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Abstract
Artificial neural networks ( ��� ) are widely used machine learning models. Their 
widespread use has attracted a lot of interest in their robustness. Many studies show 
that  ANN’s performance can be highly vulnerable to input manipulation such as 
adversarial attacks and covariate drift. Therefore, various techniques that focus on 
improving ��� ’s robustness have been proposed in the last few years. However, most 
of these works have mostly focused on image data. In this paper, we investigate the 
role of discretization in improving ��� ’s robustness on tabular datasets. Two custom 
��� layers– D1-Layer and D2-Layer (collectively called D-Layers) are pro-
posed. The two layers integrate discretization during the training phase to improve 
��� ’s ability to defend against adversarial attacks. Additionally, D2-Layer inte-
grates dynamic discretization during testing phase as well, to provide a unified strat-
egy to handle adversarial attacks and covariate drift. The experimental results on 24 
publicly available datasets show that our proposed D-Layers add much-needed 
robustness to ��� for tabular datasets.

Keywords Robustness · Covariate drift · Adversarial attack · Tabular data · 
Discretization

1 Introduction

The widespread use of ��� models has attracted a lot of interest in their robust-
ness (Goodfellow et al. 2014; Kurakin et al. 2017). Typically, one measure of ANN’s 
robustness is to see whether it can maintain performance with the changes in input 
data. These changes can be driven by either malicious or benign intent. An example 
of malicious intent change is adversarial attacks that manipulate input data to sway 
the model output towards a desirable outcome (Akhtar and Mian 2018). An example 
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of benign intent change is data variation over time due to covariate drift. With the 
ever-changing facet of adversarial attack methods and datasets drifting over time, 
how to add robustness to ��� on tabular datasets remains an open, yet fundamental 
question. This work is motivated to address the issue of robustness in ��� models by 
proposing new novel layers in standard ��� architecture.

Traditionally, adversarial attacks constitute imperceptible perturbations on the 
input image to control ��� ’s output. Many studies have demonstrated that the per-
turbed images that fail one model can also fail other models trained on different 
datasets with different architectures (Goodfellow et al. 2014), highlighting the sever-
ity of the problem. In the past few years, plenty of research efforts have been exerted 
in designing appropriate defence mechanisms for  ANNmodels on image datasets 
(Kurakin et al. 2017; Shafahi et al. 2019). However, image datasets are not the only 
datasets susceptible to adversarial attacks. Tabular datasets that are commonly used 
in various ��� applications domains such as finance and medicine are as vulnerable 
to adversarial attacks as image datasets (Cartella et al. 2021). Tabular datasets have 
one trait, i.e., the presence of categorical features that can serve as a natural defence 
against adversarial attacks, as the adversarial perturbations on categorical features 
can be easily observed. For instance, in a loan approval scenario, the level-of-
education is bachelor, master, and doctorate (normally represented as 
integers like 1, 2, and 3), it is easy for bank managers to find the fraudulent modi-
fication when a customer modifies her education level from 2 to 2.5 or from 3 to 4, 
to obtain a loan. However, numeric features in tabular datasets are as vulnerable to 
adversarial attacks as pixel values in images (Cartella et al. 2021). Considering the 
natural defence capability of categorical features, recently, various discretization-
based defence methods have been proposed (Buckman et al. 2018).

Covariate drift which informally refers to the situation where testing distribution 
is different from training distribution can also adversely affect ��� models’ perfor-
mance (Nado et al. 2020). Several studies in domain adaptation and causal inference 
aim to tackle the covariate drift issue by taking advantage of the information on 
testing distribution (Magliacane et  al. 2017). Discretization can serve as a natural 
defence against some forms of covariate drifts as well. For example, if the Salary 
feature (at the training time) is discretized with equal frequency discretization into 
three bins {A, B, C}—even with covariate drift resulting in the monotonic trans-
formation of the testing data—discretization on the transformed Salary feature (at 
the testing time) can result in a similar allocation of the bins.

Given the pivotal role that discretization can play as a defence mechanism against 
adversarial attacks and covariate drift, there is a need to integrate discretization 
into ��� ’s models for increasing their robustness. In this work, we propose two cus-
tomized new layers for ��� – named D1-Layer ‘Discretization’) and D2-Layer 
(‘Dynamic Discretization’)—collectively called D-Layers, to address this need. 
The main motivations of these two layers are:

• Existing discretization-based adversarial attack defence methods (Buckman et al. 
2018; Zhou et  al. 2022) normally discretize data prior to training the model. 
Despite their effectiveness, if some part of the training data is changed (e.g., as 
part of adversarial training), the discretization results will be incorrect, as the 
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discretization boundaries are learned beforehand. Furthermore, any time the 
model is to be re-trained requires re-discretizing the dataset. The seamless inte-
gration of discretization in ANN(during model training) and exploiting its ben-
efits is the main motivation for our proposed D-Layers.

• Once the model is trained, there is no way to update the discretization bounda-
ries. However, if the distribution of testing data is changed due to covariate drift 
or adversarial attack, there is a strong need to update discretization boundaries 
to accommodate this distribution change. In other words, we need dynamic dis-
cretization at the testing phase to resist potential distribution changes caused by 
covariate drift or adversarial attack. The seamless integration of such dynamic 
discretization in ANN(during model testing) is the main motivation for our pro-
posed D2-Layer.

The main contributions of this paper are:

• We have proposed two new layers for adding robustness to ��� models. Specifi-
cally, D1-Layer integrates discretization during the training phase to improve 
��� ’s ability to defend against adversarial attacks. Whereas, D2-Layer inte-
grates discretization during the training phase, as well as during the testing phase 
to provide a unified strategy for ��� to handle covariate drift and adversarial 
attacks.

• We demonstrate that our proposed  D1-Layer lead to the state-of-the-art 
(SOTA) defence mechanism against a range of standard attacks on various pub-
licly available tabular datasets.

• We demonstrate that our proposed D2-Layer offers an effective unified strat-
egy to address adversarial attacks and covariate drift at the same time.

The rest of this paper is organized as follows. In  Sect.  2, we review the related 
works. In Sect. 3, we present our proposed formulations namely D-Layers. Sec-
tion 4 provides an empirical evaluation of our proposed formulations. In Sect. 5, we 
conclude the paper with pointers to future works.

2  Related work

2.1  Adversarial attack methods

To highlight the robustness of ��� models, a large number of adversarial attack 
models have been proposed in the literature in the past few years. Broadly, these 
existing adversarial attack models can be divided into white-box attack models and 
black-box attack models (Kumová and Pilát 2021). Attack models that require access 
to information of the original ��� model such as parameters, gradient, or structure 
to conduct attacks are referred to as white-box attack models, otherwise black-box 
attack models (Huang et al. 2020). Our study focuses on white-box attack models 
and hence we will mainly review popular white-box attack models. A more compre-
hensive literature review can be found in (Kong et al. 2021; Huang et al. 2020).



176 H. Xia et al.

1 3

FGSM (Fast Gradient Sign Method) (Goodfellow et  al. 2014) is the most clas-
sic white-box attack model for both image and tabular data. It creates adversarial 
samples by adding gradients to the original instance. FGSM is easy to implement but 
normally has a relatively low success rate, as the adversarial samples created by add-
ing gradient may be insufficient to cross the decision boundary (Shafahi et al. 2019). 
A direct extension of FGSM is BIM (Basic Iterative Method) which iteratively con-
duct FGSM multiple times with a small step size to achieve better attack performance 
(Kurakin et al. 2016). PGD (Projected Gradient Descent) is also a popular white-box 
attack model built on top of  FGSM (Madry et al. 2017). Different from BIM that 
directly iteratively conducts FGSM from the original sample, PGD initializes the start 
of the adversarial attack from a random distribution to add variations to the attack to 
further improve the attack’s success rate.

Another popular white-box attack model is DeepFool (Moosavi-Dezfooli 
et al. 2016). It works by iteratively linearizing the model to generate unperceivable 
adversarial examples. Compared with other gradient-based white-box attack mod-
els, DeepFool is more efficient as it can always generate adversarial examples 
that are close to the decision boundary. LowProFool is the state-of-the-art white-
box attack model on tabular data (Ballet et al. 2019). It induces parameter updates 
toward the targeted class by utilizing the gradient of adversarial noise. The impor-
tance weights of features are evaluated to ensure large perturbations only exist on 
irrelevant or less important features, such that the generated examples are impercep-
tible to expert scrutiny.

2.2  Adversarial defence methods

Madry et  al. (2017) is the most straightforward defence method—it takes advan-
tage of adversarial training to minimize models’ adversarial risk to defend against 
adversarial attacks. Despite its effectiveness, one critical issue of this adversarial-
training-based defence model is overfitting to attacks that generate adversarial 
samples (Kurakin et  al. 2017). For example, the models that were adversarially 
trained to resist FGSM frequently failed to resist L-BFGS and BIM attacks. Thereby, 
recent studies have started to advocate input discretization as the defence mecha-
nism. Thermometer encoding (Buckman et  al. 2018) is one of the most popu-
lar discretization-based defence models as it defends against adversarial attacks by 
discretizing the numeric inputs to [0,  1] vectors. For example, discretizes 0.23 to 
[0, 0, 1, 1, 1, 1, 1, 1, 1, 1], 0.34 to [0, 0, 0, 1, 1, 1, 1, 1, 1, 1], etc. Thermome-
ter’s formulation is very similar to one-hot encoding, but it can preserve the order 
of input after discretization, thus having better performance than one-hot encoding. 
In the context of deep ANN models implemented via Keras,1 one can utilize Keras 
discretization layer.2 It offers another method to discretize neural network input. It is 
important to note that unlike other discretization methods which are feature-based 

1 https:// keras. io/.
2 https:// keras. io/ api/ layers/ prepr ocess ing_ layers/ categ orical/ discr etiza tion/.

https://keras.io/
https://keras.io/api/layers/preprocessing_layers/categorical/discretization/
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(i.e., different cut-points are learned for different features)—the discretization strat-
egy in this layer learns one set of cut-points for all the features—i.e., data across all 
features is used to compute the quantiles—which are later used as the cut-points to 
discretize. Little efforts have been made to investigate the effectiveness of keras 
discretization layer in defending against adversarial attacks. We will explore this 
direction together by proposing two discretization-inspired algorithms in this work.
D2A3 and D2A3N (Zhou et al. 2022) are state-of-the-art defence models on tabu-

lar data. D2A3 defends against adversarial attacks by exploiting both input discre-
tization and adversarial training. In D2A3, the numeric input features are discretized 
to train a discretized model—this model is then improved by taking advantage of 
adversarial training. The main limitation of D2A3 is the requirement for access-
ing input data and changing it from numeric to discrete, which may be impossible 
in many application scenarios. In D2A3N, the numerical input features are discre-
tized by the cut-points directly learned from the training data—data close to cut-
points are considered adversarial samples and are replaced by the median of the bin 
to defend against adversarial attacks. Although these existing studies demonstrated 
the effectiveness of input discretization as a defence mechanism against tabular data 
adversarial attacks, their performance can be further improved by integrating flex-
ible within model cut-points learning strategies as well as dynamic discretization—
strategies that we will study in this work. Note, D2A3 and D2A3N are state-of-the-
art adversarial defence approaches in the context of deep ANN. Therefore, we will 
consider these approaches as the baseline when comparing the adversarial defence 
capability of the proposed methods in this work. The main advantage of our pro-
posed D-Layers over D2A3 and its variant is that the defence mechanism does 
not include adversarial training. Secondly, and importantly, our proposed method 
integrates discretization in the learning of an ANN model, unlike a pre-discretization 
strategy of D2A3. We will discuss in the following, that this trait is one of the rea-
sons for the superior performance of D-Layers. One limitation of our proposed 
approach in handling covariate drift is its inability to handle non-monotonic trans-
formations (or drifts). This is because, as we will also discuss below, D-Layers 
are based on equal frequency discretization, and hence assumes that order is pre-
served during the drift. However, if the order is not preserved, our proposed layers 
will not be effective. We are working on how to handle non-monotonic drifts as well 
as concept drift as an extension of this research.

2.3  Covariate drift

Covariate drift also known as covariate shift represents a typical model drift sce-
nario that occurs when the distribution of the testing data is different from the train-
ing data (Sugiyama et al. 2007). In covariate drift, the distribution change only lies 
in the input features, whilst the labels of testing data remain the same (Bickel et al. 
2009). The case in which the labels of the testing data change as well is called con-
cept drift (Gama et al. 2014)—which is outside the scope of this work. Covariate 
drift can significantly compromise the performance of a well-trained ��� , therefore, 
a bunch of studies on domain adaptation (Chen et  al. 2020) and transfer learning 
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(Wang et  al. 2019) have been conducted to address the covariate drift problem 
through the alignment of training and testing distributions (Wilson and Cook 2020). 
For example, (Gretton et al. 2009) proposed a kernel mean matching-based method 
to match the training and testing distributions by reweighting the training distribu-
tion in a reproducing kernel Hilbert space. Li et al. (2020) proposed an important 
weighting method for addressing the covariate drift by reweighting the residuals of 
kernel mean matching and non-parametric regression. Zhang et al. (2020) proposed 
a strategy that learns the weights required to address covariate shifts in only one step. 
Pathak et al. (2022) proposed a new measurement to measure the distribution mis-
match between training and testing data based on the integrated ratio of probabilities 
of balls at a given radius, and demonstrated its effectiveness in addressing covariate 
drift in non-parametric regression. The main limitation of these approaches is the 
dependence on the prior knowledge of testing data that is not always available at the 
training stage (Nair et al. 2019). Although some recent studies on causal inference 
have tackled this issue by utilizing the stability of causal graphs (Yu et al. 2020), the 
proposed models are complicated due to the difficulty of capturing causal relations 
in the data. This paper will show that simple input discretization can be an effective 
method to handle some forms of covariate drift, i.e., monotonic covariate drift.

Covariate and concept drift have been widely studied in machine learning, how-
ever, most of this work aims to develop models that have a built-in mechanism to 
handle either concept or covariate drift, e.g., Pfahringer et  al. (2007); Bifet and 
Gavaldà (2009), Oza and Russell (2001). Our work, in this paper, is different from 
various existing works, as we specifically are interested to address covariate drift in 
deep ANN models. Therefore, we have not conducted a comparison with the exist-
ing concept or covariate drift method in this work, as it does not offer a meaningful 
comparison. We, however, are interested to do this analysis as part of future works 
for this research. Note, the baseline for measuring the effectiveness of our proposed 
method in handling covariate drift is a vanilla deep ANN model.

3  Methodology

In this section, we start by formulating the problem of robust ��� , followed by dis-
cussing the motivations for using discretization to improve ��� ’s robustness. Later, 
we present in detail our proposed D1-Layer and D2-Layer.

3.1  Problem formulation

Definition 1 (Adversarial Attack on Tabular Data) Let (�,� ) = {(X1,Y1), (X2,

Y
2),… , (Xn,Yn)} be a dataset with n samples, where � is defined by a set of features 
j ∈ � , � = [Y1, Y2,… , Yn] denotes the corresponding labels. Let f ∶ ℝ

D
→ 𝕐  be 

the trained ��� model. For a given sample (Xi, Yi) ∈ (�,� ) , the adversarial attack 
aims to generate an adversarial sample Xi

adv
= (Xi + r∗) such that
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where Yt is the target label, d(r) = ‖r‖p is the perceptibility value that indicates the 
quantity of the changes in Xi after adding adversarial perturbation r. r∗ is perturba-
tion r that achieves minimum d(r).

Definition 2 (Covariate Drift) For a model f ∶ � → �  covariate drift refers to the 
case where Ptrain(Y ∣ X) = Ptest(Y ∣ X) , while Ptrain(X) ≠ Ptest(X).

Here, Ptrain(X) is the distribution of the training data (without labels), Ptest(X) is the 
distribution of the testing data (without labels), Ptrain(Y ∣ X) is the conditional distri-
bution of training data, and Ptest(Y ∣ X) is the conditional distribution of testing data.

Given Definitions 1 and 2, we have the following definition for robust ���:

Definition 3 (Robust ��� ) For a model f ∶ � → �  trained on the training dataset 
Sdata-train = (�,� ) , suppose its performance on the testing dataset Sdata-test is D% . For 
a perturbed dataset S̃data-test (based on Definitions 1 and 2), f is robust if its perfor-
mance on S̃data-test is not less than D% − � , where � is a user-specified confidence 
interval.

We will make use of this definition to evaluate (and compare) the effectiveness of 
our proposed formulations.

3.2  Rationales

Discretization is performed by sorting the data and separating the numeric features 
into different bins according to the learned cut-points (also known as discretization 
boundaries).3

Figure  1 demonstrates the rationale of discretization-based adversarial attack 
defence methods. As shown in Fig. 1a, in the original numeric feature space, there 
is no way to differentiate adversarial example xadv and other data. However, after 
discretization, the numeric features will be separated into different bins according 
to specific cut-points (see Fig. 1b). The bin number (e.g., 1, 2, 3, 4) or the median/
mean of bin values will be used to train the ��� models. It can be seen that after 
discretization the adversarial example xadv has been scaled back to a value that is 
expected by ��� (in our example, they are 1,  2,  3,  4). That means, whatever the 
attacker’s intent was, discretization is able to convert adversarial samples back to 
the values that have a consistent format with training samples. The efficacy of this 
approach depends on the number of discretized values that cross the bin boundaries. 
For example, if xadv in Fig. 1b moves to the right of �3—its discretized value will be 

(1)
f (Xi

adv
) = Yt ≠ f (Xi) = Yi

s.t. Xi
adv

∈ ℝ
D and r∗ = argmin

r
d(r),

3 The cut-points are obtained based on different strategies, such as MDL, Equal Frequency (EF), 
etc.
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incorrect (see Fig. 2a), thereby leading to performance degradation. Furthermore, as 
shown in Fig. 2b, a small drift of the data on the x-axis (covariate drift) will result 
in many data points being assigned to the wrong bins or even invalid bins. Based on 
this analysis, the following observations can be drawn: 

1. Pre-discretizing the data is not an effective defence strategy,4 as the pre-learned 
cut-points are learned on original data, and are static.

  Every time data is modified, we must re-compute the cut-points and re-train 
the model (which can be expensive), to make discretization work as a defence 
strategy. Note, we are assuming that we have access to some adversarial or drifted 
data at the training time. There is a need for cut-points to be adjusted based on 
updated data during the training—we will call this dynamic discretization.

  Our proposed D-Layers are aimed at incorporating dynamic discretization 
for adding robustness to the ��� model.

2. Cut-points should be dynamically updated from the data even during the testing 
time. If the data distribution is changed during the testing time (i.e., covariate 

Fig. 1  Rationale of discretization-based defence models

Fig. 2  Illustration of limitations of stationary cut-points in case of adversarial attack and covariate drift

4 Note, D2A3N adopts the strategy of pre-discretization.
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drift), the cut-points should be changed accordingly to accommodate the changes 
to maintain discretization accuracy. Similar to batch normalization (Ioffe and 
Szegedy 2015), our proposed D2-Layer aims to address this issue by taking 
advantage of the statistical information of testing data.

3.3  D1‑Layer

Let us start by formulating our problem. Ideally, we are interested in discretizing an 
input feature’s numeric value, in an ��� model, i.e., a value say 23.5 is transformed 
into value say 3, based on some cut-points—�1,… , �k . Our problem constitutes 
learning the cut-points in an end-to-end fashion, such that the whole process remains 
differentiable. For this, we have proposed a novel layer named D1-Layer, that 
does exactly that. The idea of D1-Layer is inspired by VQ-VAE (Vector Quantized 
Variational Auto-Encoder) that discretizes the encoder’s output via a codebook to 
improve the quality of image generation (Van Den Oord et al. 2017). In D1-Layer, 
we aim to learn a cut-point space. We denote this space as—C , also known as the 
codebook. This codebook will be used to discretize the input features. For example, 
the simplest way to discretize a data point is by doing a nearest neighbour search in 
the codebook, i.e., the input data is represented by the index of the nearest codebook 
vector.

The salient feature of D1-Layer is that it actually aims to learn the codebook 
space which is basically the representation of the cut-points, i.e., the cut-point �i is 
actually represented by a D-dimensional vector. The number of cut-points has to 
be specified in advance, e.g., if we have K cut-points, we have C ∈ ℝ

K×D . An issue 
that originates from enforcing the dimensions of the cut-point to be 1 × D , is the 
dimensionality mismatch between an input data feature (a scale) and the cut-point 
representation (a vector of size D). This renders the comparison between input data 
feature and codebook vector (or nearest neighbour search) invalid. D1-Layer uti-
lizes three strategies to address this dimensionality mismatch.5 Let us discuss these 
strategies in the following.

3.3.1  Duplicate expansion search (DES)

The first strategy that D1-Layer employs is to duplicate the scalar value D-times 
to convert it into a D-dimensional vector. This is depicted in Fig. 3a. Let Z(⋅) indi-
cate an operator that takes a scalar value as input and returns a vector of size D. For-
mally, for the j-th feature of the data i, the duplicate expansion search can be defined 
as:

Z(Xi
j
) = [Xi

j
,Xi

j
,… ,Xi

j
]

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
D

.

5 All three forms of representation assume that the input features are normalized by a min-max scaling.
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3.3.2  Taylor series expansion search (TSES)

Considering simple duplication may have less variation on the input representa-
tions, D1-Layer also employs a Taylor series expansion of 1

1−Xi
j

 to expand the sca-

lar value (as shown in Fig. 3b). Formally, the Taylor series expansion search can be 
defined as:

Fig. 3  Illustration of the discretization in D1-Layer. The numeric input in each feature is discretized 
by the codebook. The gradient of discretized feature representation will be directly copied to the numeric 
feature representation in the backward pass (straight-through estimator)



183

1 3

Improving neural network’s robustness on...

For simplicity, we ignored the constant 1 in the Taylor series expansion.
For DES and TSES, after aligning the dimensionality of input features and code-

book, the nearest neighbor search can be defined as:

3.3.3  Direct cut‑point search (DCS)

Other than expanding our input values to match the size of the cut-point space, one 
can also reduce the dimensionality of the cut-point space to match the input size. As 
shown in Fig. 3c, in DCS, we set the dimensionality of the cut-point space to 1 × K . 
The discretized value q(Xi

j
) can then be determined as:

3.3.4  Learning in D1-Layer

The output of D1-Layer is the discretized data— q(Xi
j
) , that is passed through to 

the next layer for further processing. The forward pass through D1-Layer can be 
seen as the clustering of the input feature values—the index of each cluster center 
served as the discretized value.

The main challenge in training D1-Layer is that Eq. (2) (or 3) is non-differen-
tiable due to the presence of the argmin operation. Similar to VQ-VAE, the simple 
gradient estimator strategy is adopted to address this issue (Bengio et al. 2013). That 
is, in the backward pass, gradients of the numeric representations are approximated 
by directly copying the gradient of the discretized representations (see Fig. 3). The 
loss function of our proposed D1-Layer-based ��� is:

where Lc(Y
i,Xi) represents the standard classification loss such as cross-

entropy,  MSE, etc. ∣ � ∣ represents the number of features, 
∑∣�∣

j=1
‖sg[q(Xi

j
)] − Ck‖22 

represents the codebook learning loss of data Xi , which directs the codebook embed-
ding Ck toward the corresponding data value. Note, sg[⋅] is the stop gradient operator 
that has zero partial derivatives.

We have summarized the learning process of D1-Layer-based ��� in  Algo-
rithm  1. In the training phase, D1-Layer first discretizes the input data of each 
mini-batch—we denote discretized data as q(X)b (Algorithm 1, lines 1–12). Note, 
we provide algorithm for  TSES representation. Discretized data q(X)b is then 
used in subsequent layers to train the network with parameters Θ and codebook C 
(Algorithm 1, lines 13–20). In the testing phase, the learned codebook C is used to 

Z(Xi
j
) = [Xi

j
, (Xi

j
+ Xi

j

2
),…(Xi

j
+ Xi

j

2
+…+ Xi

j

D
)].

(2)q(Xi
j
) = argmink ‖Z(Xi

j
) − Ck‖2.

(3)q(Xi
j
) = argmink ‖Xi

j
− Ck‖2.

(4)L = Lc(Y
i,Xi) +

∣�∣�

j=1

‖sg[Z(Xi
j
)] − Ck‖22,
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discretize the input data, which is then fed into the network parameterized by param-
eter Θ , for inference (Algorithm 1, lines 21–30).
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3.4  D2‑Layer

D1-Layer utilizes an objective function of the form of Eq. (4) to learn a represen-
tation of the cut-points. A simpler strategy could be to use the statistical information 
present in each mini-batch of the data and adjust cut-points accordingly. Our pro-
posed D2-Layer does exactly that. It takes advantage of the statistical information 
of each mini-batch to dynamically update the cut-points (which can be applied at 
training as well as testing time).



186 H. Xia et al.

1 3

Let B = [�1,… ,�B] represent a mini-batch of size B. D2-Layer sorts the data 
in each mini-batch and calculates the cut-points using Equal Frequency (EF) 
discretization. Other forms of discretization can be used, however, we argue that EF 
discretization has desirable properties that can lead to some robustness in the model.

Let Φ
��
(�) represent a discretization function that returns a set of K cut-points 

(based on EF discretization), learned on mini-batch �:

We have discretized value q(Xi
j
) = �(Φ̂(Xi

j
)) . Here, Φ̂(.) is the function that applies 

the learned cut-points Φ
��
(�) to the data, and �(.) is the function that represents the 

discretized value, e.g., one-hot-encoding, bin-number, etc. The discretized value 
q(Xi

j
) is then used in subsequent layers of ��� to train the network. Let us discuss 

some salient features of D2-Layer: 

1. The mean and variance of the output of the D2-Layer are guaranteed to be 
stationary and, therefore, the covariate drift can be largely eliminated (in cases 
where drift is due to monotonic transformation).

2. The discretization operator used in D2-Layer is not differentiable, hence, the 
gradient-based attacking for original input Xi will not be effective. Thus providing 
a defence against many forms of adversarial attacks.

3. D2-Layer can be deployed at the testing time— i.e., the cut-points can be 
adjusted based on testing data distribution—making it perfect to address covari-
ate drift even after the model is trained. Note, one can re-train a codebook in 
�� − ����� at testing time, but this might not be effective, as learning a codebook 
representation of size K × D requires much larger data and hence larger size of 
the batch. On the contrary, D2-Layer makes use of simpler statistics from the 
data, which can be obtained from a few test data points.

We have summarized the learning of the D2-Layer-based ��� at Algorithm 2.
In the training phase of D2-Layer, equal frequency discretization is used to 

learn the cut-points of each training batch (Algorithm  2, lines 1–12). The discre-
tized values resulting from the learned cut-points are used to train the entire net-
work (Algorithm 2, lines 13–20). The selection of feature-specific equal-frequency 
discretization is critical to the working of  D2-Layer’s algorithm—i.e., in han-
dling covariate drift, and in warding-off adversarial attack. As we mentioned ear-
lier, Keras discretization layer also learns cut-points but based on the quantiles of 
the whole input data rather than separately for each feature. We will integrate this 
quantiles-based discretization strategy in  D2-Layer and compare it with other 
forms of discretizations later in Sect. 4.

In the testing phase, different from D1-Layer and other existing defence meth-
ods that use cut-points learned from training data, D2-Layer uses equal frequency 
discretization to learn new cut-points from each testing batch to ensure the cut-
points are suitable for testing data (Algorithm 2, lines 21–32). This dynamic discre-
tization strategy makes sure that D2-Layer can handle distribution drifts during 
the testing phase.

(5)Φ
��
(�) ∼ [�1,… , �K].
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4  Experiments

In this section, we start by presenting the details of our experimental settings fol-
lowed by the results and detailed analysis.

4.1  Experimental settings

4.1.1  Datasets

We have used 24 classification datasets from UCI machine learning dataset reposi-
tory.6 All of these datasets have more than 1000 samples. Of the considered datasets, 
there are 5 datasets with more than 100,000 samples and are denoted as Large, 9 
datasets with between 10,000 and 100,000 samples and are denoted as Medium, 10 
datasets with between 1000 and 10,000 samples and are denoted as Small. The sta-
tistics information of these datasets is shown in Table 1, where n, mn , and mc repre-
sent the number of samples, numeric features, and categorical features individually.

4.1.2  Baseline methods and evaluation metric

In terms of adversarial attacks, three of the most commonly used white-box attack 
models, namely, FGSM, DeepFool (DPF), and LowProFool (LPF) have been 
adopted in our experiments. The parameters of these models are set as the values 
suggested in the respective original papers, e.g., the step size of FGSM is set to 0.1, 
the maximum iteration of LowProFool and DeepFool is set to 50, the trade-off 
factor of LowProFool is set to 10.

For defence, the state-of-the-art tabular data adversarial attack defence model 
D2A3N and Madry are selected as the baselines to test D-Layers embedded ��� ’s 

6 https:// archi ve. ics. uci. edu/ ml/ datas ets.

Table 1  Statistic information of datasets

Dataset n m
n

m
c

Dataset n m
n

m
c

covtype 581,012 10 44 sign 12,546 9 3
census-income 299,285 35 5 occupancy 10,129 14 2
skin-segmentation 245,057 4 2 satellite 6435 37 6
localization 164,860  2 3 page-blocks 5473 11 5
accelerometer 153,001 4 0 wall-following 5456 25 4
higgs 98,050 28 0 waveform-5000 5000 21 0
ipums.la.99 88,443 23 38 spambase 4601 58 2
connect-4 67,557 43 3 kr-vs-kp 3196 0 36
adult 48,842 6 8 sick 3772 6 21
letter-recog 20,000 17 26 hypothyroid 3163 6 19
magic 19,020 11 2 cmc 1473 2 7
gassensor 13,790 128 0 german 1000 3 17

https://archive.ics.uci.edu/ml/datasets
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robustness. The ��� model without any defence method (denoted as Clean) is used 
as the baseline to demonstrate the severity of the robustness problem. The standard 
evaluation metric Robust Accuracy is used to evaluate our proposed D-Lay-
ers’ performance in defending against adversarial attacks. Similar to Standard 
Accuracy that measures the ratio of correct predictions and total data points, 
Robust Accuracy measures model’s accuracy under unsettled conditions such 
as attack and covariate drift (Zhou et al. 2022)—the higher the Robust Accu-
racy, the more robust the model, and vice-versa.

4.1.3  Implementations

D-Layers and all baselines are implemented with  PyTorch. D1-Layer and 
D2-Layer are integrated into the first layer of an ��� that has 5 hidden layers with 
ReLu activation function and Softmax as the output layer. Each of the hidden lay-
ers has 100 neurons. The training epochs, batch size, and learning 
rate is set to 500, 100, and 0.0001 respectively. The number of bins K is set to 5 for 
both D1-Layer and D2-Layer. Embedding dimensions – D, in D1-Layer is set 
to 10. For the implementation of adversarial attack models, we use the code released 
in the original papers, which is available on GitHub.7 For D2A3N, we implement the 
Equal Frequency discretization-based version without adversarial training for 
fair comparison (i.e., denoted as D2A3N-EF in the original paper). The parameters 
of D2A3N and referred attack models are set to the default values as provided in the 
paper. All the experiments were conducted on an i7 − 10750 desktop PC with 16 GB 
RAM and single NVIDIA GeForce GTX 1660 Ti GPU.

4.1.4  Evaluation scenario

To evaluate the effectiveness of our proposed D-Layers in improving ��� ’s 
robustness, we split the data into  training set and  testing set. The testing data is 
attacked via three attack methods as presented in Sect. 4.1.2 or modified with covar-
iate drift. We will discuss the details of concept drift in the later section. Nonethe-
less, we call the data modified testing data. The proposed D-Layers formulation 
and other baselines are trained with  training data. The performance of the trained 
model is evaluated on the  modified testing data. The two-fold cross-validation is 
adopted for the train-test split, and the average robust accuracy results over five 
rounds are reported. The evaluation framework is illustrated in Fig. 4.

4.2  Experimental results

4.2.1  Comparison of D1-Layer search strategies

Before comparing the defence performance (robust accuracy) against adver-
sarial attacks of our proposed D-Layers with baselines, we need to determine 

7 https:// github. com/ axa- rev- resea rch/ LowPr oFool.

https://github.com/axa-rev-research/LowProFool
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the best search strategy for D1-Layer. For this, we compared the performance 
of D1-Layer embedded ��� with three different search strategies, i.e., DES, TSES, 
and DCS. The average robust accuracies are presented in Fig. 5, where the results 
are broken across all, large, medium and small categories of datasets. Three attack 
methods of FGSM, LPF and DPF are used. It can be seen that in most cases TSES 
has higher robust accuracy than DES and DCS in defending all baseline attack meth-
ods (especially, in face of  LPF attack). The pattern is consistent across  Large 
and Medium datasets. On Small datasets, DCS performs better than other search 
strategies. For sake of simplicity, in the remainder of this paper, we only pre-
sent D1-Layer results with TSES as representative of the three search techniques. 
The potential of ��� models is best-achieved with Large datasets. This is because 
on Medium and Small datasets, they can overfit the data. Our selection of TSES 
as representative is motivated by its extremely good performance of itself on Large 
collection of datasets.

4.2.2  Defence against adversarial attacks

Let us now compare the performance of our proposed D-Layers with other base-
lines in terms of defending against adversarial attacks. The average robust accura-
cies of these methods are shown in Fig. 6.

From  Fig.  6a, we can see that both  D1-Layer and  D2-Layer demon-
strate higher robust accuracies than baselines on all datasets. This demonstrates 
the effectiveness of our proposed  D-Layers in defending against adversarial 
attacks. The average robust accuracies of Clean ��� on all 24 datasets under 
FGSM, LPF, and DPF attacks are merely 0.37, 0.24, and 0.26 respectively. These 
alarming lower robust accuracies demonstrate that white-box adversarial attacks 
are quite effective in degrading the performance of ��� models. The higher aver-
age robust accuracy of D2A3N and Madry compared to Clean ANN demon-
strates their effectiveness in defending against adversarial attacks. It is important 
to note that D2A3N is the state-of-the-art defence model. Let us compare the per-
formance of D-Layers with D2A3N and Clean ANN in the following.

Fig. 4  The evaluation framework of the experiments



190 H. Xia et al.

1 3

It is encouraging to see that D2-Layer leads to a performance improvement 
of 12, 9, and 14% on FGSM, LPF, and DPF attacks respectively over D3A3N. 
Compared with  Clean ��� , the average robust accuracy improvement of 
D2-Layer on these three attacks reaches 34, 48, and 42% respectively.

It can be seen that D1-Layer achieves the highest average robust accuracy 
when compared with all other baselines. The average robust accuracy improve-
ment of D1-Layer defence against FGSM, LPF, and DPF attacks compared to 
D2A3N reaches 18, 17, and 17% respectively; and that robust accuracy improve-
ment compared to Clean ANN reaches 34, 48, and 42% respectively.

From Fig. 6b–d, we can see that D1-Layer wins against all baselines on almost 
all categories of datasets, the exception is Large with DPF attack. D2-Layer 
also shows superior performance on almost all categories of datasets, exceptions 
are Medium with FGSM and LPF attacks. Generally, we can conclude that in most 
cases D1-Layer and D2-Layer show significant performance improvement than 

Fig. 5  Robust accuracy comparison of different search strategies for D1-Layer, under adversarial 
attacks
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all other baselines on Large, Medium, and Small datasets. Also, D1-Layer has 
better performance in defending against adversarial attacks than D2-Layer and of 
cause other baselines.

Let us now demonstrate the effectiveness of our proposed D-Layers’ robustness 
by utilizing the robustness definition from Definition 3. In particular, we summarize 
the number of times a method’s robust accuracy wins against the standard accu-
racy of an ��� by a certain margin— denoted as � , under LPF attack in Table 2.8 
The results are reported for varying values of � . It can be seen that D1-Layer and 
D2-Layer outperform all other baselines on all values of � , with D1-Layer (as 
we found earlier) is more robust than D2-Layer.

Fig. 6  Robust Accuracy of D1-layer, D2-layer and baselines under adversarial attacks

8 Note, we only present results under LPF attack as a representative attack and also as it is the most pow-
erful form of attack.
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4.2.3  Handling covariate drift

The typical way of evaluating the covariate drift handling ability of models is to 
simulate the drift artificially in the data, then test the models’ performance on the 
drifted data (Nair et al. 2019). For doing this, we followed the following procedures:

• We split each dataset into training set and testing set (as described in Sect. 4.1.4). 
We will refer to these sets as training data and original test data respectively, in 
the following discussions.

• We apply a non-linear transformation to all features ( Xi
j
= �Xi5

j
+ �Xi

j
+ � ) on the 

testing set. The values of �, � , and � are set to 1, 1, 300 for the transformation. 
We call this dataset as drifted test data in the following.

• The D1-Layer, D2-Layer, D2A3N, and Clean ��� are trained on the train-
ing set and tested on the drifted test data.

The average robustness of our proposed D2-Layer and baselines under mono-
tonic covariate drift are presented in  Fig.  7.9 We can see that  D2-Layer 
achieves the highest average robust accuracy (0.89) and wins against all baselines 
on Large, Medium, and Small datasets. The average performance improvement 

Table 2  Number of wins 
of D1-Layer, D2-layer, 
D2A3N, and Madry with 
varying the value of �

Best results are given in bold

� D1-layer 
wins

D2-layer 
wins

D2A3N wins Madry wins

� = 25% 17 12 8 10
� = 30% 18 13 11 10
� = 35% 19 15 12 10

Fig. 7  Robust accuracy of 
D1-Layer, D2-Layer, 
D2A3N and ANNunder covariate 
drift

9 The detailed performance of D-Layers and baselines in handling monotonic covariate drift on each 
dataset are provided in Table 3 of the appendix.
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of D2-Layer compared to Clean ��� is 29% (which is quite impressive). This 
demonstrates the superiority of D2-Layer in handling monotonic covariate drift. 
It can be seen that D1-Layer and D2A3N can not address monotonic covariate 
drift at all.

To further demonstrate the effectiveness of D2-Layer in handling monotonic 
covariate drift, we visualize the accuracies of clean ��� and D2-Layer with and 
without drift on various datasets in  Fig.  8. In particular, we plot the accuracies 
on  modified testing data and  testing data. For the sake of completeness, we also 
plot the model’s performance during the training as well. From Fig. 8, we can see 
that during the covariate drift phase, there is a significant performance degradation 
of clean ��� (green line). However, the performance of the D2-Layer-based ��� 
model (red line) is maintained, which clearly demonstrates D2-Layer’s ability in 
handling covariate drift. The inclusion of training accuracies in the results reveals 
that D2-Layer has a different convergence profile as compared to clean ���.

Fig. 8  Illustration of accuracy (with and without covariate drift) on various datasets. Plots show accu-
racy on the training data (during the training process), followed by accuracy of the trained model on 
the drifted testing data, followed by the accuracy of the trained model on original testing data 
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4.2.4  Selection of discretization strategies in D2-Layer

As we discussed in Sect.  3, D2-Layer can accommodate various discretization 
strategies. So far, in this work, we have constrained D2-Layer with equal fre-
quency discretization. In this section, we will study the performance of D2-Layer 
with two other discretization techniques namely—Equal Width discretization 
(denoted as EW) and Quantile-based discretization technique based on Keras 
discretization layer (denoted as Quan). Note, Equal Frequency discretization 
is denoted as EF in the results. We have not tested the performance of D2-Layer 
with supervised methods such as MDL discretization, because, it is not possible to fix 
the number of bins with MDL discretization. That is, different batches in the data will 
lead to different numbers of bins. The inclusion of MDL discretization in D2-Layer 
has been left as a future work.

The average robust accuracy of D2-Layer with the three discretization meth-
ods (namely EF—default option in D2-Layer, EW, and Quan) under adversarial 
attacks and covariate drift is shown in Fig. 9.10 We can see that D2-Layer with EF 
discretization (D2-EF) achieves better performance than that with EW discretization 
(D2-EW) and quantile-based discretization (D2-Quan).

4.2.5  One strategy for two problems

Based on the experimental results in Sects.  4.2.2 and 4.2.3, we can establish that 
D2-Layer is efficient in terms of providing a defence against adversarial attacks 
as well as handling covariate drift. To clearly demonstrate this property, we plot 
the performance of D2-Layer under covariate drift and adversarial attack simul-
taneously, on two datasets, in Fig.  10. It can be seen that D2-Layer-based ��� 
has a consistent performance under the three attack methods and covariate shift. Its 
performance is consistently maintained within the ±25% degradation boundaries 
(shown by orange lines in the figure). In contrast, there is significant performance 
degradation in the performance of the clean ��� model (green line).

5  Conclusions

In this paper, we proposed two ANNlayers - D1-Layer and D2-Layer (collec-
tively referred to as D-Layers) to improve the robustness of typical ANNmodels 
on tabular datasets. This is an extension of research focusing on the use of discre-
tization in improving ANN’s robustness (Zhou et  al. 2022, 2023). The two layers 
are motivated by the need of adding discretization within the training of ANNmod-
els and, therefore, learn cut-point for discretizing the input data during the train-
ing phase. Furthermore, D2-Layer is motivated by the need for dynamic cut-point 
adjustment at the testing time. Through empirical evaluations, we demonstrated that 

10 The detailed robust accuracy of D2-Layer with the three discretization strategies on each dataset is 
provided in Table 4 of the appendix.
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Fig. 9  Robust accuracy of D2-Layer under different discretization strategies (EF, EW and Quan)

D1-Layer and D2-Layer can be easily integrated into existing ��� models and 
provides an excellent mechanism for defending against adversarial attacks and for 
addressing some forms of covariate drift. Our experimental results revealed that: 

1. D1-Layer leads to state-of-the-art (SOTA) defence performance against major 
forms of adversarial attacks on various tabular datasets.

2. D2-Layer leads to an effective strategy to address covariate drift and adversarial 
attacks at the same time.

Our future work entails:

• Studying the application of D-Layers to the hidden layers of the network: This 
will result in obtaining a discrete ANN and can lead to a network that is more robust 
to attacks and covariate drift. However, it can result in significant performance deg-
radation. How to maintain a good performance while maintaining robustness is a 
question of great value, and we are currently investigating this.
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• Studying the impact of the nature of input data: That is, how the number of features, 
the number of categorial/numerical features, data size, etc. influence the perfor-
mance of D-Layers in defending against adversarial attacks and addressing co-
variate shifts.

• Studying the efficacy of D2-Layer for other forms of drift: Currently, the pro-
posed D2-Layer can only be effective against the monotonic drift in the data. 
We are currently exploring the effectiveness of D2-Layer against non-monotonic 
transformations as well as concept drifts.

Appendix A: Code

The code of D-Layers, as well as the data used in this paper, along with experimen-
tal scripts, is available to be used at: https:// github. com/ allwe nau/ DLaye rs.

Appendix B: Detailed results

The detailed results of all the experiments done in this paper can be found in 
Tables 3, 4, 5, 6.

Fig. 10  Illustration of the robustness of D2-Layer to adversarial attacks and covariate drift by demon-
strating its performance under various forms of attacks as well as covariate drift. Horizontal orange lines 
depict � = 25% . The two models are applied on testing data, followed by drifted testing data, followed 
by modified testing data (due to FGSM, DPF and LPF attacks)

https://github.com/allwenau/DLayers
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Table 3  Robust accuracy comparison of different search strategies for D1-Layer 

The best results across each attack method (for each search strategy) are given in bold

Datasets DES TSES DCS

FGSM LPF DPF FGSM LPF DPF FGSM LPF DPF

covtype 0.57 0.58 0.56 0.74 0.65 0.75 0.54 0.52 0.66
census-income 0.97 0.97 0.97 0.96 0.97 0.97 0.95 0.91 0.93
skin-segmentation 0.79 0.79 0.03 0.88 0.81 0.14 0.85 0.84 0.10
localization 0.89 0.89 0.89 0.89 0.89 0.89 0.52 0.39 0.36
accelerometer 0.48 0.48 0.49 0.53 0.48 0.49 0.49 0.53 0.46
higgs 0.54 0.54 0.54 0.51 0.50 0.51 0.53 0.55 0.48
ipums.la.99 0.58 0.58 0.57 0.66 0.92 0.65 0.89 0.95 0.65
connect-4 0.73 0.73 0.73 0.72 0.73 0.70 0.53 0.70 0.82
adult 0.76 0.76 0.76 0.77 0.79 0.79 0.69 0.76 0.66
letter-recog 0.49 0.49 0.49 0.55 0.60 0.50 0.17 0.36 0.33
magic 0.63 0.63 0.63 0.67 0.57 0.75 0.58 0.71 0.78
gassensor 0.52 0.52 0.52 0.72 0.75 0.84 0.78 0.86 0.88
sign 0.57 0.57 0.57 0.39 0.49 0.61 0.38 0.56 0.29
occupancy 0.94 0.94 0.94 0.98 0.95 0.95 1.00 0.89 0.89
satellite 0.57 0.57 0.57 0.84 0.81 0.97 0.67 0.63 0.92
page-blocks 0.91 0.91 0.91 0.92 0.92 0.92 0.91 0.90 0.91
wall-following 0.75 0.75 0.75 0.77 0.70 0.78 0.74 0.70 0.82
spambase 0.48 0.54 0.53 0.56 0.72 0.47 0.44 0.66 0.46
waveform-5000 0.56 0.56 0.56 0.56 0.56 0.56 0.61 0.32 0.60
kr-vs-kp 0.49 0.49 0.49 0.22 0.31 0.15 0.97 0.49 0.90
sick 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96
hypothyroid 0.95 0.95 0.94 0.95 0.95 0.94 0.95 0.95 0.94
cmc 0.63 0.63 0.63 0.63 0.63 0.61 0.63 0.63 0.63
german 0.68 0.68 0.68 0.56 0.62 0.44 0.68 0.69 0.63
Average (All) 0.68 0.69 0.65 0.71 0.72 0.68 0.69 0.69 0.67
Average (Large) 0.74 0.74 0.59 0.80 0.76 0.65 0.67 0.64 0.50
Average (Medium) 0.64 0.64 0.64 0.66 0.70 0.70 0.62 0.71 0.64
Average (Small) 0.70 0.70 0.70 0.70 0.72 0.68 0.76 0.69 0.78
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Table 5  Robust accuracy of D1-Layer, D2-Layer, D2A3N and clean ANN  under covariate drift

The best results are given in bold

Datasets D1-Layer D2-Layer D2A3N Clean ANN

covtype 0.43 0.87 0.43 0.57
census-income 0.29 0.90 0.94 0.38
skin-segmentation 0.79 0.97 0.94 0.79
localization 0.81 0.96 0.50 0.81
accelerometer 0.31 0.86 0.21 0.39
higgs 0.72 0.89 0.92 0.72
ipums.la.99 0.70 0.91 0.47 0.70
connect-4 0.70 0.89 0.58 0.65
adult 0.66 0.89 0.73 0.61
letter-recog 0.66 0.89 0.24 0.61
magic 0.65 0.89 0.47 0.60
gassensor 0.65 0.89 0.65 0.60
sign 0.65 0.89 0.47 0.60
occupancy 0.29 0.90 0.50 0.38
satellite 0.65 0.89 0.48 0.60
page-blocks 0.65 0.89 0.93 0.60
wall-following 0.65 0.89 0.72 0.60
spambase 0.65 0.89 0.51 0.60
waveform-5000 0.65 0.89 0.59 0.60
kr-vs-kp 0.65 0.89 0.51 0.60
sick 0.65 0.89 0.06 0.60
hypothyroid 0.65 0.89 0.05 0.61
cmc 0.65 0.89 0.64 0.61
german 0.65 0.89 0.70 0.61
Average (ALL) 0.61 0.89 0.54 0.60
Average (Large) 0.62 0.91 0.55 0.64
Average (Medium) 0.62 0.89 0.56 0.61
Average (Small) 0.64 0.89 0.54 0.58
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