the counterintuitive

process of “switching off” interpretable concepts. Moreover, the underlying infor-

mation removal proxy requires discretisation of continuous features followed by a

binarisation step—a procedure that results in information loss and is sensitive to the

selection of binning thresholds. Given its significance, the parameterisation of both

image and tabular IRs should be explicitly optimised based on clearly defined objec-

tives that appreciate the uniqueness of the problem at hand and recognise interpretable

representations as independent entities and vital components of (surrogate) explainers

(Sokol and Vogt 2024). Out of these three IRs, the one for text has the advantage of

allowing the tokens to be truly removed from a sentence (although this is more of a

property of the underlying predictive model rather than the interpretable representation

itself). Specifically, text classifiers are more flexible and do not assume input of a fixed

size, while vision models cannot handle missing pixels and tabular predictors usually

require all features to be present. Investigating the effects of text pre-processing and

tokenisation on the quality of the corresponding IRs is outside of the scope of this

paper since it is a multifaceted endeavour, a narrow study of which may not provide

comprehensive insights given the sheer quantity and diversity of available techniques.

The interpretable representations of image and text data discussed here are implic-

itly local—they are intended (and possibly valid) only for the data point (sentence

or image) for which they were created—whereas the scope of the tabular IR is more

ambiguous. Another property that the former two IRs have and the latter lacks is

determinism of the underlying representation change (within the scope of a single

instance) as demonstrated by Figs. 1, 3 and 5. Transforming images and text between

the two domains only requires memorising the structure or skeleton of the explained

data point: adjacency of segments and their original pixel values for images (assum-
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ing that the segmentation and occlusion strategies are fixed), and order of tokens as

well as their pre-processing for text. Tabular data IRs, however, lack this one-to-one

correspondence between an instance and its interpretable representation—due to the

aforementioned information loss caused by the discretisation and binarisation steps—

which can only be restored by mapping each data point to its IR coordinates and

storing this correspondence table for future retrieval (Sokol et al. 2019). While this

workaround is possible when starting with an instance in the original representation,

it cannot overcome stochasticity when we are only given the IR encoding of a data

point. Notably, this property helps to guarantee uniqueness of explanations, which is

important for their stability, hence preserving explainees’ trust (Rudin 2019; Sokol

and Flach 2020a, b).

3.1 Occlusion-based interpretable representations of images

Occlusion-based interpretable representations of images are parameterised by seg-

mentation granularity and colouring strategy. The former allows the explanation to

capture a desired level of detail, while the latter is used as a proxy for removing

the content of super-pixels to hide the information they carry from a black box. The

exact influence of these two properties on the resulting explanations therefore needs

to be uncovered to inform the design of robust explainability techniques with well-

understood behaviour. For example, consider the mean-colour occlusion used by the

popular LIME explainer (Ribeiro et al. 2016), which for some image partitions and

super-pixel colour distributions may have undesired effects that undermine the utility

of the occlusion procedure. With this approach, segments that have a relatively uniform

colour gamut may, effectively, be impossible to remove; this is especially common

for fragments that are in the background or out of focus, e.g., bokeh and depth-of-

field effects. Segmentation granularity is also important: the smaller the segments are,

the more likely it is that their colour composition is uniform given the “continuity”

of images, i.e., high correlation of adjacent pixels. This mosaic or blurring effect is

depicted in Fig. 7 for three different super-pixel granularity settings, showing how

much of discriminative information is preserved in each case despite “removing” the

content of all the segments.

Occluding each image fragment with a different colour manifests another issue,

namely the preservation of super-pixel contours. This effect can be observed in Fig. 8a

and c respectively for the mean and random-patch occlusion strategies. Notably, when-

ever the segmentation coincides with objects’ edges or regions of an image where

colour continuity is not preserved—which is common for edge-based segmenters—

replacing super-pixels with their mean or a random colour causes (slight) colour

variations between adjacent segments. These artefacts emphasise edges in a (par-

tially) occluded image that may at times convey enough information for a black-box

model to correctly recognise its class; for example, see Fig. 8a and c where despite

replacing all the super-pixels but #4 with mean and random colours respectively, the

model predicts the original class with 78% and 56% probability down from 84% for

the unaltered photo. Since most of these issues are consequences of using the random-

patch or mean-colour occlusion, it may seem that fixing a single masking colour for
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Fig. 7 Mosaic or blurring effect observed for the mean-colour occlusion strategy when “removing” all of

the super-pixels with segmentation granularity increasing in size. The image was split into a 17, b 51 and c

71 super-pixels with the SLIC algorithm (Achanta et al. 2012), which performs k-means clustering in the

colour space

Fig. 8 Image occlusion strategy influences the resulting explanations. The picture shown in Fig. 4a is

classified by a black box as Eskimo dog with 84% probability. Based on 11 super-pixels, the a mean-

colour occlusion of all the segments but one results in 78%, b black occlusion in 15% and c random-patch

occlusion in 56% probability of the same class. These results show that the mean occlusion strategy cannot

effectively remove information from this particular image; the random-patch approach preserves segment

edges, which are quite revealing in this case; and the black occlusion is relatively good at removing the

content of super-pixels

all of the segments would eradicate some of these problems. Such an approach hides

the edges between occluded super-pixels and removes their content instead of just

“blurring” the image, which is the case for the mean-colouring strategy. However, the

edges between occluded and preserved segments remain visible—see Fig. 8b, which

depicts using black occlusion that yields only 15% probability of the original class—

and choosing a neutral colour that does not bias the explanations—e.g., the relation

between blue and objects such as the sky or bodies of water—remains an open ques-

tion. Notably, the problem of selecting a reference point or foil for explanations is not

unique to occlusion-based interpretable representations of images and it is particularly

problematic for tabular data (Mittelstadt et al. 2019).

Experiment Setup To capture the influence of these characteristics—colour unifor-

mity, segmentation size and edge visibility—on the effectiveness of the information
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removal proxy, we design and execute ablation studies. Empirically quantifying the

effect of the colouring strategy and segmentation granularity on the ability of a black

box to consistently predict a (partially distorted) image allows us to better under-

stand the significance of these choices. To this end, we use images from the ImageNet

(Deng et al. 2009) validation set that are square and no smaller than 256 × 256 pixels.

Next, we resize them to 256 × 256 pixels and segment them with the SLIC algorithm

(Achanta et al. 2012)—which performs k-means clustering in the RGB (Red, Green,

Blue) colour space—using the implementation provided by scikit-image (van der Walt

et al. 2014). Since some of the images cannot be segmented into the desired number of

super-pixels, only their subset (whose size is given in Fig. 9) is used for the study. For

all of the experiments, our black box is the pre-trained Inception v3 neural network

distributed with PyTorch (Paszke et al. 2019). The study is implemented using the

FAT Forensics Python package (Sokol et al. 2020, 2022b), with the experiment code

published on GitHub1.

Specifically, segment occlusion is done with the following selection of colouring

strategies denoted in the RGB space:

black (0, 0, 0);

white (255, 255, 255);

red (255, 0, 0);

green (0, 255, 0);

blue (0, 0, 255);

pink (255, 192, 203);

mean each super-pixel is replaced with a solid patch of the mean

colour computed for the pixels residing within this segment;

random a single random colour, sampled uniformly from the RGB

space, is used to occlude all super-pixels across all experiments

for a single image and fixed segmentation size;

random patch a separate random colour, sampled uniformly from the RGB

space, is used to occlude each individual super-pixel across all

experiments for a single image and fixed segmentation size;

randomise a single random colour, sampled uniformly from the RGB

space, is generated for each individual occlusion pattern; and

randomise patch a separate random colour, sampled uniformly from the RGB

space, is generated for each individual super-pixel.

The test images are partitioned into 5, 10, 15, 20, 30 and 40 regions to capture the

influence of the segmentation granularity on the IR—these tiers are visualised in

separate panels of Fig. 9. For a fixed number of segments, we iterate over the quantity

of occluded super-pixels from 0 to all of the partitions (x-axes in Fig. 9), randomising

the occlusion pattern 100 times at each step. We apply this procedure to all of our

test images, separately for every colouring strategy. Finally, we measure the influence

of each occlusion strategy and segmentation granularity by calculating the squared

error—SE = (yi − ŷi)
2—between the probability of the top class predicted for the

unaltered image and the prediction of the same class when the image is (partially)

1 https://github.com/So-Cool/bLIMEy/tree/master/DAMI_2024
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Fig. 9 Squared error (y-axis) calculated between the top prediction of an image (probability estimate) and

predictions of the same class when incrementally occluding a higher number of random super-pixels (x-axis)

with a given colouring strategy (legend). The segmentation is based on the SLIC algorithm (Achanta et al.

2012); the number of images used for each experiment is recorded in the captions above; a random sample

of 100 occlusion patterns was generated for each step with a fixed number of super-pixel occlusions. The

curves capture the mean of individual squared errors, with their standard deviation depicted by horizontal

bars of the same colour—a lower value indicates that the black box is better able to predict the top class

despite information removal. The panels show that the mean occlusion strategy is not as effective at hiding

information from the black box as using a single, random or randomised colour to the same end. The

plots also reveal that when an image is split into more segments, the ineffectiveness of the mean-colouring

approach gets magnified due to the increased colour uniformity of individual super-pixels (see Fig. 7 for

an example of this phenomenon)
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occluded. We aggregate these scores by computing their mean and standard deviation

(y-axes in Fig. 9), a low value of which indicates that the model can still predict the

data point despite a distortion.

Occlusion Colour Figure 9 provides clear evidence that the mean occlusion strat-

egy behaves unlike any other approach, including all of the methods based on random

colour selection; additionally, there is no perceptible difference between the remaining

colouring strategies—their squared error curves are bundled together. More precisely,

the lower metric value for the mean technique indicates that it is not as effective at

removing class-identifying information from images as any other occlusion strategy

that we tested. Intuitively, the reason for this behaviour is the aforementioned blurring

or mosaic effect depicted in Fig. 7. This phenomenon becomes especially pronounced

when images are segmented into smaller super-pixels, as having more of them for

a fixed image size makes each partition more uniform with respect to the colour of

its individual pixels—the increasing separation of the squared error curve for the

mean strategy when moving from 5 (Fig. 9a) to 40 (Fig. 9f) segments. Additionally,

Fig. 9 illustrates the consequences of preserving contour lines between segments when

occluding them with patches of different colour—an example of which is visualised in

Fig. 8c. This behaviour is captured by the random patch and randomise patch strate-

gies, both of which exhibit a lower squared error than any other technique based on a

single, possibly random, occlusion colour; nonetheless, this effect appears negligible

across our experiments.

Segmentation Granularity By inspecting each panel of Fig. 9, we can see that the

granularity of segmentation directly affects the mean-colour occlusion strategy—the

aforementioned separation between the squared error curve of the mean approach and

every other curve. The behaviour of all the fixed-colour approaches, on the other hand,

is very similar for any number of segments regardless of the exact occlusion colour

(including its random selection)—these squared error curves are clustered together

in Fig. 9. Notably, this observation also applies to the random-patch and randomise-

patch strategies, which methods reveal segment boundaries and can be very volatile

given their random assignment of the occlusion colour to each individual super-pixel.

Both of these insights offer clear evidence that using the mean colouring should be

avoided in occlusion-based interpretable representations of images. Figure 9 sub-

stantiates our observation that this occlusion strategy becomes less effective as the

number of super-pixels increases since relatively small segments tend to have a uniform

colour distribution because of the pixel continuity—i.e., high correlation of neighbour-

ing pixels—making them visually similar to their respective mean-coloured patches.

Additionally, this undesired phenomenon may affect images that have an out-of-focus

background, e.g., portraits, since their blurry regions will be difficult to remove with

the mean-colour occlusion strategy.

Snow in the Background Observing the influence of each algorithmic component on

the effectiveness of occlusion-based interpretable representations for images, hence

explainers built upon them such as LIME, has prompted us to re-examine some of

the conclusions drawn by Ribeiro et al. (2016, § 6.4). In particular, the inability of

the mean occlusion strategy to discard information—especially so for uniform colour
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Fig. 10 Discretisation is the main building block of interpretable representations for tabular data with

numerical attributes. It can either be learnt based on data features alone—an unsupervised approach shown

in Panel a—or additionally consider their black-box predictions—a supervised approach shown in Panel b.

These examples use a synthetic toy data set with two numerical features and 24 evenly-spaced instances

whose class—red or green—is given by each point’s colour; the background shading indicates the class

prediction provided by the underlying (black-box) model; x′
1 and x′

2 encode the bin assignment for the first

and second feature respectively

patches and high segmentation granularity—casts doubts on the veracity of explana-

tions generated in the famous study of snow (visible in the background of a picture)

biasing predictions of a model deciding between a wolf and an Eskimo dog. The

mosaic effect resulting from this removal proxy—captured by Fig. 7—and the overall

ineffectiveness of this approach—exemplified by Fig. 8—demonstrate acute problems

of the downstream explanations in such a classification scenario. Specifically, consider

segments of this image showing snow, which are replaced with their respective mean

colours, thus producing off-white patches that still resembles snow; for example, com-

pare the bottom-left and the bottom-right super-pixels in Figs. 4a and 8a. These almost

visually indistinguishable alterations are likely to prevent the explainer from capturing

the change in the probability predicted by the model under investigation, as shown by

our experiments and exemplified in Fig. 8, affecting soundness of the resulting LIME

explanations. While such techniques may generate insights into black-box classifiers

and help us to uncover spurious correlations, if not tuned to the problem at hand, stock

explainers may cause more harm than good (Rudin 2019).

3.2 Discretisation-based interpretable representations of tabular data

The two factors that influence the creation of a binary interpretable representation of

tabular data are the instance selected to be explained—which determines the reference

hyper-rectangle—and the ability of the discretisation algorithm to (locally) approx-

imate the black-box decision boundary—which dictates its faithfulness (Sokol and

Flach 2020a). Only the latter property, however, is controlled algorithmically and can

either be explicitly global, i.e., learnt with respect to a whole data set, or local, thus

focusing on a specific neighbourhood. Furthermore, each variant can either observe
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Fig. 11 Some hyper-rectangles x′ = (x′
1, x′

2) created through discretisation become indistinguishable

in the binary interpretable representation x⋆ = (x⋆
1 , x⋆

2) of tabular data. The ⋆ symbol indicates the

explained instance and the background shading marks unique binary encodings x⋆ = (x⋆
1 , x⋆

2) ∈

{(0, 0), (0, 1), (1, 0), (1, 1)}. This example uses a synthetic toy data set with two numerical features

and nine evenly-spaced instances, one per hyper-rectangle created by the discretisation step

just the data distribution, or additionally take into account their black-box predictions,

presenting us with two distinct discretisation approaches:

distribution-aware (unsupervised) based on the density of data in the local or

global region chosen to be explained, e.g.,

quantile discretisation (Fig. 10a); and

class-aware (supervised) partitioning data according to a black-

box decision boundary confined within

the local or global region chosen to be

explained (Fig. 10b).

While the scope and supervision level of a discretisation are the two main properties

that affect the quality of a tabular interpretable representation, other aspects of this

process can be considered as well, a summary of which can be found in relevant

surveys (Kotsiantis and Kanellopoulos 2006; Garcia et al. 2012).

Information Loss Discretisation and binarisation procedures tend to be many-to-one

mappings. The intermediate discrete representation of a tabular IR uniquely encodes

each created hyper-rectangle—see the (x ′
1, x

′
2) coordinates in Fig. 11—explicitly trad-

ing off precision for sparsity and intelligibility. However, the ensuing binarisation step

implicitly loses information whenever a categorical feature has more than two unique

values or a numerical attribute is partitioned into more than two intervals as shown by

the background shading and the (x⋆
1, x⋆

2) coordinates in Fig. 11. Recall that for each

of these binary IR features, 1 is assigned to the partition that contains the explained

data point and 0 to all the other intervals, effectively making the latter categories

indistinguishable.

The impossibility to discern data points belonging to different hyper-rectangles in

the binary interpretable representation is particularly detrimental to the IR’s ability to

capture the intricacy of the black-box decision boundary. While the underlying dis-

cretisation may have closely approximated its shape, these details can be lost when
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transitioning into the binary space, especially if the decision boundary runs across

hyper-rectangles that are merged in this process. For example, consider the discretisa-

tion shown in Fig. 10b, assuming that the explained instance resides in the x ′ = (1, 1)

hyper-rectangle—top row, second column from the left. In the binary representation,

the remaining top-row hyper-rectangles (0, 1), (2, 1) and (3, 1) would be bundled

together—akin to the process depicted by the background shading in Fig. 11—thus

forfeiting the information that the first one belongs to the red class and the latter two

to the green class. A similar grouping will happen in the bottom row, where (0, 0),

(2, 0) and (3, 0) will be merged. Observing this redundancy, nonetheless, can help us

in search of a better mechanism to build tabular interpretable representations.

Faithfulness Since the predominant role of local surrogate explainers is to approximate

and simplify the behaviour of a black box near a selected instance, local and class-

aware discretisation should be preferred. This procedure is a stepping stone towards

representing interpretable concepts that are coherent with predictions of the under-

lying model, thus producing faithful and appealing insights. However, to the best of

our knowledge, class-aware (supervised) discretisation approaches are absent in the

explainability literature. Computationally, their objective can be expressed as max-

imising the purity or uniformity of each hyper-rectangle with respect to the black-box

predictions of data that it encloses—this applies to regression as well as probabilis-

tic and crisp classification models (Kotsiantis and Kanellopoulos 2006; Garcia et al.

2012). In particular, if the underlying task is crisp classification, we can use the Gini

impurity (LG) defined in Eq. 1, where Hi is a set of data points and their labels (x, y)

residing within the i th hyper-rectangle and C is the set of all the unique labels c.

LG(Hi) =
∑

c∈C

pHi (c) ×
(

1 − pHi (c)
)

pHi (c) =
1

|Hi |

∑

(x,y)∈Hi

1y=c

(1)

On the other hand, when the task is regression or probabilistic classification (the

formula applies separately to each individual class in the latter case), we can use the

Mean Squared Error (LMSE)—defined in Eq. 2—to quantify numerical uniformity of

black-box predictions in each hyper-rectangle.

LMSE(Hi) =
1

|Hi |

∑

(x,y)∈Hi

(y − SyHi )
2

SyHi =
1

|Hi |

∑

(x,y)∈Hi

y

(2)

When combining scores of multiple hyper-rectangles to assess the overall quality Q

of an interpretable representation, we opt for a weighted average of individual scores

L to account for the (possibly unbalanced) distribution of data points across these
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segments—see Eq. 3.

Q =
1

∑

Hi
|Hi |

∑

Hi

|Hi | × L(Hi) (3)

We use this formulation to evaluate the faithfulness of a quartile-based tabular IR

(distribution-aware discretisation) used by the popular LIME explainer (Ribeiro et al.

2016), and compare it with a simple tree-based IR (class-aware discretisation), testing

both approaches in a global and local variant.

Quartile IR This interpretable representation is based on quartile discretisation of

continuous features. The partition of the data space can either be global or local—i.e.,

with respect the entire data set or its subset—nonetheless each individual instance

receives a distinct IR due to the binarisation step that follows. For each data point,

global IRs are derived based on a shared discretisation computed for the entire data set.

Local IRs, on the other hand, are composed separately for each instance in the data set

based on samples located in its neighbourhood, which are used for the discretisation

step. We rely on the formula given by Eq. 3 to evaluate the faithfulness of both steps:

discretisation and binarisation. For global discretisation this validation is performed on

the entire data set. All the other approaches are assessed on a subset of data that, centred

around the explained data point, is within the radius of 30% of the maximum Euclidean

distance computed between any two instances in the data set, which simulates locality

of the explanation.

Tree-based IR This interpretable representation is based on a partition of the feature

space learnt by a tree model. Its candidature stems from observing similarity between

the tree learning objective and the proposed faithfulness evaluation metrics. Global

analysis is performed by computing purity of the hyper-rectangles created by a tree

fitted to the entire data set and validated on this training data as well as a local sample

generated separately for each instance in the data set, which is a fair comparison given

that the quartile-based IR can also access the whole data set. The local IR faithfulness,

on the other hand, is calculated independently for each instance in the data set by

learning a tree model on a subset of data that, centred around the explained instance, is

within the radius of 30% of the maximum Euclidean distance computed between any

two instances in the data set, with the same data subset used to evaluate the quality of

the resulting hyper-rectangles.

Experiments We compare faithfulness of these two tabular interpretable representa-

tions on four real-life data sets, two of which are classification and the other two

regression problems:

– wine recognition2 (classification);

– breast cancer Wisconsin diagnostic3 (classification);

2 https://archive.ics.uci.edu/ml/datasets/wine
3 https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
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Fig. 12 Interpretable representations based on decision trees achieve better faithfulness of hyper-rectangles

(y-axes, lower is better) with fewer encodings (x-axes, small jitter added for readability), i.e., they are more

flexible and expressive. This property is measured with a weighted average (over IR hyper-rectangles) of

Gini impurity for classification tasks and mean squared error for regression or probabilistic classification

tasks. The number of unique encodings generated by quartile-based IRs is constant for a data set and it

is displayed in the legend, shown as the maximum number of encodings used, out of the theoretical limit

supported by the IR; for tree-based IRs, on the other hand, it is equivalent to the number of leaves, which

is recorded on the x-axes. Panels c and d do not capture the tree width at which this IR outperforms the

global and local quartile discretisation steps alone, which is 80 or 64 (compared to 441 or 337) and 224 or

112 (compared to 428 or 245) respectively for the housing and diabetes data sets
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– Boston house prices4 (regression); and

– diabetes5 (regression).

Using these data, we evaluate quartile- and tree-based IRs in two variants:

global where a single discretisation is generated for all the data points

(and, in case of the quartile method, followed by creation of

instance-specific binary IRs); and

local where a collection of distinct discretisations is composed sep-

arately for each individual data point (and then binarised based

on the same instance for the quartile method).

In addition to evaluating the quartile-based binary interpretable representation, we

compute faithfulness of the intermediate discretisation step to facilitate an in-detail

comparison. The results of our experiments are depicted in Fig. 12, which reveals

that tree-based IRs require a fraction of the expressiveness—i.e., unique encodings in

the binary interpretable space—used by the quartile-based IRs to achieve a compara-

ble level of hyper-rectangle faithfulness, especially in the local variant. This can be

understood as tree-based interpretable representations being better able to capture the

intricacies of the underlying (black-box) labelling mechanism with less complexity to

the benefit of the ensuing explanations.

More precisely, Fig. 12 displays the impurity of interpretable representations

achieved for a range of different tree widths, with the x-axes showing the limit imposed

on the number of leaves. In each case, the leaves number can be compared to the num-

ber of unique hyper-rectangles generated by the discretisation and binarisation steps of

the corresponding quartile-based IR. The y-axes, on the other hand, depict weighted

Gini impurity or mean squared error, respectively for classification and regression

tasks, computed for all the hyper-rectangles of each individual IR (Eq. 3). The dotted

green and dashed pink lines labelled as “global quartile discretisation” and “local quar-

tile discretisation” are the measure of impurity for the quartile discretisation step that

underlies this type of an IR. The solid green and pink lines surrounded by shading—

marked as “global quartile binarisation” and “local quartile binarisation”—correspond

to the mean and standard deviation of the hyper-rectangle impurity scores computed for

the global and local variants of quartile-based binary IRs (i.e., discretisation followed

by binarisation) for each individual instance in a data set. Equivalent measurements

are taken for the global and local tree-based IRs for a range of tree widths: “tree

global” depicted in blue (the ⋆ symbol corresponds to evaluation on the entire data

set whereas the curve captures the same measurement for the neighbourhood of each

instance) and “tree local” plotted using the red curve, with the error bars denoting the

standard deviation. In all of the plots, a lower score on the y-axes—capturing weighted

faithfulness of an IR—is better.

The pair of numbers placed in brackets next to the quartile discretisation and binari-

sation labels in the legend of each plot communicates the maximum number of distinct

hyper-rectangles for the former, and their binarisation-driven combinations for the lat-

ter, that are being used by the validation data, out of all the possible unique values that,

4 https://archive.ics.uci.edu/ml/machine-learning-databases/housing
5 https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html
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respectively, the quartile discretisation and its binarisation can theoretically encode.

These quantities are directly comparable to the width of trees—recorded on the x-axes

of the plots—used to partition the feature space to compose the tree-based IRs. Given a

lack of a black-box model, whose predictions should be used to capture the distribution

of the target variable within each hyper-rectangle, we instead utilise the ground truth

provided with the aforementioned data sets since this proxy does not affect the valid-

ity of our experiments in any way. In summary, Fig. 12 illustrates that interpretable

representations created with decision trees are more pure (i.e., uniform) than their

quartile-based alternatives, therefore they are superior at capturing the complexity of

the underlying labelling mechanism, whatever it may be. Furthermore, they achieve

better performance with just a fraction of the encodings required by the other method,

i.e., they are more expressive because of the elaborate (class-aware) mechanism used

by decision trees to partition and merge a feature space.

4 Linking interpretable representationswith surrogatemodels:
analysis of tabular data explainability

Interpretable representations are paired with transparent predictive models to form sur-

rogate explainers (Sokol et al. 2019). Linear models are a common choice that allows

to capture the influence of human-comprehensible concepts on black-box predictions

(Friedman and Popescu 2008; Ribeiro et al. 2016), in which case such explanations—

determined by the coefficients of the underlying surrogate linear classifier—are subject

to assumptions and limitations of these models. In particular, such explanatory insights

can be deceiving when the target variable is non-linear with respect to data features,

the attributes are co-dependent or correlated, and the feature values are not normalised

to the same range (Sokol et al. 2019; Sokol and Flach 2020b). Intuitively, the first two

properties may not hold for high-level interpretable representations since their compo-

nents are highly inter-dependent—e.g., adjacent image segments, neighbouring words

and bordering hyper-rectangles—therefore the resulting explanations can misrepre-

sent the possible relations between these concepts and the behaviour of the explained

black box. Friedman and Popescu (2008) addressed some of these concerns by using

logical rules extracted from random forests as the binary interpretable concepts, which

they then modelled with a linear predictor; however, the overlap between these rules

still violates the feature independence assumption.

In addition to these limitations, linear models are inherently incompatible with the

interpretable representation of tabular data introduced in Sect. 2.3. Recall that the

information loss suffered when transitioning from the discrete into the binary repre-

sentation partially forfeits the preceding effort of the discretisation step to faithfully

capture the black-box decision boundary. The undesired side effect of this procedure

adversely affects the weights of the linear model trained on top of such a binary IR.

This can be observed by deriving an analytical solution to ordinary least squares in

this specific setting, which is presented in Eq. 4 for a toy example with two numerical

features similar to the scenario shown in Fig. 13. In this case, the coefficients 2W of

the OLS model depend on:
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Fig. 13 Example of a discrete representation x′ = (x′
1, x′

2) and binary IR x⋆ = (x⋆
1 , x⋆

2) of tabular data.

The ⋆ symbol represents the explained instance. (Refer to Fig. 11 for a description of the toy data set used

here)

1. the number of data points wij in the hyper-rectangles determined by the x⋆ = (i, j)

coordinates of the binary interpretable representation; and

2. the average black-box prediction Sy in various IR partitions denoted by Wij , with

the set of all the data points given by W .

This formulation can be generalised to an arbitrary number of dimensions spanning

numerical and categorical features, and it is applicable to regressors as well as crisp

and probabilistic black-box classifiers. The derivation of this result is outlined in

Appendix A.

2W =







1 w11+w10
∑

wij

w11+w01
∑

wij

1 1 w11
w11+w10

1 w11
w11+w01

1







−1

×





SyW

SyW11∪W10

SyW11∪W01



 (4)

This outcome allows us to draw conclusions about the meaning of the interpretable

concept influence given by the coefficients of a linear surrogate when the intercept is

modelled (red and blue shading in Eq. 4), and without it (blue shading). In particular,

the influence of interpretable concepts is solely based on:

– the proportion determined by the number of the data points residing in the

explained hyper-rectangle (W11) divided by the count of points located in the

hyper-rectangles aligned with the explained hyper-rectangle along every axis, i.e.,

W11 ∪ W10 for the first feature and W11 ∪ W01 for the second attribute; and

– the average value predicted by the explained black box in the latter two

subspaces—W11 ∪W10 and W11 ∪W01—scaled appropriately when the intercept

is modelled.

For example, consider Fig. 13 where x⋆
1 denotes the first binary interpretable feature

and x⋆
2 the second. In this case, W11 is the yellow hyper-rectangle; W11 ∪ W10 is the

union of the yellow and green hyper-rectangles; and W11 ∪ W01 is the combination
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of yellow and blue hyper-rectangles. Finally, SyW11∪W10
is the average prediction in

the vertical green and yellow column, and SyW11∪W01
is the average prediction in the

horizontal blue and yellow row.

When modelled, the intercept value is additionally determined by:

– the proportion given by the number of data points in the hyper-rectangles aligned

with the explained hyper-rectangle along every axis, divided by the total number

of data points; and

– the average value predicted by the black box for all the data points.

Intuitively, the instances not aligned with the explained hyper-rectangle—the red

blocks in Fig. 13—are assigned the x⋆ = (0, 0) coordinates in the binary interpretable

representation, therefore they cannot contribute to the feature coefficients of a linear

model, just the intercept. This can be easily seen with the g(x⋆; 2) =
∑n

i=0 2ix
⋆
i for-

mula, where x⋆
0 = 1 is the phantom feature and the remaining data features x⋆

1, . . . , x⋆
n

are all 0; therefore, these instances can only influence the intercept coefficient 20.

An important insight uncovered by our results is partial insignificance of the

discretisation quality given a fixed number of data points placed in the identified

collections of relevant hyper-rectangles. Using this property we can manipulate the

explanation by altering the number of data points in meaningful partitions, with the

discretisation faithfulness having relatively minor influence. For example, consider

the two discretisations depicted earlier in Fig. 10, assuming that the explained hyper-

rectangle is x ′ = (1, 1) for both panels, and that the x ′ = (1, 0) and x ′ = (1, 1)

partitions in Fig. 10b have three additional data points each. In this scenario, when

modelling the influence of interpretable components without the intercept, the only

difference between these two cases are the black-box predictions of the instances

placed in the expanded hyper-rectangles, i.e., x ′ = (1, 0) and x ′ = (1, 1), since:

Figure 10a w11 = 4, w01 = 4+4 = 8 and w10 = 4, leading to w11
w11+w10

=
4

4+4
= 1

2
and w11

w11+w01
= 4

4+8
= 1

3
; and

Figure 10b w11 = 2+3 = 5, w01 = 4+4+2 = 10 and w10 = 2+3 = 5,

leading to w11
w11+w10

= 5
5+5 = 1

2 and w11
w11+w01

= 5
5+10 = 1

3 .

Depending on the gradient smoothness of the underlying probabilistic black box,

these explanations may slightly differ. However, if the additional six data points are

placed such that the average black-box predictions of W11 ∪ W10 and W11 ∪ W01

are identical across both discretisations, the resulting explanations will be the same.

Alternatively, if they are crisp predictions instead of class probabilities, the two expla-

nations will also be indistinguishable regardless of where the additional six instances

are situated within their respective hyper-rectangles. Note that in general it is easier

to manipulate the explanations when dealing with crisp predictions rather than prob-

abilities as we only have to consider which side of the black-box decision surface—if

one runs across a given hyper-rectangle—to place each data point. The added benefit

of this observation is evidence that discretising each numerical feature into more than

three bins is not necessarily beneficial, with the most important partition boundaries

being the ones enclosing the explained data point. 6

6 To facilitate further exploration of the explanatory setting discussed in this section we implemented a

no-code interactive widget within a Jupyter Notebook and published it on GitHub at https://github.com/

123

https://github.com/fat-forensics/resources/tree/master/tabular_surrogate_builder


Interpretable representations in explainable AI…

This complex relation between explanations, the discretisation underlying an inter-

pretable representation and the distribution of data points transformed by the IR to fit

a surrogate linear model must be well-understood to ensure the veracity of explana-

tory insights. Given how sensitive an explanation is to these factors, small variations

to the parameterisation of the aforementioned building blocks may sometimes yield

disparate or even opposing insights into the behaviour of a black box. Such coun-

terintuitive explanations can, for example, be achieved by shifting the discretisation

boundaries for a fixed data sample, or instead by moving around these instances with

a fixed IR. The discretisation process should therefore be optimised to guarantee the

most truthful explanation that cannot be easily swayed by altering the data sample

either in its distribution or size.

To overcome some of these problems and facilitate explanations that are more

diverse than influence of interpretable concepts, alternative surrogate models can be

used (Sokol et al. 2019). Logical predictors, such as decision trees, are particularly

appealing given that they provide a wide range of explanations and they do not intro-

duce any restrictions on the behaviour or interrelation of features, albeit they do impose

axis-parallel partition of the feature space (Sokol and Flach 2020b; Sokol 2021). They

are particularly suited for explaining tabular data, for which they alleviate the need

for a separate interpretable representation as noted in the previous section. In particu-

lar, they can automatically learn a locally faithful, class-aware discretisation, with the

added benefit of modelling combinations of hyper-rectangles and not suffering from

information loss or stochasticity when applying the IR transformation (Sokol et al.

2019). In the following section we explore more guidelines that can help us to design

and build robust and trustworthy interpretable representations with well-understood

properties.

5 Towards robust and trustworthy interpretable representations

Our investigation of interpretable representations has revealed that a one-size-fits-

all approach is often suboptimal. As with many other steps of the machine learning

workflow, IRs need to be crafted for the problem at hand to be useful, reliable, robust

and trustworthy (Rudin 2019; Sokol and Flach 2021). Moreover, the way in which

an interpretable representation is built and operationalised determines the meaning

of the resulting explanations in addition to constraining their possible types and

compatible communication media. IR properties and desiderata should therefore be

well-understood, guiding their development and deployment in each unique context.

By following best practice—aspects of which are outlined below—we can improve

veracity and faithfulness of post-hoc and model-agnostic explainers that rely on IRs,

thus address some criticism of these techniques (Rudin 2019). Notably, consulting

the latest findings in each relevant discipline—natural language processing, computer

vision and discretisation of numerical data—can offer a treasure trove of insights and

contribute core concepts to the fundamental design of interpretable representations.

fat-forensics/resources/tree/master/tabular_surrogate_builder. It allows to investigate the influence of the

numerical feature discretisation and the number of data points placed in each hyper-rectangle on the surrogate

explanation extracted from a linear model by manually adjusting these parameters.
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Popular data pre-processing and feature engineering techniques used across these

domains can be adapted to build more informative IRs; for example, word clustering

for text data, object detection and semantic segmentation for images, and subgroup

discovery for tabular data.

Information Loss While the many-to-one mapping pertinent to tabular IRs may seem

detrimental at first due to the resulting loss of information, this procedure creates spar-

sity and reduces the perceived complexity of the data, which are often a prerequisite

of human intelligibility (Sokol and Vogt 2023). This situation is unique to tabular

data since both images and text are inherently comprehensible. Given the necessity

of representing numerical features as human-understandable categories, the mapping

should focus on eliciting the most insightful concepts and only discard redundant

information (refer to Sect. 3.2); for example, partitioning a range of numbers into

relatively uniform bins with respect to the underlying labels while ensuring that they

are also meaningful to explainees. Notably, non-adjacent numerical intervals can be

combined into a single interpretable concept if such an aggregation improves human

understanding. The discretisation process should be driven by precise optimisation

and evaluation objectives that are defined based on the explanatory context, domain

constraints and user expectations. Since different thresholds can yield distinct or even

opposing explanations—thus adversely impacting their trustworthiness—it is impor-

tant to set out well-defined goals and metrics that capture these properties in detail.

Optimisation and Evaluation Criteria Interpretable representation desiderata should

be formalised to allow for straightforward IR optimisation, testing and comparison

both with respect to domain-specific characteristics and technical properties, thus pre-

cisely guiding the development and evaluation of IRs. While the former objective is

difficult to define in an application-agnostic way, the latter should take into consid-

eration the structure of the entire data or the specific neighbourhood being explained

(refer to Sect. 3.2). Since human comprehension of text is intrinsically consistent

with how the corresponding IRs are operationalised—i.e., switching concepts on and

off by removing relevant words from an excerpt of text—these criteria appear to be

entirely encapsulated by the user’s perception of individual tokens, which largely

depends on the underlying pre-processing step (refer to Sect. 2.1). A similar line of

reasoning applies to images, regardless of whether the IR is based on edge detection

or semantic segmentation; the objective is to separate visual concepts that are dis-

tinct from a human perspective and relevant to the predictive task being explained

(refer to Sects. 2.2 and 3.1). For example, an algorithmically generated image IR can

be improved by merging, possibly non-adjacent, super-pixels representing the back-

ground of an object into a single interpretable concept.

Tabular data, on the other hand, in themselves provide a rich source of information

that can be used to algorithmically navigate the discretisation process that underpins

the corresponding interpretable representation. Characteristics such as data density,

distribution, their black-box predictions and confidence thereof can be used to parti-

tion a feature space into geometrically consistent and homogeneous concepts. Generic

metrics that determine the purity, uniformity and faithfulness of discretised data can

be utilised to this end; for example, see the evaluation strategy proposed in Sect. 3.2.
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While our analysis showed that discretising each numerical attribute into more than

three bins is not necessarily beneficial (refer to Sect. 4), this is purely a consequence of

the hyper-rectangle merging procedure employed by the binarisation step that follows.

By designing a more complex transformation function from the discrete space into the

binary interpretable representation, the IR can benefit from higher discretisation gran-

ularity, e.g., consider allowing multiple hyper-rectangles to contribute to the explained

concept. Additional improvements can include only using intervals that are bounded

from each side to narrow down the scope of the explanation and prevent it from being

biased by out-of-distribution instances. The optimisation and evaluation of tabular

IR discretisation can further be enhanced by domain-specific knowledge that assigns

a human-comprehensible concept to each partition, akin to how image segmentation

may be assessed based on the semantic consistency of visual object separation. Finally,

in addition to an independent validation of IR quality, the robustness and stability of

the resulting explanations can be measured while varying IR parameters (Sokol et al.

2022a).

Human-in-the-loop Design Explainee-driven interactive creation or personalisation of

interpretable representations is an interesting avenue of research on the crossroads of

explainable artificial intelligence and human–computer interaction (Sokol and Flach

2018, 2020c; Lage and Doshi-Velez 2020). It has the potential to formulate further

recommendations for the composition and operationalisation of IRs for individual

applications, but such a solution comes at the expense of a user-in-the-loop architec-

ture that may be difficult to automate and scale. This design choice, however, can be

easily justified since constructing an interpretable representation that is intelligible and

useful is often user- and application-dependent or even unique to the explained data

point. Moreover, the core premise of IRs is to encode concepts that are meaningful to

the target audience and relevant to the question that prompted the need for explainabil-

ity in the first place, thus relying upon computer-generated IRs without communicating

their behaviour and properties to the explainees may be counterproductive (refer to

Sect. 3.1). While promising, scaling up human-in-the-loop interpretable representa-

tions appears to be impractical without a concrete deployment use case.

Information Removal (Proxy) The interpretable representations th at we deal with in

this paper capture human-intelligible concepts that can be switched on or off. This

process defines the explanatory fact and foil, the distinction between which forms

the basis of insights into the predictive behaviour of the model under investigation.

Given the significance of this procedure, the difference between the two should be

semantically meaningful as well as computationally effective in the chosen operational

context (refer to Sect. 3). To this end, the strategy used to discard information from the

explained instance must achieve its goal and avoid introducing unintended biases, both

of which can be measured by observing the response of a black box when predicting

data manipulated via an interpretable representation. This process does not affect text

since its IRs support a direct removal of tokens and relevant predictive models can

handle instances that have been altered in this way, however images and tabular data

require an algorithmic proxy.
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For images, this is achieved through content replacement, with retouching, object

injection and region occlusion being the most popular choices (see Sect. 2.2 for more

details). While the evidence presented in Sect. 3.1 clearly shows the disadvantage of

using mean-colour occlusion and a relatively comparable properties of all the other

tested colouring strategies, our results may not generalise to different image data

sets and black-box models, therefore a similar analysis should be performed prior to

deciding on the content replacement technique. Even if such an investigation shows

that, overall, a selected information removal proxy behaves comparably to others for a

specific setup, it may still be inappropriate for a particular image and explained class.

For example, the white and black occlusion strategies are nearly indistinguishable in

our experiments (refer to Fig. 9), but employing the former for the dog image used

across this paper for illustration purposes (shown in Fig. 3) may be ineffective for

explaining it, and winter scenery in general, given the photo’s snowy background.

Therefore, unless the data domain is highly homogeneous—e.g., all pictures follow a

fixed object presentation pattern and colour scheme—the information removal proxy

may need to be configured on a case-by-case basis.

An information removal proxy for tabular data is more complex given that it oper-

ates on an interpretable representation that is based on discretisation of numerical

attributes followed by a binarisation step. Specifically, switching off an IR element

is equivalent to placing the value of the corresponding numerical feature outside of

the range encoded by this concept; or, if the attribute is categorical, choosing any

other value not captured by this concept. Therefore, this operation should ensure that

moving data between different hyper-rectangles (or their collections) determined by

distinct binary interpretable spaces is semantically meaningful and corresponds to

abstractions that can be captured computationally (e.g., by monitoring the change of

black-box predictions for these instances).

When working with categories generated via discretisation, a step in this direc-

tion can be a more informed process of merging these hyper-rectangles into binary

concepts—in contrast to doing so based on their geometrical alignment—in addition

to narrowing down the scope of the foil by explicitly bounding the numerical ranges

instead of comparing spaces that cannot be easily represented by finite data sam-

ples. A similar strategy may also be applied to images and text, where (non-adjacent)

super-pixels and word-based tokens can be combined into a single IR component.

Additionally, with a well-crafted tabular interpretable representation, the volatility of

explanations may be reduced since such an IR becomes less reliant on the distribution

of the (possibly random) data sample transformed into this domain and used to train a

local surrogate model (refer to Sect. 4). Nonetheless, building an IR that expresses the

fact and the foil as complementary events and allows to intuitively manipulate them

by tweaking each IR component independently may be impractical or impossible to

achieve, in which case self-contained regions that do not directly rely on manipu-

lation of individual feature values—e.g., determined by decision tree leaves or data

clustering—offer an attractive alternative.

Stochasticity Surrogate explainers—a big beneficiary of interpretable

representations—sample the data required to train the (local) model directly from the

binary IR (Ribeiro et al. 2016). While reasonable for images and text where generating
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data by manipulating raw pixels, letters or words may easily introduce inconsistencies,

following the same procedure for a tabular IR entails converting the binary sample

back into the original domain (to be predicted by the explained black box), which

requires random sampling because of the many-to-one forward transformations—see

Fig. 5 for reference. 7 Specifically, to execute this process we first choose at random

one of the merged hyper-rectangles if the binary component is 0; 1 uniquely identi-

fies a hyper-rectangle in our case. Next, we draw a numerical value from the range

defined by this hyper-rectangle, e.g., using a (truncated) Gaussian distribution fitted to

the (training) data enclosed by this hyper-rectangle; categorical features are uniquely

identified by a hyper-rectangle. However, tabular data can be sampled in their original

representation, which removes the need for this stochastic operation, thus improving

robustness and decreasing volatility of surrogate explanations (Sokol et al. 2019).

Data drawn from the original domain can be easily transformed into a discrete

representation and then binarised. Moving in the opposite direction in a determinis-

tic fashion requires memorising the correspondence between these points in different

representations when executing the forward transformation. This matching offers an

algorithmic workaround that can be compared to storing the pixel structure and seg-

ment adjacency for images or a sentence skeleton and any pre-processing steps for text.

By sampling in the original domain and connecting different representations of each

instance we avoid using the stochastic inverse IR transformation of tabular data, hence

reduce randomness and improve stability of the resulting explanations. However, this

strategy forfeits the implicit locality and diversity achieved by operating directly on the

binary representation, therefore the substitute sampling algorithm should directly tar-

get a well-defined subspace to carefully capture the behaviour of the explained black

box in this region (Sokol et al. 2019). More broadly, recognising the strengths and

weaknesses of individual components from which explainability algorithms are built

allows us to adapt their architecture accordingly, creating the best possible explainer

for the problem at hand (Sokol et al. 2022a).

Alternative Surrogate Models Interpretable representations offer a sparse and human-

comprehensible medium for communicating explanations of black-box models and

their predictions. Section 4, nonetheless, demonstrated that certain pairings of IRs and

surrogate models yield defective explainers whose insights can be misleading or out-

right incorrect. Given the data pre-processing that interpretable representations entail,

logical predictive models appear to be a good (surrogate model) candidate since they

are inherently transparent and intelligible. In particular, rule lists and decision trees

should be considered to this end, with the latter choice being especially appealing

for tabular data for which they can automatically compose an IR in addition to mod-

elling it (Sokol et al. 2019). Moreover, they account for feature interactions, and their

optimisation procedure is well-aligned with the IR faithfulness objectives discussed

in Sect. 3.2. While tree training procedures tend to be greedy, alternatives that con-

7 Transitioning from an original into a discrete representation is a many-to-one operation if the underlying

data set contains numerical features. Transforming the discrete representation into a binary IR is also a

many-to-one mapping if any discretised attribute has more than two unique values. Section 3.2 discusses

the information loss pertinent to tabular interpretable representations in more detail.

123



K. Sokol, P. Flach

sider multiple features at any given iteration could improve the quality of the resulting

interpretable representations and surrogate explainers even further.

6 Conclusion and future work

Our findings show the importance of building robust, trustworthy and algorithmi-

cally sound interpretable representations as well as their role in defining the question

answered by the resulting explanations and veracity thereof. Among others, we demon-

strated that building IRs with generic algorithms may lead to subpar explainers, and

that the intended application domain and audience should always be accounted for, in

addition to considering interactive customisation and personalisation of interpretable

representations. In particular, we discussed a popular operationalisation of IRs for

image, text and tabular data in which they are used as binary indicators of presence

and absence of human-intelligible concepts. This framework is then combined with

surrogate models to quantify the influence of such concepts on individual black-box

predictions.

In this setting, we identified challenges such as implicit assumptions, flawed infor-

mation removal proxies, undesired parametrisation choices, insufficient faithfulness

and transformation stochasticity—which are particularly prominent for tabular and

image data—and showed how to overcome them. We also demonstrated the limi-

tations of explaining binary interpretable representations of tabular data with linear

models and suggested logical models as a viable alternative. Our findings reinforce the

importance of considering the structure of the data, especially in the neighbourhood

of the explained instance, when transforming them into an IR as well as having a well-

defined objective and evaluation metric to aid in IR construction and optimisation.

Many of these goals can be achieved by drawing inspiration from the fields of com-

puter vision, natural language processing and data discretisation, and more broadly

data wrangling and modelling in machine learning, which can inform better design of

interpretable representations.

Our future work will investigate algorithmic information removal proxies, focus-

ing on meaningful and effective occlusion approaches for images and feature value

replacement techniques for tabular data; we will also look into user-in-the-loop design

of interpretable representations. Furthermore, we will survey inherently transparent

models that are best suited to various IRs, ensuring their technological compatibility

and explanatory appeal, in particular focusing on different types of logical predictive

models. To enable safe adoption of interpretable representations in real-life appli-

cations we will finally evaluate the most promising approaches with targeted user

studies.
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A Derivation of OLS explanations for binary IRs of tabular data

When analysing the behaviour of algorithmic black boxes with surrogate explainers,

linear models can be used to quantify the positive or negative influence of interpretable

concepts extracted from a data point of interest on its black-box prediction (Friedman

and Popescu 2008; Ribeiro et al. 2016; Sokol et al. 2019). For some binary interpretable

domains, however, such an approach is inherently flawed; it is particularly problematic

for tabular data transformed into the binary interpretable representation introduced in

Sect. 2.3, i.e., achieved through feature discretisation followed by a binarisation step.

In this appendix, we derive a closed-form expression of this explanation type, which

allows us to demonstrate how the influence of an interpretable concept measured by

the coefficients of a linear model may be deceiving. The insights stemming from

our analysis can be used to manipulate surrogate explanations, e.g., those produced

by LIME (Ribeiro et al. 2016), through a specially crafted, yet perfectly valid, IR

discretisation and data sample.

Our results are based on the analytical solution to unweighted (2) and weighted

(2W) Ordinary Least Squares outlined in Eqs. 5 and 6 respectively, where W is the

weight matrix, X is the binary interpretable representation data matrix, and y is a

vector holding the corresponding black-box predictions. In our analysis, we assume

that the model under investigation is a probabilistic classifier, in which case y captures

probabilities of the explained class; nonetheless, a similar line of reasoning applies to

regressors and crisp classifiers. In the latter scenario, the elements of y are assumed

to be 1 when the black-box predictions are the same as the explained class, and 0 for

any other class. Modelling y in such a way generates one-vs-rest explanations—i.e.,

evidence for the black box predicting the explained rather than any other class—akin to

the insights produced for probabilistic black boxes, for which the surrogate is trained
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only on the probabilities of the explained class. Therefore, both approaches measure

the influence of interpretable concepts—determined by the coefficients of the linear

model—on a selected class when tasked with telling it apart from all the other classes.

2 = (XT X)−1 XT y (5)

2W = (XT WX)−1 XT Wy (6)

In the interest of brevity and readability, we analyse tabular data with two numerical

features—similar to the examples shown in Figs. 11 and 13—nonetheless our findings

generalise to an arbitrary number of attributes that are both categorical and numerical.

In a generic setting, for n features there will be n binary concepts with 2n unique

encodings in the interpretable representation (the cardinality thereof). If additionally

we choose to model the intercept of the linear regression, a phantom all-1 column

vector is inserted at the front of the data matrix X. Therefore, the XT X and XT WX

components of 2 and 2W respectively are square matrices of n × n shape sans the

intercept or (n + 1) × (n + 1) when the intercept is modelled.

Figure 11 depicts a simplistic view of data sampling for two numerical attributes

with just one instance in each discrete hyper-rectangle. In reality, however, we should

expect their large quantity since it allows to better approximate the behaviour of the

underlying black box, especially when the number of features is high. In this particular

case, the binary interpretable representation data matrix X—with the first column (red)

inserted to model the intercept and the remaining columns (blue) representing the

binary data—is:

X =




















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1 1 0

1 1 0

1 0 1

1 0 1

1 0 0

1 0 0

1 0 0

1 0 0
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






















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,

which gives:

XT X =





1 1 1 1 1 1 1 1 1

1 1 1 0 0 0 0 0 0

1 0 0 1 1 0 0 0 0



 ×














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











1 1 1

1 1 0

1 1 0

1 0 1

1 0 1

1 0 0

1 0 0

1 0 0

1 0 0
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
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
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
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=





9 3 3

3 3 1

3 1 3



.

123



Interpretable representations in explainable AI…

Since some of the hyper-rectangles are merged when transitioning from the discrete

into the binary interpretable representation, X contains duplicated rows. The influence

of this phenomenon is magnified even further when multiple data points are placed

within a single hyper-rectangle. Without loss of generality, we can use the weighted

variant of OLS with the data set X composed of only one copy of each unique binary

data point and the weights corresponding to their counts. In this case:

X =









1 1 1

1 1 0

1 0 1

1 0 0









and W =









w11 0 0 0

0 w10 0 0

0 0 w01 0

0 0 0 w00









,

where wij is the count of data points residing in all of the hyper-rectangles that

are assigned the (i, j) coordinates in the binary interpretable representation—see the

(x⋆
1, x

⋆
2) coordinates in Fig. 11 for reference. Therefore, for an arbitrary number of

instances in a data set with two numerical features when modelling the intercept:

XT WX =





1 1 1 1

1 1 0 0

1 0 1 0



 ×









w11 0 0 0

0 w10 0 0

0 0 w01 0

0 0 0 w00









×









1 1 1

1 1 0

1 0 1

1 0 0









=





w11 w10 w01 w00

w11 w10 0 0

w11 0 w01 0



 ×









1 1 1

1 1 0

1 0 1

1 0 0









=





∑

wij w11 + w10 w11 + w01

w11 + w10 w11 + w10 w11

w11 + w01 w11 w11 + w01



.

For the example in Fig. 11—where w11 = 1, w10 = 2, w01 = 2 and w00 = 4—a

calculation for the weighted variant agrees with the previous result computed directly

for XT X.

Next, we analyse the second component of the 2W formula:

XT Wy =





1 1 1 1

1 1 0 0

1 0 1 0



 ×









w11 0 0 0

0 w10 0 0

0 0 w01 0

0 0 0 w00









×









y11

y10

y01

y00









=





w11 w10 w01 w00

w11 w10 0 0

w11 0 w01 0



 ×









y11

y10

y01

y00









=





∑

wijyij

w11y11 + w10y10

w11y11 + w01y01



.
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This formulation, however, presupposes that all of the data points that share the same

(i, j) coordinates in the binary interpretable representation have the same target value

(i.e., black-box prediction) yij . To allow multiple copies of the same instance with

different target values, we generalise this result by going back to 2, which is the

solution to the classic OLS. This approach is valid since weighted OLS for which the

weights represent the count of each unique data point is equivalent to classic OLS

for a data set whose instances are duplicated according to the counts given by the

corresponding weights.

Let us denote f : X → Y as the black-box model and IR : X → X ⋆ as the trans-

formation function from tabular data X into their binary interpretable representation

X ⋆. Let us further define Wij = {x ∈ X : IR(x) = (i, j)} as the set of all the data

points that are assigned to the same hyper-rectangle (i, j) in the binary interpretable

representation, and W = X as the set of all the data points. Now, recall that wij is

the count of data points whose binary interpretable representation is (i, j), therefore

|Wij | = wij and |W| =
∑

wij . Without loss of generality, we can reformulate the

XT Wy part of the 2W equation as XT y, which allows us to sum over all of the unique

black-box predictions of instances assigned to particular hyper-rectangles:

XT y =





∑

wijyij

w11y11 + w10y10

w11y11 + w01y01



 =





∑

i∈W yi
∑

i∈W11∪W10
yi

∑

i∈W11∪W01
yi



.

This step allows us to relax the assumption of duplicated target values yij , hence avoid

imposing restrictions on the type of the model under investigation (probabilistic, crisp

or regressor) and whether the binary representation has full fidelity with respect to the

black box. 8

Finally, to better understand the meaning of influence-based explanations, we refor-

mulate the sum of black-box predictions as their average:

XT y =





∑

i∈W yi
∑

i∈W11∪W10
yi

∑

i∈W11∪W01
yi



 =





∑

i∈W yi/
∑

wij ×
∑

wij
∑

i∈W11∪W10
yi/(w11 + w10) × (w11 + w10)

∑

i∈W11∪W01
yi/(w11 + w01) × (w11 + w01)





=





SyW ×
∑

wij

SyW11∪W10
× (w11 + w10)

SyW11∪W01
× (w11 + w01)





=





1 0 0

0 1 0

0 0 1



 ×





SyW ×
∑

wij

SyW11∪W10
× (w11 + w10)

SyW11∪W01
× (w11 + w01)





8 Note that in the original formulation of XT Wy instances located within each hyper-rectangle determined

by the underlying interpretable representation are assumed to share the same black-box prediction. This

constraint makes the original weighted solution incompatible with regressors and probabilistic classifiers

that are in need of explainability; for crisp classifiers, on the other hand, it implies that the binarised data

space respects the black-box decision surface, i.e., it achieves full fidelity.
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=





∑

wij 0 0

0 w11 + w10 0

0 0 w11 + w01



 ×





SyW

SyW11∪W10

SyW11∪W01



,

and combine this result with XT WX:





∑

wij w11 + w10 w11 + w01

w11 + w10 w11 + w10 w11

w11 + w01 w11 w11 + w01





−1

×





∑

wij 0 0

0 w11 + w10 0

0 0 w11 + w01





×





SyW

SyW11∪W10

SyW11∪W01





=





∑

wij w11 + w10 w11 + w01

w11 + w10 w11 + w10 w11

w11 + w01 w11 w11 + w01





−1

×







1
∑

wij
0 0

0 1
w11+w10

0

0 0 1
w11+w01







−1

×





SyW

SyW11∪W10

SyW11∪W01





=













1
∑

wij
0 0

0 1
w11+w10

0

0 0 1
w11+w01






×





∑

wij w11 + w10 w11 + w01

w11 + w10 w11 + w10 w11

w11 + w01 w11 w11 + w01











−1

×





SyW

SyW11∪W10

SyW11∪W01





=







1 w11+w10
∑

wij

w11+w01
∑

wij

1 1 w11
w11+w10

1 w11
w11+w01

1







−1

×





SyW

SyW11∪W10

SyW11∪W01



.

This formulation demonstrates an unexpected role of the:

1. number of data points sampled in each hyper-rectangle on the resulting explanations

(magnitudes of concept influence); and

2. irrelevance of the feature partitions other than the ones determining the hyper-

rectangles that directly enclose the explained instance.

A more detailed discussion of the interpretation and significance of this result can be

found in Sect. 4.
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