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Abstract
Individual and societal systems are open systems continuously affected by their situ-
ational context. In recent years, context sources have been increasingly considered 
in different domains to aid short and long-term forecasts of systems’ behavior. Nev-
ertheless, available research generally disregards the role of prospective context, 
such as calendrical planning or weather forecasts. This work proposes a multiple-
input neural architecture consisting of a sequential composition of long short-term 
memory units or temporal convolutional networks able to incorporate both historical 
and prospective sources of situational context to aid time series forecasting tasks. 
Considering urban case studies, we further assess the impact that different sources 
of external context have on medical emergency and mobility forecasts. Results 
show that the incorporation of external context variables, including calendrical 
and weather variables, can significantly reduce forecasting errors against state-of-
the-art forecasters. In particular, the incorporation of prospective context, generally 
neglected in related work, mitigates error increases along the forecasting horizon.
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1 Introduction

Geophysical, societal, ecological, organizational, agro-food and biological systems 
are situated systems, whose behavior affects and is affected by the surrounding envi-
ronment. Considering urban systems, mobility dynamics are inherently dependent 
on calendar status and affected by large-scale events, roadblocks, and meteorologi-
cal conditions, impacting demand and transport mode preferences (Cerqueira et al. 
2021). Medical emergency needs are another paradigmatic case with well-estab-
lished links to the calendrical context, weather factors, and public events (Channouf 
et al. 2007; McCarthy et al. 2008; Kam et al. 2010; Wong and Lai 2012).

As a consequence, research on context-aware predictive models for time series 
forecasting has received significant attention in recent years (Bi et  al. 2022; Jozi 
et  al. 2022; Guiguet et  al. 2018; Schürholz et  al. 2020). In the neural processing 
field, relationships between target and context variables have been explicitly mod-
eled via graph neural networks (Xu et al. 2021; Fang et al. 2021), as well as mul-
tivariate gating units in recurrent neural networks (Guiguet et  al. 2018; Zhu et al. 
2021; Ruan et al. 2020) and multi-source embeddings (Kamarthi et al. 2021; Huang 
et al. 2019). Despite their relevance, most solely focus on the role of historical and 
static context, neglecting the important role of prospective situational context.

Sources of prospective context, such as planned events, calendrical information 
or weather forecasts (Sardinha et al. 2021), can arguably be positioned as pivotal in 
predictive tasks given their potential effect on systems’ behavior along the horizon 
of prediction. Nevertheless, significant challenges should be noticed. First, available 
sources of prospective context are often structurally heterogeneous (Tiam-Lee et al. 
2022; Cerqueira et al. 2021), e.g., calendrical data recorded as georeferenced events 
while weather forecasts as multivariate time series. Second, prospective sources of 
context may not be accessible from structured sources, and the geographical and 
temporal footprint of prospective events may not be fully known apriori (Leite et al. 
2020). Third, some sources of prospective context are incomplete, as well as suscep-
tible to significant levels of noise. Considering weather forecasts, long-term fore-
casts may be absent, while short-term forecasts are subjected to arbitrary uncertainty 
levels (Cerqueira et al. 2021). Fourth, associations between prospective context and 
forecasts are hypothesized to be more relevant than those associations between pro-
spective context against historical data, raising additional challenges to the develop-
ment of effective neural processing principles and architectural choices.

This work proposes effective neural processing principles to incorporate both his-
torical and prospective sources situational context in time series forecasting models. 
To this end, two major contributions are drawn. First, a multiple-input neural archi-
tecture consisting of a sequential composition of long short-term memory (LSTM) 
networks is proposed to incorporate heterogeneous sources of context. While his-
torical context is inputted as auxiliary covariates to identify and correct externalities 
in the forecasting task, prospective context is incorporated at a later layering stage 
to act as denoiser of the forecasted series. Second, masking principles are drawn for 
the normative processing and integration of available context.
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The inherent simplicity of the aforementioned principles is purposeful as our pri-
mary aim is to show that minimalist and elegant principles - multi-input sequen-
tial layering and masking - are sufficient to yield statistically significant improve-
ments in forecasting tasks augmented with prospective context. As the proposed 
multi-input framework is parameterizable, LSTMs can be easily replaced by stacked 
recurrent units (Li et al. 2021), multivariate graph convolutional networks (GCNs) 
(Rico et  al. 2021) or deep temporal convolutional networks (TCNs) (Chen et  al. 
2020). Although statistically significant differences ( �=1E-3) were not consistently 
observed with (regularized) deep layering, domain-specific adaptations are sup-
ported under the proposed architectural principles.

The proposed principles are integrated within a methodology that is experimen-
tally validated using the demand for Lisbon’s emergency medical services (EMS) 
as the primary case study, and Lisbon’s bike sharing system (BSS) demand as a 
complementary application. Results show that the incorporation of external con-
text variables, including calendrical and weather variables, can significantly reduce 
predictive errors, providing compelling empirical evidence in favor of the proposed 
forecasters against state-of-the-art alternatives. In particular, the incorporation of 
prospective context is the primary driver of efficacy gains, and essential to mitigate 
error increase along the horizon of prediction.

The manuscript is structured as follows. Section 2 introduces essentials of (mul-
tivariate) time series forecasting, while Sect.  3 surveys related contributions on 
context-aware predictive modeling. Section  4 introduces the proposed multi-input 
neural processing principles. Section 5 experimentally assesses the proposed meth-
odology in urban data domains, discussing the gathered results. Finally, implications 
and major concluding remarks are drawn in Sect. 6.

2  Background

Problem formulation. The behavior of systems can be subject to a form of sen-
sorization. A time series is a sequence of observations, usually measured at equally 
spaced points in time, y1..T = (y1, ..., yT ) , where each observation, yt , recorded at a 
given time step t, is either univariate, yt ∈ Y , or multivariate, yt ∈ Y1 ×⋯ × Yn , 
depending on the number of the monitored behaviors. Given a (multivariate) time 
series y1..T and a target variable, Yk , time series forecasting aims at estimating the 
measurements of the target variable along the next h steps, (yT+1, .., yT+h) , where 
yT+t ∈ Yk and h is the horizon of prediction. Multivariate forecasts, yT+t , can be 
complementarily pursued in the presence of multiple target variables.

Situational context can be further monitored by measuring auxiliary behavior of a 
given system or the properties of its environment. Such endogenous and exogenous 
features can be captured using dependent variables, well-established in the previ-
ous multivariate time series formulation, yt ∈ Y1 ×⋯ × Yn . In addition to historical 
context, monitored along 1..T steps, prospective situational context, such as planned 
or forecasted events falling in the horizon of prediction, may be available. In this 
context, given a context-enriched multivariate time series, y1..T , and available pro-
spective time series, zT+1..T+h , the forecasting task can be augmented to estimate the 
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targets of a variable of interest along a given horizon, (yT+1, ..yT+h) where yT+t ∈ Yk , 
from both y1..T and zT+1..T+h.

Context data consolidation. Context data can be acquired from unstructured, 
semi-structured or structured sources. Social media, public administration reposi-
tories, weather portals, online calendars, cultural agendas, theatre sites, and online 
news can be periodically explored with the aim of retrieving historical or prospec-
tive context. Despite the presence of principles to this end (Wibisono et al. 2012; 
Tempelmeier et al. 2019; Tang et al. 2019), context acquisition from unstructured 
sources is generally subjected to uncertainties related with data quality and availa-
bility. As a result, municipalities and other entities have established efforts towards a 
more normative gathering and provision of (semi-)structured repositories with situ-
ational context (Lemonde et al. 2021). In the Lisbon city, the reservation of public 
spaces, including stadiums, auditoriums, large halls, arenas, amphitheaters, amongst 
others, is thoroughly updated at the Lisboa Aberta portal, and can be periodically 
inquired for context-aware urban data analytics (Leite et al. 2020).

Historical context may not always be effectively used as a proxy to infer prospec-
tive context data (Kuijpers et  al. 2022), hence the relevance of sourcing available 
prospective context data. For instance, available weather forecasts by meteorology 
institutes may not be readily predicted from historical data acquired at meteorology 
stations as professional forecasts often rely on remote sensing inputs, atmospheric 
models, and background knowledge that may not be readily available. Comple-
mentarily, calendrical information is generally available in advance and not always 
predictable from historical calendars (e.g., moveable holidays). Similarly, prospec-
tive public events (e.g., large-scale concerts, symposiums, summits, sport matches) 
depend on extensive externalities and thus are hardly predictable from past event 
data.

Planned events in some context sources can be automatically annotated in accord-
ance with their typology and duration (Cerqueira et al. 2021). The spatial extent, as 
well as the historical and prospective duration of some of these events (e.g., infra-
structural interventions in the city) can be maintained in some of these reposito-
ries (Lemonde et al. 2021). In contrast, for public events without such information, 
rules can be dynamically inferred with expectations on the average event duration 
in accordance with its typology (Cerqueira et al. 2021). Illustrating, a concert can 
approximately impact urban mobility 60 min before its start and up to 40 min after 
its end. Context-specific deviations can be historically assessed in the presence of 
comparable events against expectations to determine the spatiotemporal footprint of 
an event in accordance with the principles placed by Cerqueira et al. (2021).

Context data, whether represented by events annotated with spatiotemporal 
footprints (e.g., gatherings) or by periodically collected/forecasted records (e.g., 
weather), can then be inputted to a learning system as-is or, in alternative, mapped 
onto a fused data structure more conducive to the subsequent learning needs. Princi-
ples for mapping georeferenced event sets as multivariate time series data structures 
have been explored in former works (Tiam-Lee et al. 2022; Neves et al. 2020).

Essentials on forecasting. Classical statistical methods, such as regression, esti-
mate a given target, yT+t , from available pairs (x(t), yt) where t ≤ T  and x(t) are fea-
tures drawn from available data at time step t, i.e., y1..t , zt+1..T and zT+1..T+h . Although 
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regression methods are a natural context-aware candidate as x(t) can capture availa-
ble context at multiple periods, they generally neglect the rich temporal nature of the 
forecasting problem. Classic time series models are generally parametric descriptors 
of time series behavior. Series can be decomposed into major components, includ-
ing trend and seasonality, then projected along the horizon of prediction to produce 
forecasts (Box et  al. 2015). Complementarily, triple exponential smoothing, auto-
regression, moving-average and differencing operations can be pursued to model 
and forecast non-stationary series (Holt 2004; Chatfield 2000). Although classic 
time series models have been extended to incorporate auxiliary variables, only his-
torical covariates are accounted to assist forecasting (Pfeffermann and Allon 1989; 
Szeto et al. 2009).

To deal with the complex non-linearities underlying the behavior of real-world 
systems, artificial neural networks (ANNs) are currently the paradigmatic option to 
forecast the behavior of such systems. Recurrent neural networks (RNNs) (Rumel-
hart et al. 1985) are a class of ANNs with feedback (loop) connections, where an 
output from the previous step is fed as input to the current step. Long short-term 
memory (LSTM) networks (Hochreiter and Schmidhuber 1997) are specialized 
RNNs, developed to capture long-term serial dependencies (Fig.  1), thus natu-
ral candidates for time series forecasting. LSTMs, as well as gated recurrent units, 
are inherently prepared to process multivariate time series, being able to elegantly 
incorporate historical context variables to potentially aid forecasts.

3  Related work

Context-aware forecasting. In the neural processing field, contributions for con-
text-aware forecasting have been mainly propelled by the modeling of historical 
relationships between the target variable and auxiliary context variables. In this 

Fig. 1  Composition of an LSTM memory cell
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context, temporal convolution networks (TCN) (Ruan et al. 2020) and graph neural 
networks (Rico et al. 2021) are the paradigmatic options to capture spatial and tem-
poral dependencies between the target series and the surrounding context. In social 
and recommendation domains, auxiliary context variables can encode correlated 
information from related users, objects, and evaluations. In urban domains, auxil-
iary context variables often correspond to measurements at different points in the 
city, and their spatial relationships are captured within a graph structure. Consider-
ing urban mobility as a guiding case, auxiliary context variables may correspond to 
traffic measured at different locations. STJLA (Fang et al. 2021) is a context-aware 
neural architecture that applies linear attention to the spatiotemporal joint graph 
to capture correlations between all nodes. A graph convolutional network compo-
nent based on spatial adjacency and functional similarity with context variables has 
been recently proposed (Xu et al. 2021) to incorporate transportation supply, demo-
graphic profile, and historical weather data in scooter-sharing demand prediction. 
While graph convolutions capture forms of node dependence from spatial and func-
tional similarity, the extracted associations at different time points are then inputted 
to gated recurrent units to capture the temporal dependencies that are at the basis of 
the targeted predictive task.

Leveraging on the inherent ability of recurrent neural networks to handle mul-
tivariate time series (i.e., cross-series training), Zhu et  al. (2021) tackled product 
demand forecasting in pharmaceutical domains by seeing the demand of related 
products as auxiliary context variables and further incorporating available domain 
knowledge.

Motivated by tensor factorization for context-aware recommender systems, Bi 
et al. (2022) propose a latent factor approach to sales forecasting that leverages on 
a single tensor factorization model across multiple products and stores. The results 
gathered from this recent work evidence the presence of synergistic principles 
between the targeted context-aware learning tasks and multi-source, multi-view, 
and multi-task learning (Zhang and Yang 2018; Ruder 2017). Probabilistic multi-
view neural processing has been considered to learn intermediate representations 
from multiple data sources in forecasting tasks (Kamarthi et al. 2021). Classic series 
segmentation and decomposition principles have been also proved useful to assist 
context-aware forecasts (Ruan et al. 2020).

Context-aware forecasting has been applied across multiple domains. In the 
energy domain, Jozi et  al. (2022) extended consumption forecasting models with 
context variables such as energy generation, temperature, and occupancy from 
building sensors to aid energy management in buildings. Cuncu et  al. (2022) fur-
ther exploited the role of inhabitant activities and the use of household appliances to 
assist this forecasting task. In computer vision, the forecast of future activities from 
video data has been augmented using activity and scene context (Chakraborty and 
Roy-Chowdhury 2014). In procurement and logistics, qualitative expert opinion has 
been integrated onto product forecasting tasks (Arvan et al. 2019). In trajectory pre-
diction, road users and environments have been used to anticipate obstacles in com-
plex driving scenarios (Schäfer et  al. 2022), and human trajectories forecasted in 
crowded spaces considering the dynamics of other moving agents in the scene and 
static elements that might be perceived as points of attraction (Bartoli et al. 2018). 
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Domain knowledge has been integrated into deep neural networks to aid traffic pre-
diction in 5 G networks (Garrido et al. 2021). Context-aware embedding modules 
were explored in recurrent neural networks to include discrete exogenous features 
when forecasting smart card validations in public transport (Guiguet et al. 2018), as 
well as in hierarchical networks for forecasting traffic accidents (Huang et al. 2019). 
Air pollution forecasts have been augmented with context information from both 
surrounding pollution sources (e.g., bushfire incidents, traffic volumes) and user’s 
health profile (Schürholz et al. 2020).

Despite the inherent relevance of the aforementioned works to context-aware 
forecasting, they do not explore the role that sources of prospective context may 
yield in the predictive tasks. Furthermore, the available contributions are not easily 
extensible towards this end since prospective context variables cannot be straightfor-
wardly modeled as serial covariates or adjacent nodes in graph structures given their 
disjoint occurrence from historical variables.

Multi-input network layering.  The available measurements of a given system 
are in multiple input neural networks partitioned in accordance with their inherent 
properties, where each partition is inputted into one or more components of the net-
work for dedicated processing and later merged for joint processing.

Different architectural principles can be found in this, with parallel, sequential 
and hybrid processing being common options. Naglah et al. (2021) propose a par-
allel multi-input convolutional neural network (CNN) to perform fusion of two 
magnetic resonance imaging modalities (diffusion weighted image and apparent 
diffusion coefficient map) as to enable independent convolution processes for each 
modality, which can increase the likelihood of detecting deep texture patterns. Oktay 
et al. (2016) further explored parallel multi-input CNNs by exploring dedicated pro-
cessing paths for different viewing planes of three-dimensional cardiac imaging for 
morphology analysis. Related contributions can be found, including the exploration 
of implicit spectral-spatial information in hyperspectral images for feature extrac-
tion ends (Zhong et  al. 2022), multi-input analysis of different medical exams for 
COVID-19 diagnosis (Zhang et al. 2021), or the exploitation of high degrees of cor-
relation and complementary information among neighboring tomography images for 
denoising ends (Abbasi et al. 2019). Based on the U-Net model, Shi et al. (2021) 
proposes a multi-input fusion network based on the extraction and fusion of imaging 
features at different input resolution scales.

In sequential multi-input networks, some of the available measurements are inte-
grated at later stages in the neural processing pipeline. Sánchez-Cauce et al. (2021) 
propose a multi-input network for cancer diagnosis where former layers are used to 
process imaging data for the extraction of features while later layers further received 
available complementary clinical and demographic data. Similar principles are 
explored by Apostolopoulos et al. (2021) for cardiovascular disease diagnosis using 
myocardial perfusion imaging and clinical data.

Hybrid architectural variants are also available. Wang et  al. (2021) considered 
parallel processing of time-domain signals, frequency-domain signals, and time-
frequency graph inputs for fault diagnosis. These isolated processing paths are con-
nected using fully connected layers to process the previously processed features with 
additionally inputted bearing and damage features.
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In the context of forecasting tasks, multiple-input networks have been used to 
combine temporal and static data, as well as to mitigate the issues related to gener-
alization and meteorological effects (Madhiarasan et al. 2021). Xiong et al. (2021) 
considered ground motion sequences and building features as heterogeneous inputs 
to a multiple-input convolutional neural network for seismic damage assessment. 
Despite the relevance of available work, the absence of multi-input neural process-
ing principles to standardly learn from heterogeneous sources of context data is 
notorious.

4  Multiple‑input context‑aware neural networks

To aid forecasting tasks in the presence of historical and prospective sources of con-
text, this section proposes a simple yet effective multiple-input neural network archi-
tecture (Sect. 4.1), and further establishes masking principles for the effective incor-
poration of available context (Sects. 4.2 and 4.3).

4.1  Context‑aware neural networks

The proposed architecture, schematized in Fig.  2, is a sequential composition of 
two components, C1 and C2 , each composed of a default LSTM cell with 16 units 
followed by a dense layer. Considering available historical data, the C1 component 
takes the context-enriched multivariate series as input, y1..T , and returns a forecasted 
series as the output.

Considering available prospective context, the C2 component takes as input the 
forecasted series from C1 , ŷT+1..T+h∣C1

 , and prospective sources of context along the 
horizon of prediction, zT+1..T+h , returning an adjusted forecasted series, ŷT+1..T+h∣C2

.
Components C1 and C2 can be parameterized with alternative network layering 

able to process multivariate time series, including stacked recurrent units, (deep) 
temporal convolutional networks, and graph convolutional networks.

Fig. 2  RNN architecture able incorporate historical and prospective external context variables through 
multiple inputs
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Considering the given architecture, three major training possibilities are selected 
for this study: separate, alternating and joint training. In the joint training setting, 
a single loss function is considered at the end of the network. In separate and alter-
nating training settings, a loss function is applied at both the end of component C1 
(history-aware forecasting) and the end of component C2 (prospective context regu-
larization). In the separate training setting, the parameters of component C1 are first 
optimized, followed by the optimization of the parameters of component C2 , corre-
sponding to the fully independent adjustment of the forecasted series using prospec-
tive context. In the alternating training setting, the optimization alternates between 
components for every iteration of the learning process under a fixed batch size.

Mean absolute error (MAE), mean squared error (MSE) and cosine are tested as 
viable loss functions for each setting. Variants of the proposed architecture, includ-
ing the replacement of LSTM units by Gated Recurrent Units (GRU) are also con-
sidered. Adam optimizer with early stopping is selected to learn the target networks. 
Remaining relevant parameters, including the selected activation functions and 
applied forms of regularization, are subjected to hyperparameterization (Sect. 5).

4.2  Incorporating historical context

Taking both the target and auxiliary historical data as input, C1 is able to capture sig-
nificant cross-variable dependencies, as well as their relationship with future targets, 
via multivariate memory cells and subsequent dense layering. An arbitrarily-high 
number of historical context variables can be integrated to guide the learning task. 
To this end, masking principles are necessary to compose the input multivariate 
time series, y1..T . For the purpose of illustrating the principles introduced along this 
section, consider the hourly forecast of the number of medical emergencies along a 
given region, yexample=(..., 11, 9, 8, ...).

In addition to the target variable, calendrical, event and weather variables are 
paradigmatic context sources in urban domains that can be integrated to guide the 
prediction. Calendrical variables inform about meaningful information related to the 
calendar, including:

– time within the day to help capture daily seasonal patterns. Taking the illustrative 
series of hourly medical emergencies, we can enrich it by adding hour informa-
tion, e.g., yexample=(..., (11, 10pm), (9, 11pm), (8, 12am), ...);

– weekday information, in which the day when events occurred is incorporated 
in the series as, for instance, a nominal encoding of Monday to Sunday. Com-
plementarily, weekend information may also be included for a coarser differen-
tiation between weekdays and weekends. By doing so, we can extend the pre-
vious series, yexample , to further incorporate weekday information, e.g., yexample
=(..., (11, 10pm, weekday), (9, 11pm, weekday), (8, 12am, weekdend), ...);

– other types of calendrical information such as holidays, festivities, and academic 
calendars can be further included.
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Similarly to the introduced calendar masks, event masks mark periods where events 
of interest occur, e.g., large-scale gatherings in urban domains such as festivals, con-
certs, and sport events. These sources of context are generally circumscribed to a 
specific geographical area. The corresponding series generally establish a measure 
of the impact of the event in space and time. In urban domains, the real-time acqui-
sition of events from public repositories, as well as the dynamic inference of their 
spatiotemporal footprint, has been previously studied (Cerqueira et al. 2021).

Finally, weather conditions exert influence on diverse systems, including the illus-
trative urban ones. Rain, fog and snow increase the likelihood of traffic accidents 
(Yannis and Karlaftis 2010; Andreescu and Frost 1998), while extreme weather can 
negatively affect health, correlated with the demand for medical emergency services 
(Kjellstrom et  al. 2010; Wong and Lai 2012). Meteorological variables collected 
from weather stations can thus be further incorporated to guide the learning pro-
cess. These can include temperature, relative humidity, wind intensity, among oth-
ers. Analogously, series can be augmented with this information, e.g., precipitation 
levels registered in the period of each observation, yexample=(..., (11, 1.6 mm), (9, 0.8 
mm), (8, 0.7 mm), ...).

4.3  Incorporating prospective context

The inclusion of C2 , which takes the forecasted series from C1 and the prospective 
external context along the forecasting horizon as input, allows the model to guide 
and adjust the forecasts along the forecasting horizon in the presence of prospec-
tive context information, producing the final forecasted series. In this context, C2 
can be thought of as a context-aware denoiser or time-dependent regularizer of the 
forecasts. Hence, besides being able to learn relations between historical context and 
future behaviour of the target variable, the model can also learn relations between 
the target variable and prospective context variables under the same future periods. 
Although empirical analysis shows optimal performance of C2 under an LSTM unit, 
a gated recurrent unit (GRU) provides a competitive and less demanding needs of 
this stage. On the opposite pole, stacking of recurrent units and convolutional layer-
ing can be further considered for complex data domains, where prospective context 
is characterized by a high multivariate order.

Considering the illustrative case of medical emergency forecasting, severe 
weather conditions, specific calendrical festivities (e.g., Christmas period), season-
ality factors (e.g., day time), and planned events (e.g., large-scale gatherings), are 
known to be strongly correlated with the demand observed for multiple types of 
medical emergencies (Silva et  al. 2021). Prospective calendrical variables can be 
obtained through calendar information similarly as in the historical setting; prospec-
tive weather variables can be obtained through public databases and web APIs; and 
planned events can be derived from web content and (semi-)structured public repos-
itories, such as cultural agendas and usage planning of public spaces. Principles for 
the autonomous retrieval and preprocessing of these sources of external context have 
been discussed in previous works (Cerqueira et al. 2021).
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Once collected, masking principles introduced in Sect.  4.2 can similarly be 
applied for prospective context, to produce a novel input for C2 component, so that 
the preliminary forecasts, ŷT+1..T+h∣C1

 , are further subjected to context-dependent 
corrections to improve predictive accuracy.

As some context sources are subject to varying rates of historical and prospective 
missingness, the availability and completeness of each source should be assessed. 
For instance, when considering planned public events, some event categories 
are extensively complete in advance (e.g. festivals, sport events) and can be used 
in accordance with the proposed masking principles, while event categories with 
higher missing predisposition should be further inquired. Incomplete context data 
can be divided according to whether missingness is predominant in the future or in 
both historical and future time periods. In the earlier case, historical context data can 
standardly be used. For time periods with high missing predisposition, the default 
masking principles can be followed under the premise that the partial set of gathered 
events can assist the forecaster. Nevertheless, as periods without recorded events 
can be mistakenly interpreted by periods without occurring events, sources with 
high missing rates can be excluded or, in alternative, dedicated masking symbols 
included to signal the presence of periods with incomplete information.

5  Results and discussion

Using case studies in the urban domain, this section experimentally assesses the pro-
posed contribution, answering three major research questions: 

Q1 To which extent does the incorporation of prospective context aid forecasts?
Q2 What are the benefits arising from each accessible source of context in the tar-

geted urban domain?
Q3 How do context-aware multiple-input networks compare in terms of predictive 

accuracy against state-of-the-art alternatives?

The proposed context-aware forecasters are implemented in Python and made avail-
able via GitHub at:

https:// github. com/ joaop alet/ multi ple- input- conte xt- aware- forec aster.

5.1  Validation methodology

For a robust evaluation of the forecasters, time-aware cross-validation is performed 
with the necessary care intrinsic to time series data partitioning (Fig. 3). Each data-
set produced per iteration is further divided into train, validation and test sets. The 
training and validation sets comprise 80% of each dataset, from which 80% is train-
ing data and 20% is validation data. The remaining 20% of the datasets was used for 

https://github.com/joaopalet/multiple-input-context-aware-forecaster
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testing. The partitions are preserved for the training, validation and testing of each 
forecaster.

For the learning of the proposed models, each partition is further segmented into 
a set of data instances, each in the form of an input–output pair. For the given urban 
scenarios, the input series is a full week of data (168 hour periods), and the output is 
the subsequent series with the length of the forecasting horizon, i.e., 24 h. Figure 4 
illustrates the creation of these instances, ensuring that no testing instances precede 
training instances.

Table 1 lists the sources of context considered along the target case studies.

Fig. 3  Creation of datasets for cross-validation of the time-series data

Fig. 4  Input–output pair creation for the learning of the forecasting models

Table 1  Context data sources 
for the target urban case studies

Source Masks

Calendrical Hour; weekday; weekend-week; holiday
Weather Temperature; precipitation; humidity
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5.2  Baseline models

The performance of the proposed multi-input neural network is assessed against an 
equivalent model that only incorporates historical context and a univariate model, both 
depicted in Figs.  5 and   6, respectively. The proposed models are further compared 
against Holt Winters’ exponential smoothing and a flexibly optimized feed forward 
neural network (FFNN). In addition, spatiotemporal graph convolutional networks1 are 
selected as reference state-of-the-art forecasting baselines (Yu et al. 2017) given their 
inherent ability to account for complex interactions between the target and context vari-
ables expressed within a graph structure via graph convolutions, as well as to capture 
temporal dependencies through the incorporation of LSTM layers to perform forecast-
ing on the graph. In the context of our work, the graph captures the pairwise cross-
correlation between input variable series and is then postprocessed to either consider 
all associations (dense graph) or discard uncorrelated variables (sparse graph) when 
performing graph convolutions. A minimum graph density of 1/3 is fixed to avoid 
overly sparse graph representations so that dependencies with the available context data 
sources can be more comprehensively explored. Deep temporal convolutional networks 
(deep TCNs)2 (Chen et al. 2020; Ruan et al. 2020) are further assessed in the presence 
and absence of historical and prospective sources of context. As TCN networks are not 
inherently prepared to handle prospective context, two settings are considered to this 

Fig. 5  Univariate RNN architecture with parameterizable C
1
 component

Fig. 6  Multivariate RNN architecture, able to incorporate historical context variables, with parameteriz-
able C

1
 component

1 https:// github. com/ keras- team/ keras- io/ blob/ master/ examp les/ times eries/ times eries_ traffi c_ forec asting. 
py
2 https:// github. com/ flavi agiam marino/ deep- tcn- tenso rflow

https://github.com/keras-team/keras-io/blob/master/examples/timeseries/timeseries_traffic_forecasting.py
https://github.com/keras-team/keras-io/blob/master/examples/timeseries/timeseries_traffic_forecasting.py
https://github.com/flaviagiammarino/deep-tcn-tensorflow
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end: i) the proposed multi-input architecture with its components parameterized with 
the reference TCNs (Chen et al. 2020), and ii) single deep TCN with prospective con-
text data given as complementary input series, convex with historical series whenever 
applicable.

The assessed neural network models were parameterized with the mean squared 
error (MSE) loss and Adam optimizer (Kingma and Ba 2014). Sensitivity analysis was 
performed through manual search with different initial learning rates ( 1e−3 to 1e−6 ), 
values for the batch size (1, 2, 4, 8, and 16), and types of regularization (l1 and l2). All 
models were trained for a total of 400 epochs, using early stop criterion based on train-
ing versus validation loss. Table 2 describes all baseline models in greater detail.

When considering the proposed learning settings for the target sequential multi-
input network – joint, separate and alternating training –, we observed that the joint 
training setting (single loss function) consistently yields the best results, an observation 
that is hypothesized to be driven by the inherent simplicity of the proposed architecture, 
together with the fact that the joint training offers greater sensitivity to the dependencies 
between the two components. Hence, unless stated otherwise, the displayed results for 
the target multi-input sequential network are in reference to the joint learning setting.

Table 2  Baseline forecasting models

Model Description

LSTM (univariate) Architecture: LSTM cell with 16 units and output layer with 24 neurons
Activation functions: ReLu
Optimizer: Adam

LSTM (historical) Architecture: LSTM cell with 16 units and output layer with 24 neurons
Activation functions: ReLu
Optimizer: Adam

GCN Architecture: graph convolution layer followed by a 64 unit LSTM layer (convolu-
tion of node tensors is the multivariate input passed to the recurrent layer along 
time)

Graph: adjacency matrix from pairwise input variable cross-correlation in the 
absence and presence of graph density filter (dense and sparser versions)

Optimizer: Adam
Deep TCN Architecture: deep temporal convolutional network graph: 32 channels with 2-length 

kernels in the encoder layers, dilation rates ranging from 1 to 8, 64 units per dense 
layer in the decoder module, non-parametric loss function

Optimizer: Adam
FFNN Architecture: one hidden layer with 16 neurons, output layer with 24 neurons

Activation functions: ReLu
Optimizer: Adam

HW Optimizer: limited-memory BFGS
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5.3  Case study 1: medical emergencies in Lisbon

The analysis of medical emergencies in Lisbon is introduced as the primary case 
study to validate the contributions. The pre-hospital medical emergencies in the Lis-
bon city were provided by Instituto Nacional de Emergência Médica (INEM) – the 
medical emergency service (EMS) provider in mainland Portugal. The data consists 
of whole registered emergency cases in Lisbon from 2016 to 2017, comprising a 
total of 180,234 medical emergencies. Following the principles illustrated in Fig. 3, 
nine datasets comprising a full year of data were created, with a step size of six 
weeks between them.

Calendrical context data were gathered from Lisboa Aberta,3 while Lisbon’s 
weather records acquired from meteo|Técnico.4 The collected variables include 
temperature, recorded in degrees Celsius ( circC ), precipitation, recorded in mm, 
and relative humidity, i.e., the concentration of water vapour present in the air (%). 
In addition to weather variables, we further compared the performance of models 
incorporating information regarding the hour of the day (hour), day of the week 
(weekday), weekend status (weekend), as well as a model that incorporates all three 
of these masks (all calendar).

Figure 7 shows the results obtained when incorporating historical context (his-
torical architecture) with the ones obtained when considering both historical and 
prospective context (historical+prospective architecture), as well as no context (uni-
variate architecture). Compared to the univariate architecture, all models produce 
significantly better results, with the exception of the models that only incorporate 
historical weekday and weekend information, producing comparable results. These 

Fig. 7  Impact of incorporating calendrical context in the EMS demand forecasting models

3 https:// lisbo aaber ta. cm- lisboa. pt/ index. php/ pt/.
4 https:// meteo. tecni co. ulisb oa. pt.

https://lisboaaberta.cm-lisboa.pt/index.php/pt/
https://meteo.tecnico.ulisboa.pt
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results suggest that the hour of the day is the calendrical variable that most affects 
the volume of EMS demand. Incorporating prospective calendrical context along 
the forecasting horizon is shown to further improve the performance in compari-
son to the models that only incorporate context in the historical data. Incorporating 
all three calendrical variables on both historical and prospective data yield the best 
results.

Figure 8 presents the results obtained when incorporating weather variables in the 
models, while Fig. 9 presents the results obtained when incorporating both weather 
and calendrical variables. Temperature, precipitation, relative humidity (humidity), 

Fig. 8  Impact of incorporating weather context in the EMS demand forecasting models

Fig. 9  Impact of incorporating calendrical context together with weather context in the EMS demand 
forecasting models
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and all previous weather variables (all weather) are considered. We observe that, 
when incorporated alone, historical weather variables do not produce a significant 
impact on the results. However, improvements are achieved when the models con-
sider prospective weather variables. When added on top of all calendrical variables, 
temperature and precipitation variables further moderately improve the performance 
of the models. Once again, results show that models also incorporate prospective 
context perform considerably better across the reference ones.

Considering that we are working with a forecasting horizon of 24 hours, one of 
the main reasons to incorporate prospective context is to try to mitigate the increase 
in uncertainty as we move forward in the predictions along the forecast horizon. 
Taking the best performing model of each presented architecture, we analyzed how 
predictive errors evolve with the forecasting horizon. According to the collected 
results, the best forecasters sensitive to historical context are the ones incorporating 
hour, weekday, weekend, and precipitation context, while the best forecasters sensi-
tive to both historical and prospective context incorporate hour, weekday, weekend, 
and temperature context. The assessment of predictor errors along the forecasting 
horizon is shown in Fig.  10. We can see that, in the first few horizon hours, the 
errors of the univariate architecture are already much higher, since the model has 
no sense of the situational context, while both context-aware models are able to 
keep the errors at a fairly constant rate. As we move forward in the predictions and 
the current context may start to differ from the historical context, we can observe 
that starting around the 8th hour period of the forecasting horizon, the errors of the 
model that only considers historical context start to increase while the model incor-
porating prospective context are still kept fairly constant.

Table 3 presents the forecasting errors (MAE and RMSE) of the proposed mod-
els and all suggested baseline methods for each combination of context variables. 
Results suggest that incorporating calendrical and weather information, particularly 
both historical and prospective, improve the performance of the forecasting models.

Fig. 10  Comparison of predictive errors (MAE) per time step along the 24-hforecasting horizon when 
comparing the univariate architecture, the architecture that only incorporates historical context, and the 
one that also incorporates prospective context
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Table 3  Summary of results obtained (MAE and RMSE), for all EMS demand forecasters implemented, 
as mean ± standard deviation () 

Model Context MAE RMSE

HW – 3.18 ± 0.18 4.13 ± 0.28

FFNN – 2.91 ± 0.09 3.77 ± 0.18

LSTM   Univariate 3.38 ± 0.08 4.31 ± 0.21

Deep TCN   Univariate 3.10 ± 0.16 3.86 ± 0.22

GCN Univariate 3.02 ± 0.06 3.81 ± 0.09

Calendar (sparse) 3.17 ± 0.11 4.21 ± 0.17

Calendar (dense) 3.83 ± 0.14 4.52 ± 0.18

Weather (sparse) 3.61 ± 0.17 4.59 ± 0.20

Weather (dense) 3.89 ± 0.08 4.91 ± 0.24

Calendar and weather (sparse) 3.15 ± 0.11 4.14 ± 0.19

Calendar and weather (dense) 3.31 ± 0.13 4.27 ± 0.19

LSTM (historical context) Hour 3.06 ± 0.12 3.92 ± 0.20

Weekday 3.37 ± 0.11 4.28 ± 0.19

Weekend 3.36 ± 0.09 4.27 ± 0.18

All calendar 3.03 ± 0.08 3.90 ± 0.15

Temperature 3.37 ± 0.11 4.30 ± 0.21

Precipitation 3.41 ± 0.14 4.33 ± 0.23

Humidity 3.36 ± 0.12 4.28 ± 0.20

All weather 3.35 ± 0.10 4.28 ± 0.17

All calendar + temperature 3.04 ± 0.12 3.91 ± 0.19

All calendar + precipitation 3.03 ± 0.12 3.90 ± 0.22

All calendar + humidity 3.05 ± 0.13 3.93 ± 0.23

All calendar + all weather 3.06 ± 0.13 3.94 ± 0.21

LSTM (historical and prospective context) Hour 2.99 ± 0.12 3.86 ± 0.20

Weekday 3.19 ± 0.09 4.09 ± 0.16

Weekend 3.18 ± 0.11 4.09 ± 0.18

All calendar 2.90 ± 0.11 3.74 ± 0.17

Temperature 3.26 ± 0.13 4.17 ± 0.20

Precipitation 3.26 ± 0.12 4.16 ± 0.19

Humidity 3.25 ± 0.09 3.76 ± 0.16

All weather 3.28 ± 0.08 4.21 ± 0.16

All calendar + temperature 2.89 ± 0.08 3.74 ± 0.15

All calendar + precipitation   2.89 ± 0.10 3.74 ± 0.17

All calendar + humidity 2.91 ± 0.10 3.76 ± 0.16

All calendar + all weather 2.90 ± 0.07 3.76 ± 0.15

Deep TCN (historical context) All calendar 3.01 ± 0.14 3.78 ± 0.22

All weather 3.02 ± 0.19 3.82 ± 0.25

All calendar + all weather 3.12 ± 0.20 4.09 ± 0.24

Deep TCN (historical and prospective context) All calendar 2.82 ± 0.12 3.67 ± 0.18

All weather 3.04 ± 0.22 3.82 ± 0.29

All calendar + all weather 2.82 ± 0.14 3.51 ± 0.22

Top models are given in bold
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Graph convolutional networks show for the target case study an inherent diffi-
culty to exploit relevant associations with historical context given the moderately 
lower performance against the context-unaware version. In fact, denser graph rep-
resentations, where a high number of pairwise associations between input vari-
ables are considered to guide the learning, are shown to deteriorate performance 
on the given emergency domain. As the original architecture was proposed for the 
spatiotemporal forecasting of traffic data, where graph associations capture traf-
fic-wise correlated roads, its adaptation to domains where the input variables are 
less correlated is shown to be less stable, potentially requiring further architec-
tural tuning or the replacement of graph convolutions by alternative transforma-
tions. Complementarily, feed-forward neural networks show higher error variabil-
ity along the prediction horizon (within-instance variability) than the simplistic 
recurrent layering. Although unable to adequately explore the temporal depend-
encies of the available context data under the proposed masking principles, their 
exhaustive optimization and limited series length ensured a more competitive 
performance regarding MAE.

Considering the proposed architecture, replacing the LSTM unit in the C1 compo-
nent by a deep temporal convolutional network (TCN) produced soft improvements 
for the combined incorporation of historical and prospective context (statistically 
significant for MAE, non-significant for RMSE under �=1E-3). Similarly, the stack-
ing of an additional LSTM in C1 produced statistically significant improvements 
against the single context-aware LSTM counterpart (p-value<1E-3). In this context, 
the exploration of stacking or alternative layering within both components of the 
proposed architecture is suggested as future direction.

To assess the statistical significance of the previous results, we used the T-test 
when error estimate samples pass the Shappiro-Wilko normality test ( �=0.01), oth-
erwise, the Mann–Whitney U test, the non-parametric peer. Table  4 summarizes 
the p-values of the statistical tests performed, for each combination of context vari-
ables tested. The obtained p-values show that, for 21 out of the 24 pairs tested, the 
p-values were lower or equal than the threshold (0.05), indicating that the difference 
between the great majority of the results obtained are statistically significant.

Complementarily, Fig. 11 measures the impact of replacing the LSTM units 
by Gated Recurrent Units (GRU) in the compared models, showing that the ade-
quacy of GRU-based network design become only competitive in the multi-input 
stacked model due to the inherent simplicity of this unit.

Finally, to measure the upper limits of introducing prospective weather data, 
Fig.  12 assesses the differences between the gains from incorporating actual 
weather observations in the future (no noise) versus the observed gains from 
incorporating professional weather forecasts (inherently susceptible to noise). 
Most of the observed differences are small to moderate, showing the relevance 
of weather forecasts as proxies for future weather, while bounded in their poten-
tial predictive value for the targeted forecasting problem.
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5.4  Case Study 2: lisbon’s bike sharing system

As a complementary case study, the demand for Lisbon’s public bike sharing sys-
tem (BSS), called GIRA, is introduced. Descriptive statistics of capacity-demand 
dynamics of GIRA network are publicly available.5 Two major data sources are 
considered. First, a curated sample with all bike trip records from December 2018 
until February 2019, along with timestamps for every change in station state and 

Table 4  P-values between the 
EMS demand forecasting errors 
of the models incorporating 
both historical and prospective 
context against two baseline 
methods: the univariate 
architecture and the model only 
historical context, for the the 
same context variables

P-values lower or equal than the threshold (0.05) are highlighted in 
bold

Historical + prospective Baseline model

Univariate Historical

Hour 5.352e − 7 0.274
Weekday 2e − 4 0.001

Weekend 8e − 4 0.002

All calendar 1.879e − 8 0.013

Temperature 0.028 0.060
Precipitation 0.024 0.026

Humidity 0.009 0.050

All weather 0.026 0.105
All calendar + temperature 7.815e − 10 0.004

All calendar + precipitation        3.953e − 9 0.021

All calendar + humidity 7.117e − 9 0.016

All calendar + all weather 3.874e − 10 0.007

Fig. 11  Comparing the predictive efficacy of GRU versus LSTM units in the introduced context-aware 
neural architectures

5 https:// lisbo apara pesso as. pt/ bibli oteca/ dados/, https:// www. ciclo vias. pt and https:// dados. cm- lisboa. pt/ 
datas et/ giras- docas (accessed Dec. 1, 2022).

https://lisboaparapessoas.pt/biblioteca/dados/
https://www.ciclovias.pt
https://dados.cm-lisboa.pt/dataset/giras-docas
https://dados.cm-lisboa.pt/dataset/giras-docas
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corresponding load value. Second, publicly available station state records6 with the 
load state of each station at specific time points of a day from 2020 to 2022. Accord-
ingly, we target two major forecasting tasks: the prediction of the hourly number of 
check-in events for the GIRA network along a single day using the first data source, 
and the hourly station-specific load along a single day using the second data source. 
Following the principles illustrated in Fig. 3, six (twelve) datasets were derived for 
the first (second) data source, each comprising six weeks (18 months) of data with a 
step size of one week (one month), were created.

Considering the forecasting task of hourly check-in events, calendrical information 
and relative humidity were selected as the sources of context. During the accessible 
three month period, temperature showed stable daily bounds and oscillation, and pre-
cipitation was only observed on four days, hence excluded as understandably insuffi-
cient to learn relationships with bike demand. Figure 13 provides a view on the fore-
casting error (MAE) in the absence and presence of historical and prospective context. 
In the majority of scenarios, particularly under calendrical variables, we observe that 
the incorporation of prospective context benefits the results, although not as signifi-
cantly as in the previous medical emergency domain. Statistical significance improve-
ments against context-unaware forecasters ( �=1E-3) are only observed when intro-
ducing sources of prospective context. The low volume of available data, limiting the 
generalization ability of the underlying forecasters, is hypothesized as the major cause 
for the moderate improvements.

Complementarily, Fig.  14 depicts the distribution of the errors along the predic-
tion horizon, highlighting that the gains from incorporating prospective context data 
are generally statistically significant between 7AM and 8PM. The higher impact of 
calendrical information on bike demand throughout the daylight period, along with the 

Fig. 12  Potential of prospective weather data for multi-input networks: ground truth prospective weather 
versus professional weather forecasts

6 https:// emel. city- platf orm. com/ opend ata (accessed December 1, 2022).https:// dados. cm- lisboa. pt/ datas 
et/ gira- bicic letas- de- lisboa- histo rico (accessed Dec. 1, 2022).

https://emel.city-platform.com/opendata
https://dados.cm-lisboa.pt/dataset/gira-bicicletas-de-lisboa-historico
https://dados.cm-lisboa.pt/dataset/gira-bicicletas-de-lisboa-historico


336 J. Palet et al.

1 3

greater weather influence on transport modal choices due to the adequate offer of pub-
lic transport alternatives during this period, are arguably linked to this observation.

Moving from check-in forecasts to the prediction of station-specific hourly load 
states, we observe that the incorporation of prospective context provides statistically 
significant improvements for over 2/3 of the approximately 100 stations active dur-
ing the target period (2020-2022). Figure 15a motivates the intrinsic difficulty of this 
task by disclosing the irregularity of the hourly load state for different stations along 
two consecutive weeks. For illustrative purposes, 4 stations with distinct profiles are 
selected: 2 stations at business centers (307 at Marques de Pombal and 406 at Praça 
Saldanha); 1 station at a central residential area (443 at Av. Roma); and 1 station 
at the city periphery (115 at Passeio dos Heróis do Mar). Figure 15b assesses the 
role of incorporating historical and prospective context sources using the proposed 

Fig. 13  Impact of incorporating calendrical context together with weather context in the BSS demand 
forecasting models

Fig. 14  Comparison of predictive errors (MAE) along the 24-hour forecasting horizon when incorporat-
ing historical and prospective context
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multi-input network (parameterized with deep TCNs) for these stations, showing gen-
eralized statistically significant improvements.

6  Conclusions

This work proposed neural processing principles to leverage the performance of pre-
diction tasks in the presence of heterogeneous sources of historical and prospective 
context data. To this end, we introduce a multiple-input recurrent neural architecture 
that is a serial composition of two LSTM-based components, where the former com-
ponent is placed to capture historical cross-variable relationships, while the second 
component uses prospective context for the time-dependent correction of forecasts 
returned by the former component. Masking principles to derive auxiliary endoge-
neous and exogenous series.

Demand analysis of medical emergencies and public bike sharing in the city of 
Lisbon was considered as case studies to validate the proposed methodology. Results 
showed that network models incorporating both historical and prospective context 
provide significantly more accurate forecasts than the counterparts that do not incor-
porate context or only consider historical context to guide the forecasts. Statistically 
significant improvements were further confirmed against state-of-the-art forecasters. 
The role of calendrical context variables, although often disregarded, are shown to 

Fig. 15  Statistical improvements from historical and prospective context incorporation for the load state 
forecasting of stations with distinct profiles using multi-input networks parameterized with default deep 
TCNs
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be critical in the targeted urban domains. Finally, the proposed models are able to 
maintain the errors low as we move forward in the forecasting horizon.

The proposed neural processing units are simplistic, yet effective, providing a 
basis to capture relationships with available sources of historical and prospective 
context data, potentially embed within more complex neural-based predictive mod-
els. The introduced principles also form a sound and state-of-the-art reference for 
the assessment of upcoming contributions in the context-aware forecasting field.

The development of superior context-aware forecasters is highlighted as a future 
line of work. Similarly, we expect to assess the role of complementary masking 
principles. Finally, as some sources of context data are inherently sparse and their 
incorporation increases the multivariate order of the available, we further aim at 
more closely exploring how much context data are necessary to escape generaliza-
tion difficulties.
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