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Abstract
We propose a new deep learning cascade prediction model CasSIM that can simul-
taneously achieve two most demanded objectives: popularity prediction and final 
adopter prediction. Compared to existing methods based on cascade representation, 
CasSIM simulates information diffusion processes by exploring users’ dual roles in 
information propagation with three basic factors: users’ susceptibilities, influences 
and message contents. With effective user profiling, we are the first to capture the 
topic-specific property of susceptibilities and influences. In addition, the use of 
graph neural networks allows CasSIM to capture the dynamics of susceptibilities 
and influences during information diffusion. We evaluate the effectiveness of Cas-
SIM on three real-life datasets and the results show that CasSIM outperforms the 
state-of-the-art methods in popularity and final adopter prediction.

Keywords Cascade prediction · Information diffusion · Popularity prediction · 
Susceptibility · Influence · Social media

1 Introduction

On social media, people are sharing billions of posts, news and videos with their 
friends or followers every day. These sharing behaviours lead to the rapid diffusion 
of unprecedented amounts of information (Chen et al. 2019) in the form of cascades. 
The prevalence of information cascades exposes people to information of their inter-
est faster, and meanwhile also amplifies the damage of false information such as 
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rumours (Guarino et al. 2021). The COVID-19 pandemic gives us a chance to redis-
cover the importance of social media not only as networking platforms but also as 
an information source which can actually interfere with our everyday decisions (Xu 
et al. 2021). Thus, it is crucial to understand and forecast cascade dynamics to effec-
tively promote useful messages, e.g., for viral marketing  (Wang et  al. 2015), and 
proactively control the impact of misinformation (Song et al. 2017). The problem of 
cascade prediction aims to achieve two objectives along this direction: popularity 
prediction and adopter prediction. We say that a user adopts a message and becomes 
an active adopter if the user shares the message from at least one of his/her friends. 
With an observation of early adopters, the goal of popularity prediction is to predict 
the number of final adopters while adopter prediction is to forecast who will adopt 
the message at a future time point. Final adopter prediction is required to enforce the 
real effectiveness of information diffusion in applications such as marketing and the 
vaccination campaign during the COVID-19 pandemic. In such cases, we need to 
ensure information reaches as many targeted users as possible in addition to a large 
number of recipients.

Cascade prediction has garnered attention from both industry and academy over 
the past decade (Cheng et al. 2014; Yu et al. 2015) and the solutions have evolved 
from the methods based on diffusion models  (Panagopoulos et  al. 2020) to those 
based on cascade representation (Chen et al. 2019). Diffusion model-based methods 
characterise the interpersonal influences between users and simulate the diffusion 
process through social relations. These methods are not scalable for large networks 
due to the repetitive simulations of diffusion models. Moreover, they rely on some 
unrealistic assumptions such as independent cascades and uniform influence prob-
abilities between users (Panagopoulos et al. 2020). Therefore, despite their explain-
ability, this class of methods are sub-optimal for cascade prediction. By contrast, 
the methods based on cascade representation characterise the features of observed 
early cascades instead of modelling diffusion processes. Machine learning models 
are employed for downstream predictions. These methods have become state-of-the-
art due to their overwhelming prediction performance, especially with the recent 
success of deep learning. Compared to earlier methods using hand-crafted predic-
tive features, deep learning allows for automatic extraction of cascade representa-
tions which capture the heterogeneous information embedded in cascades (Xu et al. 
2021). For instance, the application of recurrent neural networks (RNN) and graph 
node embedding simultaneously captures the temporal rankings of early adopters 
and the structural properties of their neighbours in social graphs (Yang et al. 2019). 
Despite their promising performance, deep learning methods confront a few inher-
ent challenges as repeatedly emphasised in the literature such as the imbalanced 
distribution of cascades (Tang et al. 2021) and cascade graph dynamics (Sun et al. 
2022). Moreover, except for FOREST (Yang et al. 2019), they are designed either 
for popularity prediction or for microscopic prediction which infers the next adop-
ter. Without modelling diffusion processes, they are thus sub-optimal for predicting 
final adopters.

In this paper, we aim to combine the advantages of the two classes of previous 
studies and apply deep learning to model the diffusion process of information on 
social media. This approach will allow us to get rid of the inherent challenges in 
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embedding observed cascades, and efficiently achieve the two objectives using 
a single method. The key to diffusion process modelling is to capture the inter-
personal influences between a user and his/her friends before adopting a mes-
sage.  Cao et al. (2020D) conducted the first attempt CoupledGNN by modelling 
the cascading effect only with users’ influences. One shortcoming of this method 
is that it ignores the double roles simultaneously played by users in information 
diffusion: distributors and receivers which have been widely accepted in the lit-
erature  (Panagopoulos et  al. 2020; Wang et  al. 2015). In this paper, our goal is 
thus to explore users’ profiles of these two roles to improve the performance of 
cascade prediction. Specifically, we will address the following perspectives on 
modelling diffusion process which have not been well studied so far:

• A user’s decision to forward a message should result from three factors: mes-
sage content, influences of active friends and susceptibility of the user. Intui-
tively, a user’s influence measures his/her ability to convince another user to 
share his/her message while susceptibility measures how likely the user gets 
influenced by other users (Panagopoulos et al. 2020; Wang et al. 2015).

• Users’ influences and susceptibilities are not only user-specific but also topic-
specific. This phenomenon has not been discussed before. Social media users, 
especially on platforms featured by microblogs such as Twitter and Sina, usu-
ally have multiple topics of interest and different sharing patterns. Suppose a 
sports news reporter with a hobby of pop music. He will be more influential 
for sports-related tweets than those about music. As an information receiver, 
the reporter will be more cautious to spread sports news compared to music-
related tweets.

• Influences and susceptibilities are context-dependent  (Wang et  al. 2015). In 
other words, they spread through social relations during diffusion processes. A 
user will become more susceptible to a message when he/she sees that message 
shared by a larger number of users. Similarly, when more users have adopted the 
message a user shared, then the user becomes more influential to his/her friends 
due to the accumulated trust in the message.

To the best of our knowledge, we are the first to integrate users’ topic-specific and 
context-dependent susceptibilities and influences into cascade prediction. We start 
by validating our hypothesis that users’ influences and susceptibilities are topic-spe-
cific with our collected Twitter data. Then we propose a new deep learning cascade 
prediction model, which leverages the social network structure and simulates the 
propagation of messages from early adopters through social relations. The model 
can be effectively trained to achieve the two cascade prediction objectives at the 
same time. In this model, we explicitly embed users’ susceptibility and influence 
profiles as two representation vectors. With graph neural networks (GNN) (Kipf and 
Welling 2017), we model the activation of users according to topic-specific suscep-
tibilities and influences and the dynamics of susceptibilities and influences. Through 
comprehensive experiments with three real-life datasets, we show our model out-
performs state-of-the-art baselines in both popularity and adopter prediction with 
almost all measurements.
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2  Related works

2.1  Diffusion model‑based methods

This line of methods iteratively run their diffusion models to simulate the informa-
tion propagation process as viral contamination (Panagopoulos et al. 2020). Two typ-
ical diffusion models are used: Independent Cascade (IC) (Song et al. 2017; Wang 
et al. 2015) or Linear Threshold (LT) (Kempe et al. 2003). Earlier stochastic meth-
ods require manual assignment of influence probabilities for each user pair, which 
is not tractable in practice. To address the deficiency, embedding learning-based 
methods are proposed such as TIS (Wang et al. 2015) and EMBED-IC (Bourigault 
et  al. 2016) and CELFIE  (Panagopoulos et  al. 2020). User-specific susceptibility 
and influence are represented as latent parameters which are estimated according 
to observed cascades. The activation of a user can thus be determined by his/her 
susceptibility and influence vectors. One advantage of such methods is to well char-
acterise the diffusion process and output the activation state of each user. However, 
they suffer from high computation overhead and the strong assumptions on diffusion 
models make them sub-optimal for cascade prediction (Yang et al. 2019; Sun et al. 
2022; Chen et al. 2019).

2.2  Generative methods

With the time stamps of users’ sharing behaviours, a cascade of early adopters is 
abstracted as an event sequence and thus temporal point processes can be applied 
to simulate the arrivals of events. According to the employed point processes, we 
have two types of generative methods: the ones based on the Reinforced Poisson 
process (Shen et al. 2014) and those based on the self-exciting Hawkes process (Cao 
et al. 2017). Due to the assumption of temporal point processes, this line of methods 
over-simplify information diffusion and are thus limited in prediction performances.

2.3  Cascade representation‑based models

This class of methods extract features of observed cascades as representation vec-
tors and employ machine learning models to infer cascades dynamics. Earlier works 
rely on manually crafted features from user profiles (Cui et al. 2013) and message 
contents  (Hong et  al. 2011). Deep learning overtakes feature-engineering meth-
ods recently due to its overwhelming performance. DeepCas (Li et al. 2017) is the 
first end-to-end deep learning method for popularity prediction. It samples diffu-
sion paths from cascade graphs and makes use of recurrent neural networks (RNN) 
to embed these sequential paths. Following DeepCas, a number of methods have 
been proposed by extending RNNs to calculate cascade representations (Wang et al. 
2017; Yang et al. 2019; Wang et al. 2018). With social relations between adopters, 
some studies model cascades as cascade graphs and use various methods to cal-
culate their embedding vectors with more effective sampling methods (Tang et al. 
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2021) or graph embedding methods  (Chen et  al. 2019; Sun et  al. 2022; Xu et  al. 
2021). In spite of their promising performance, deep learning cascade prediction 
faces some inherent challenges as stated in Chen et al. (2019); Tang et al. (2021); 
Zhou et al. (2021). New methods are continuously developed to address them. For 
instance,  Tang et al. (2021) addressed the impacts of hub structures and deep cas-
cade paths in cascade graphs while  (Chen et al. 2019) identified the challenges to 
combine cascade structures with temporal information.  Zhou et al. (2021) studied 
the impact of the long-tailed distribution of cascade sizes on cascade prediction. In 
addition, except FOREST  (Yang et  al. 2019), deep learning based methods focus 
on either popularity prediction or microscopic prediction, i.e., forecasting the next 
single adopter, and thus cannot predict popularity and final adopters simultane-
ously.  Cao et al. (2020D) proposed a different approach CoupledGNN by modelling 
the cascading effects with graph neural networks (GNN) (Kipf and Welling 2017), 
i.e., users’ sharing behaviours are influenced by their neighbours in social networks. 
However, this method oversimplified the diffusion process by ignoring users’ dou-
ble roles in information diffusion and thus produced sub-optimal prediction perfor-
mances. Inspired by Cao et al. (2020D), we explore users’ dual roles as information 
receivers and distributors and propose a new deep learning model that can not only 
predict the size of cascades but also the final adopters.

3  Problem definition

Let M be a set of messages. We use the term “message” to refer to a piece of infor-
mation that can be disseminated over social media. It can be a tweet on Twitter or an 
image on Instagram. In this paper, we focus on textual messages and our approach 
can be straightforwardly extended to other message types if their representations can 
be effectively calculated. For any message m ∈ M , we have the set of early adopters 
that had shared this message up to the time t0 after the message was first posted, 
denoted by Ct0

m . The observation time t0 depends on the requirements of downstream 
applications as well as the popularity of social media platforms. It can be of hours 
on Twitter and Sina, and years for citation networks. We use G = (V, E) to denote 
the social graph recording the social relations between users. Specifically, V is the 
set of nodes representing the set of users and E ⊂ V × V is the set edges indicating 
the social relations. The network can be directed or undirected depending on social 
media platforms. For instance, the following relationships on Twitter are directed 
while the friendships on Facebook are undirected.

3.1  Popularity prediction

The problem of popularity prediction is to predict the final number of adopters, i.e., 
n∞
m
= |C∞

m
| according to the early adopters in Ct0

m and the social graph. In practical 
applications, the final time can be determined as a given fixed time t. Formally, given a 
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set of messages M and their observed cascades {Ct
m
|m ∈ M} , the problem of popular-

ity prediction can be solved by minimising the mean relative square error (MRSE) loss:

where ñ∞
m
= fΘ,G(C

t0
m) . Note that fΘ,G ∶ VP

→ ℤ is the regression function custom-
ised to graph G and parameterised by the set of trainable parameters Θ where VP 
denotes the power set of V . It takes the set of early adopters as input and outputs the 
predicted final size of the cascade. We select relative error over the absolute error 
to avoid the potential negative impacts of the various cascade sizes, e.g., exposing 
unnecessary weights to more popular messages.

3.2  Final adopter prediction

The goal is to predict the set of users who will forward the target message. This is dif-
ferent from the microscopic cascade prediction in the literature (Yu et al. 2015; Yang 
et  al. 2019) which aims to predict the next adopter according to the observed ones. 
The problem of final adopter prediction can be solved by minimising the following loss 
function:

where qΘ,G ∶ VP × V → [0, 1] is the trainable function customised to social graph G 
and parameterised by Θ that predicts the probability of a specific user adopting the 
message. In the end, we can select the users with probabilities larger than a prede-
fined threshold as the output set of final adopters. An alternative is to output the top 
ñ∞
m

 users with the largest activation probabilities.

4  Topic‑specific susceptibility and influence

In this section, we will validate our hypotheses that a user’s susceptibility and influence 
vary according to the topics of messages. This hypothesis actually contains an implicit 
claim that users adopt messages on multiple topics on social media. In other words, 
users have their own topic preferences. We start with validating this claim and then 
examine the dependence of susceptibility and influence on topics. Before our valida-
tion, we present our collection of necessary social media data to support our analysis. 
We conduct our own data collection instead of using existing publicly available datasets 
because they do not have all the inputs over a sufficiently long period required for our 
analysis.

(1)L��� =
1

�M�
∑

m∈M

�
ñ∞
m
−n∞

m

n∞
m

�2

L��� = −
1

|M|
∑

m∈M

(∑

v∈C∞
m

log qΘ,G(C
t0
m, v) +

∑

v∉C∞
m

log
(
1 − qΘ,G(C

t0
m, v)

))
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4.1  Twitter data collection

We use Twitter as the data source of our analysis because of its popularity and 
friendly data-sharing interfaces for data analysts. The metadata downloaded with 
retweeted messages includes the original tweets’ IDs which allow us to retrieve 
the corresponding cascades. To efficiently obtain a sufficiently large set of users, 
we refer to the Twitter dataset published in  Chen et  al. (2022). The dataset con-
tains tweets related to COVID-19 vaccination from four Western European coun-
tries: Germany, France, Belgium and Luxembourg. In order to obtain the Twitter 
users, we first crawled the tweets according to the published tweet IDs and extracted 
the account IDs of the originating users. Then for each originator, we queried and 
downloaded its followers and followees, according to which we successfully con-
structed the social network. Specifically, if user v follows user v′ , then an edge is 
created from v to v′ . We calculated the largest weakly connected subgraph of the 
social network as the final set of users to eliminate isolated users and ensure inter-
connectivity between users. In the end, we downloaded the tweets together with 
their metadata from the remaining users in two time periods each of which spans 
three months. One period starts from March 1st, 2020 while the other starts from 
March 1st, 2021. By these two periods separated by 1 year, we can examine the 
consistency of our empirical analysis over time. We summarise the statistics of the 
final social networks and tweets in Table 6 in “Appendix A”. Note that the numbers 
regarding tweets count those shared or posted by users. In Twitter, sharing an exist-
ing tweet generates a new tweet with a unique ID and metadata containing the ID of 
the original one.

In this paper, we focus on the texts of retweeted messages and thus remove all 
other content such as ‘@’, hyperlinks and ‘RT’ which stands for ‘retweet’. For 
quoted tweets, we only consider the quoted tweets and ignore the comments added 
by users. In our analysis, we only consider the users who have shared more than 5 
different messages in our dataset to ensure the reliability of our analysis. In practice, 
users’ social connections evolve over time by adding new connections or remov-
ing existing ones. In the following analysis, we do not consider this dynamic nature 
of social graphs by assuming that Twitter users do not frequently cancel their fol-
lowing-ships and their topics of interest stay relatively stable. In our collection, the 
social graph is built according to the data collected in early 2020.

4.2  Users’ topic preferences

We validate our observation that users simultaneously participate in discourses of 
multiple topics on social media.

4.2.1  Topic modelling

Topic modelling has upgraded from traditional LDA method to machining learn-
ing methods  (Greene and Cunningham 2006). In  Zhang et  al. (2022), it has been 



86 N. Chen et al.

1 3

shown that the combination of high-quality text embeddings and clustering meth-
ods is more efficient in learning topics of the same quality as complex neural net-
work models. In this paper, we adopt the most effective combination in  Zhang 
et al. (2022), i.e., RoBERTa+UMAP+K-Means, to cluster tweets with similar top-
ics. RoBERTA (Liu et al. 2019) is a pre-trained transformer-based text embedding 
method and UMAP (McInnes and Healy 2018) is used to conduct dimension reduc-
tion of text embeddings while K-Means is one of the most widely used classical 
clustering methods. Besides textual tweets, the number of topics is required as an 
input parameter. In our dataset, we only consider the textual content of messages. As 
a result, original tweets and retweets will have the same embeddings.

We classify the collected tweets in each period with the selected topic modelling 
method. After several trials, we select 25 topics due to the relatively higher quality 
of the output clusters. In the end, we have 25 clusters of retweets, the i-th of which is 
denoted by Si . In Fig. 1, we depict retweets as data points and layout them according 
to their text embedding vectors mapped to a 2-D space with UMAP (McInnes and 
Healy 2018) in the two selected periods. The colours indicate their clusters. With the 
widely accepted measurements: C_V and Normalised Pointwise Mutual Informa-
tion (NPMI), we measure the coherence values of extracted topics which are 0.649 
and 0.138 for the first period, and 0.704 and 0.142 for the second period. According 
to the criteria adopted in topic modelling works such as Zhang et al. (2022), these 
numbers indicate a more than good topic coherence. We extract the representative 
keywords with their TFIDF rankings, and manually examine the topics of the clus-
ters. We find that in general, the tweets in these clusters are about specific topics 
such as the death and infection numbers of COVID-19, Black Lives Matter move-
ment and COVID-19 policies (see “Appendix E” for the top 10 keywords and our 
coarse annotation).

Fig. 1  Clustering retweets into topics
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4.2.2  User topic preference

We represent the topic preferences of user v by a vector v by counting the propor-
tions of his/her retweets in each topic. Formally, let Rv be the set of retweets of user 
v and recall that Sj is the set of retweets in the j-th topic, then the j-th element of v is 
calculated as |Rv∩Sj|

|Rv|
 . In Fig. 2a, b we layout users as data points according to their 

preference vectors mapped to 2 dimensions in the two periods with UMAP (McI-
nnes and Healy 2018). We can see that users’ vectors scatter all over the space. This 
confirms the diversity of Twitter users’ topics of interest. Another observation is that 
users cluster naturally, which indicates users group with others with similar inter-
ests. Both observations help demonstrate the validity of the users’ topic vectors we 
calculate. We consider a user is interested in the j-th topic if the j-th element of his 
representation vector is over 0.08 which is double the value of the null model where 
users have equal preferences over the 25 topics. Figure 2c shows the distributions of 
the number of topics users prefer in the two periods. We observe that about 86% 
users actively participate in at least 2 topics. On average, each user is interested in 3 
topics. According to the above discussion, we can conclude that users are interested 
in multiple topics.

4.3  Topic‑specific susceptibility and influence

Whether a user retweets a message is determined by his/her susceptibility and 
the influences received from his/her followees who have shared the message. We 
hypothesise that the interplay between susceptibility and influences is not only user-
specific but also topic-specific. Many methods have been proposed to learn the latent 
representations for users’ susceptibilities and influences according to past observed 
cascades (Panagopoulos et al. 2020; Wang et al. 2015). However, we cannot validate 
our hypothesis by directly comparing the representations extracted from past cas-
cades of different topics. This is because the learning processes on different topics 
are independent. Therefore, the learned representations do not belong to the same 
space and are not comparable. Therefore, we select an intuitive approach based on a 
heuristic utilised in the literature (Bourigault et al. 2016) that if users’ susceptibility 
and influence are topic-specific, we will have two observations: 

(a) Visualisation (Period 1) (b) Visualisation (Period 2) (c) Distribution of the num-
ber of topics of interest.

Fig. 2  User topic preferences and distribution
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1. As an information receiver, a user will have different patterns regarding sharing 
messages from his/her followees between topics;

2. As an information distributor, a user’s followers will have different patterns 
regarding sharing messages retweeted or posted by the user.

If these two differences are present in our dataset, we can infer that the interaction 
of a user’s susceptibility and influence varies between topics. After a user shares 
a message, the user will have an influence on each follower’s decision whether to 
share the message. According to this intuition, we use the frequency with which a 
follower forwards messages after the user’s sharing to measure the strength of the 
interplay between the user’s influence and the follower’s susceptibility. In the fol-
lowing, we first present our measurements for a user’s susceptibility pattern as a 
receiver and his/her influence pattern as a distributor, and then discuss our analysis 
of our dataset.

4.3.1  Measuring topic‑specific susceptibility

Intuitively, given a topic, we use the relative frequencies with which a user forwards 
messages from his/her followees to quantitatively capture the user’s sharing pat-
tern as an information receiver. Suppose a user v with the set of his/her followees 
U+
v
= {v� ∈ V|(v, v�) ∈ E} . We assume a pre-defined order between the followees of 

user v and use vi to denote the i-th followee. Let Rv,j be the set of tweets that u 
retweeted about the j-th topic, and t(m, v) to denote the time when m is posted or 
retweeted by user v. The susceptibility vector of v for topic j is denoted by sv,j ∈ ℤ

|U+
v
| 

whose i-th element is the number of messages retweeted by the i-th followee in U+
v
 

before v retweets the same message, i.e, |{m ∈ Rv,j ∩Rvi
|t(m, v) > t(m, vi)}|.

4.3.2  Measuring topic‑specific influence

We use the frequencies with which a user’s followers share his/her retweeted mes-
sages to quantify the influence patterns of the user as an information distribu-
tor. Suppose a user v with the set of followers U−

v
= {v� ∈ V|(v�, v) ∈ E} ranked 

according to a pre-defined order. Let hv,j denote the influence vector of user v of 
the j-th topic. Then the i-th element is the number of retweets conducted by the fol-
lower vi in U−

v
 after seeing the same message posted or retweeted by user v, i.e., 

|{m ∈ Rv,j ∩Rvi
|t(m, v) < t(m, vi)}| . Similar to the definition of topic-wise suscepti-

bility similarity, we also consider the top K favourite topics of user v, i.e., Tv
K

 . Then 
the topic-wise influence similarity of user v is defined as follows:

The domain of IP@K is between 0 and 1. A lower value indicates a users’ influence 
varies more between topics.

(3)IP@K(v) =
2

K⋅(K−1)

∑
j,k∈Tv

K
∧j<k

hv,j⋅hv,k

‖hv,j‖⋅‖hv,k‖
.
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4.3.3  Experimental analysis

We re-use the topics extracted in Sect. 4.2 to analyse the topic dependence of sus-
ceptibility and influence. In Figs. 3 and 4, we show the distributions of SP@K and 
IP@K values over the users when K is set to 2 and 3, respectively. For either meas-
urement, we construct a null model as a reference to capture the distributions when 
the topic-specific phenomenon is absent. Take susceptibility patterns as an example. 
For any user v and each topic (e.g., the j-th topic), we construct a null vector s′

v,j
 . Its 

k-th element is a uniformly sampled random number between 0 and |Rvk ,j
| represent-

ing the number of messages of the j-th topic of user vk ∈ U+
v
 that have ever been 

shared by user v. A general observation is that users’ susceptibility and influence 
patterns roughly follow normal distributions. The curves of the distributions become 
narrower and shift right when larger K values are set. This is natural that more topics 
considered will lead to smaller average mutual similarity. We can see with all the 
selected K values, users have smaller values for both susceptibility pattern and influ-
ence pattern than the null models. On average, users’ IP@K and SP@K fall into the 
range between 0.3 and 0.4 which are only half of those when susceptibilities and 
influences are not topic-specific. The difference indicates that users’ sharing behav-
iours and their influences on friends differ between the topics of their interest.

Fig. 3  Distributions of susceptibility pattern SP@K

Fig. 4  Distributions of influence pattern IP@K
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5  Our CasSIM model

The propagation of a message can be interpreted as a process of multiple sequential 
generations. In any generation, each user first updates his/her influence and susceptibil-
ity according to the current activation states of users. Then the user decides whether 
to forward the targeted message according to his/her updated susceptibility and 
the influences of his/her friends who have forwarded the message. Inspired by Cou-
pledGNN (Cao et al. 2020D), we use multi-layered graph neural networks to model 
this iterative process. We depict our framework in Fig. 5. At each layer, three sequential 
tasks are accomplished. The first task is to update susceptibility and influence by aggre-
gating the profiles of social network neighbours. This task actually simulates the spread 
of influence and susceptibility and thus captures their context-dependence property. 
The second task is to calculate the topic-specific influence and susceptibility accord-
ing to the user’s topic preferences and the target message’s content. The last task is to 
update each user’s activation state by aggregating the interplay between his/her suscep-
tibility and the influences of all the active friends. Note that the number of layers can to 
some extent indicate the depth of propagation simulated in our model. According to the 
small world property in social networks, a relatively small number of layers is sufficient 
to cover the major component of the network and enforce accuracy. We also add a self-
activation mechanism to simulate that users adopt the message to further overcome the 
impact of this hyperparameter.

For each user v ∈ V , we use Statev ∈ [0, 1] to store his/her activation state indicat-
ing the probability that user v is activated. Furthermore, for each generation � , user v is 
associated with three embedding vectors r(�)

v
 , h(�)

v
 and pv indicating his/her susceptibil-

ity, influence and topic preferences, respectively.

5.1  Influence and susceptibility update

As users’ influences and susceptibilities propagate through social relations, we make 
use of a graph neural network to first aggregate the profiles from their friends and then 
combine the aggregation with their own profiles. We start by describing the update of 
susceptibility vectors. We use the idea of graph attention networks  (Velickovic et al. 

Fig. 5  Framework of the CasSIM model



91

1 3

A tale of two roles: exploring topic-specific...

2018) to take into account the various contributions of friends to the update. Let N(v) 
be the neighbours of user v, i.e., {v� ∈ V|(v, v�) ∈ E} . Formally, the aggregated suscep-
tibility of user v can be calculated as follows:

where W(�) ∈ ℝ
d
(�)
r ×d

(�+1)
r  is the weight matrix and d(�)

r
 defines the dimension of a 

user’s susceptibility vector at the �-th layer, i.e., r(�)
v

 . The function StateGate() is the 
state-gating mechanism (Cao et al. 2020D) to reflect the non-linearity of activation 
states. In our implementation, we use a 2-layered MLP. The attention �(�)

v,v�
 calculates 

the contribution of the influence of user v’s neighbour v′ . This attention is deter-
mined not only by v′ ’s susceptibility but also by v’s influence vector. Formally, the 
attention is calculated as follows:

where e(�)
v,v�

= �
(�)
s

(
W(�)

r
r
(�)

v�
∥ W

(�)

h
h(�)
v

)
 . Note that ∥ is the concatenation function of 

two vectors, and � s ∈ ℝ
d
(�)

h
+d

(�)
r  where d(�)

h
 is the dimension of influence vectors at 

layer � . Moreover, W(�)

h
∈ ℝ

d
(�)

h
×d

(�)

h  and W(�)
r

∈ ℝ
d
(�)
r ×d

(�)
r  are two weight matrices. In 

the end, we combine the aggregated susceptibility of neighbours with the user’s own 
susceptibility:

where W(�) ∈ ℝ
d
(�+1)
r ×d

(�+1)
s  and relu is the non-linear activation function. The update 

of user v’s influence is similar to that of his/her susceptibility. We first aggregate the 
influence of his/her friends according to their activation states with attention net-
works. The aggregated influence a(�)

v,h
 is calculated as follows:

where W(�) ∈ ℝ
d
(�)

h
×d

(�+1)

h  is the weight matrix. We calculate the attention �(�)
v,v�

 as 
follows:

where o
(�)

v,v�
= �

(�)

h
(W

(�)

h
h
(�)

v�
∥ W(�)

r
r(�)
v
). Note that �h ∈ ℝ

d
(�)

h
+d

(�)
r  and 

W
(�)

h
∈ ℝ

d
(�)

h
×d

(�)

h  and W(�)
r

∈ ℝ
d
(�)
r ×d

(�)
r  are two weight matrices which are different 

from those used in updating susceptibility. The influence vector of user v at the layer 
� + 1 is calculated as follows:

(4)a(𝓁)
v,s

= W(𝓁) ∑
v�∈N(v) h

(𝓁)

v�
⋅ StateGate(State

(𝓁)

v�
) ⋅ �

(𝓁)

v,v�

(5)�
(�)

v,v�
=

exp(e
(�)

v,v�
)

∑
v��∈N(v) exp(e

(�)

v,v��
)

(6)r
(�+1)
v

= relu
(
W(�)h(�)

v
+ a

(�)
v,s

)

(7)a
(𝓁)

v,h
= W(𝓁) ∑

v�∈N(v) h
(𝓁)

v�
⋅ StateGate(State(𝓁)

v
) ⋅ �

(𝓁)

v,v�

(8)�
(�)

v,v�
=

exp(o
(�)

v,v�
)

∑
v��∈N(v) exp(o

(�)

v,v��
)
,

(9)h(�+1)
v

= relu(W(�)h(�)
v

+ a
(�)

v,h
)
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5.2  Calculating topic‑specific influence and susceptibility

We show how to customise a user’s susceptibility and influence according to the topic 
of the message under diffusion in order to capture their topic-specific property. Sup-
pose m ∈ M is the message being propagated. We take user v ∉ C

t0
m at �-th generation 

as an example and illustrate how to convert the vectors r(�)
v

 and h(�)
v

 into r(�)
v,m

 and h(�)
v,m

 . 
We use xm ∈ ℝ

dx to denote the embedding vector of message m. As emphasised previ-
ously, in this paper, we concentrate on messages in the form of texts and the model can 
be extended to integrate other formats such as images if their representations can be 
effectively calculated. In our model, we use the pre-trained RoBERTa model (Liu et al. 
2019) to calculate the embedding vectors of textual messages.

As empirically validated in the previous section, most users have multiple topics of 
interest in social media and their preferences vary between topics. Although the focus 
of the topics may shift over time as pointed out in Yuan et al. (2020), users’ interests 
remain relatively stable. For instance, a sports news reporter may switch from reporting 
a local football team to national teams due to the opening of the FIFA World Cup, but 
the topic still remains around football. Users’ topic preferences are extracted from their 
past sharing behaviours. We use pv ∈ ℝ

dp to denote the embedding vector for his/her 
topic preferences. Intuitively, given a targeted message m, we capture its related topic 
by referring to users’ past topic preferences and utilise an MLP module to calculate the 
adjustments that should be exposed to the user’s susceptibility and influence vectors. 
Starting with susceptibility, we calculate the corresponding topic-specific susceptibility 
vector as follows:

where ◦ represents the dot product of two vectors. In addition, MLP is a multi-layer 
perceptron with an input vector of dimension dp + dx and outputs a vector of dimen-
sion d(�)

r
 . The weight matrix W(�) ∈ ℝ

d
(�)
r,m×d

(�)
r  conducts the linear transformation of 

the susceptibility vector to dimension d(�)
r,m

 . Similarly, we have the user’s topic-spe-
cific influence calculated as follows:

Note W(�) ∈ ℝ
d
(�)

h,m
×d

(�)

h  and the output of MLP has the dimension of d(�)
h

.

5.3  User state update

With users’ topic-specific susceptibility and influence, we can model their interplay 
which changes their activation states. The influences of each user’s active neighbours 
are first aggregated as the total amount of topic-specific influences exposed to the user. 
Then we use an MLP module to capture the likelihood of the user adopting the mes-
sage only according to the exposed influences, denoted by � (�)

v
 . We use

(10)r(𝓁)
v,m

= W(𝓁)
(
MLP(pv ∥ xm)◦r

(𝓁)
v

)

(11)h(𝓁)
v,m

= W(𝓁)
(
MLP(pv ∥ xm)◦h

(𝓁)
v

)
.
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where �v ∈ ℝ is a self activation parameter. Intuitively, the probability is dependent 
on the user’s topic preferences. In our model, we use a one-layer MLP followed by 
a sigmoid function to capture this dependence. In the end, we combine the above 
activation probability with the user’s current activation status into the user’s new 
activation state:

Note that �(�)

1
,�

(�)

2
∈ ℝ are two weight parameters which are to be trained. The ini-

tial state, i.e., State(0)
v

 , is set to 1 if v ∈ C
t0
m or 0, otherwise. In the end, we calculate 

the final size of the cascade ñ∞
m

 as 
∑

v∈V Statev.

5.4  User profiling

From the above discussion, we can see that our model uses three input vectors for 
each user v at the 0-th layer: p(0)

v
 , r(0)

v
 and h(0)

v
 . A few methods have been proposed in 

the literature to learn users’ susceptibility and influence embedding from users’ shar-
ing history (Wang et al. 2015; Panagopoulos et al. 2020). In this paper, we pre-train 
a simple but effective model to prepare the three types of initial vectors. Suppose we 
have the cascades for the past messages in Mhist . We interpret them as the ultimate 
states of users in the corresponding information diffusion processes. In other words, 
for each m ∈ Mhist , we have the final cascade C∞

m
 . We set State∞

v
= 1 if v ∈ C∞

m
 and 

0 otherwise. We calculate the activation state for each user v ∈ C∞
m

 based on his/her 
topic-specific susceptibility and his/her active friends’ influence, which is denoted 
by S̃tatev,m . Formally,

where � ∈ ℝ
d
(0)
r +d

(0)

h  and MLP outputs a vector of dimension d(0)
r

+ d
(0)

h
 . In the end, 

p(0)
v

 , r(0)
v

 and h(0)
v

 are trained by minimising the objective function:

There may exist users who do not participate in any cascades. For these users, we set 
the neutral vectors 0 to these users as their three profile vectors.

5.5  Model training

In order to achieve the two objectives of cascade prediction: popularity and final 
adopter prediction, we aggregate the two corresponding objective functions into our 
final loss function to guide the parameter optimisation: L = �1Ladp + �2Lpop + �3Lreg 

(12)� (𝓁)
v

= sigmoid
�
MLP

��∑
v�∈N(v) h

(𝓁)
v,x

⋅ State
(𝓁)

v�

�
∥ r(𝓁)

v,m

�
+ �v

�
.

(13)State(�+1)
v

=

{
1, if v ∈ C

t0
m

sigmoid
(
�
(�)

1
State(�)

v
+ �

(�)

2
� (�)
v

)
, if v ∉ C

t0
m.

(14)S̃tatev,m = sigmoid
�
� ⋅

∑
v�∈N(v)∩C∞

m

�
MLP(p(0)

v
∥ xm)◦(h

(0)

v�
∥ r(0)

v
)
��

(15)Linitial = −
1

�Mhist�
∑

m∈Mhist

∑
v�∈C∞

m
log(S̃tatev,m).
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where �1 , �2 and �3 are hyperparameters. The Lreg is added for the purpose of regu-
larisation as an L2 norm for all model parameters.

6  Experimental evaluation

6.1  Datasets

We leverage four real-life datasets in our experiments: Sina, AMINER, Twitter2012 
and Twitter2020. Sina and AMINER are publicly available and widely exploited in 
the validation of previous works related to cascade prediction (Li et al. 2017; Cao 
et al. 2020D). The Twitter2020 dataset is an extension of our collection described in 
Sect. 4 while Twitter2012 is a public Twitter dataset collected in 2012 (Weng et al. 
2013). Each dataset has two components: a social graph and a text dataset consisting 
of diffused messages. We select these datasets to ensure a comprehensive evaluation 
that covers as many practical scenarios as possible. Sina and Twitter represent the 
social media platforms characterised by microblogs. The users of the Sina dataset 
are more densely connected. This dense social graph will benefit cascade prediction 
models with a more complete view of the sources of influences. AMINER is a cita-
tion network instead of social media and stores the citation relations between aca-
demic authors. We use AMINER to test whether our CasSIM model can also predict 
the cascades in more general settings. Moreover, in order to check the performance 
of our model for different lengths of observation periods, i.e., t0 , for each dataset, 
we construct three sets of cascades by cutting the cascades according to thr ee given 
time periods. For Twitter and Sina, due to their fast propagation speed, the observa-
tion periods are set to 1 h, 2 h and 3 h. For AMINER, we select 1 year, 2 years and 
3 years. More details can be found in “Appendix B” and the detailed statistics are 
summarised in Table 7 in “Appendix B”.

6.2  Baselines

Considering the large number of methods for macroscopic and microscopic predic-
tion, we select representative methods for comparison. A method is representative if 
it is typical for a class of methods or claims strong performances. For instance, we 
use SEISMIC (Zhao et al. 2015) and feature-based methods (Cao et al. 2020D) as 
representative baselines for machine learning methods without deep learning. We 
reuse the implementation of these models whenever they are accessible and con-
duct our own implementation otherwise. A brief description of our baselines can be 
found in “Appendix C”.
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6.3  Experimental settings

6.3.1  Evaluation measurements

We use three widely adopted measurements to evaluate the prediction performances 
regarding popularity. MSLE (Mean square log-transformed error) is a standard eval-
uation metric (Chen et al. 2019) defined as: MSLE =

1

�M�
∑

m∈M(log n∞
m
− log ñ∞

m
)2 . 

We use mean absolute percentage error (MAPE) and wrong percentage error (WroP-
erc) which is introduced and used in Cao et al. (2020D) to evaluate prediction per-
formance in terms of relative errors. MAPE measures the average relative errors and 
is defined as: MAPE =

1

�M�
∑

m∈M

�ñm
∞
−nm

∞
�

nm
∞

 . WroPerc measures the average percent-
age of cascades that are poorly predicted and is defined as: 
WroPerc =

1

�M�
∑

m∈M 1

�
�ñm

∞
−nm

∞
�

nm
∞

≥ 𝜀
�
 . We set the threshold to 0.5 in our experi-

ments. Note that 1(∗) is an indication function which outputs 1 when the input prop-
osition is true or 0 otherwise. For each measurement, a lower value indicates better 
prediction performance.

With regard to evaluating the prediction performance of final adopters, we use the 
standard metrics: precision, recall and F1 score.

6.3.2  Hyperparameter settings

For each of the three datasets, we randomly split it into training, validation and test-
ing sets according to the ratio 8:1:1. For the text embedding model RoBERTa, we 
utilise the implementation XLM-RoBERTa (Conneau et al. 2020). We set the maxi-
mum size of input strings to 128, and the length of text embedding is 768. For all 
models including the benchmark models, we tune their hyperparameters to obtain 
the best performance on validation sets. Early stopping is employed for tuning when 
validation errors do not decline for 20 consecutive epochs. The learning rate and 
L2 coefficient are chosen from 10−1, 10−2,… , 10−8 . The hidden units for MLPs 
are chosen from {32, 64}. The batch size is 32. We train our model for 500 epochs 
and utilise Adam  (Kingma and Ba 2015) for optimisation. We use the first three 
months’ cascades in Sina and Twitter2020 dataset to pre-train users’ initial profiles: 
their topic preference, susceptibilities and influences. For the Twitter2012 dataset, 
the first week’s cascades are used. For the AMINER dataset, the first 2 years’ cas-
cades are used. All hyperparameters remain the same as they are recommended in 
the original papers or the published source codes.

6.4  Overall prediction performance

We compare the performance of our CasSIM model to the baselines for both the 
two cascade objectives: popularity prediction and final adopter prediction. As dis-
cussed previously, not all baselines can achieve these two objectives simultaneously. 
As a result, for each objective, we compare with the baselines that can achieve the 
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objective. We independently train each model 5 times and report the average results 
on testing sets.

6.4.1  Popularity prediction

We outline the performance of all the benchmarks and our CasSIM model on the 
selected datasets in Tables 1, 2,  3 and 8. Due to the limited space, we put the results 
about Twitter2012, i.e., Table  8, in “Appendix  D” We do not consider DyHGCN 
in this comparison since it can only conduct microscopic prediction, i.e., predict-
ing the next single adopter. Our objective is to examine whether our CasSIM model 

Table 1  Popularity prediction performance on Sina dataset

Model 1 hour 2 hours 3 hours

MSLE MAPE WroPerc 
(%)

MSLE MAPE WroPerc 
(%)

MSLE MAPE WroPerc (%)

SEISMIC 5.774 – 50.93 5.688 – 47.84 5.223 – 42.00
Feature-based 4.672 0.359 41.53 4.165 0.315 38.48 4.052 0.308 31.96
DeepCas 3.578 0.291 32.26 3.421 0.288 28.74 3.139 0.270 18.58
DeepHawkes 2.894 0.289 26.21 2.551 0.280 25.89 2.240 0.268 17.57
CasCN 2.749 0.285 27.36 2.442 0.283 25.56 2.181 0.279 17.23
CoupledGNN 2.289 0.242 23.60 2.254 0.236 17.96 2.037 0.223 14.27
CasSeqGCN 2.281 0.252 23.96 2.282 0.239 18.43 2.048 0.224 13.54
FOREST 2.156 0.238 20.05 2.136 0.235 18.14 1.995 0.230 13.49
CasFlow 2.248 0.239 20.68 2.195 0.221 16.79 1.982 0.215 12.10
TempCas 2.290 0.226 18.23 2.208 0.229 14.73 1.960 0.209 11.26
CasSIM 2.148 0.221 19.46 2.126 0.217 14.94 1.919 0.202 11.04

Table 2  Popularity prediction performance on AMINER dataset

Model 1 year 2 years 3 years

MSLE MAPE WroPerc 
(%)

MSLE MAPE WroPerc 
(%)

MSLE MAPE WroPerc (%)

SEISMIC 5.496 – 48.24 5.132 – 41.68 4.720 – 32.88
Feature-based 4.069 0.485 37.76 4.004 0.426 32.30 3.523 0.353 28.71
DeepCas 2.031 0.293 28.33 1.916 0.260 22.69 1.908 0.227 21.39
DeepHawkes 2.400 0.294 27.42 1.148 0.252 22.47 1.735 0.191 20.73
CasCN 2.007 0.285 27.49 1.959 0.283 20.28 1.876 0.183 20.99
CoupledGNN 1.970 0.288 25.90 1.798 0.282 20.16 1.430 0.165 19.63
CasSeqGCN 1.953 0.285 25.32 1.773 0.306 20.84 1.458 0.168 19.43
FOREST 1.359 0.293 25.11 1.175 0.298 19.40 1.495 0.154 18.88
CasFlow 1.822 0.256 26.44 1.086 0.233 17.01 1.416 0.136 14.83
TempCas 1.308 0.242 24.66 1.073 0.236 16.87  1.384  0.130 14.84
CasSIM 1.272 0.231 24.51 1.063 0.225 16.26 1.376 0.126 14.09
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outperforms the baselines in different scenarios. If not, we analyse the possible 
causes so as to understand the scenarios where our model works the best. In gen-
eral, we can observe that FOREST, CasFlow and TempCas are the best baselines in 
terms of popularity prediction. In addition, the prediction becomes more accurate 
when observation periods are longer. These two observations are consistent with the 
experimental evaluation in the literature  (Tang et  al. 2021; Chen et  al. 2019). We 
highlight the best performance in bold numbers and italic the second best.

We have three main observations. First, we observe that our CasSIM model out-
performs almost all the baselines according to the three measurements in the four 
datasets. Tempcas only marginally outperforms CasSIM when the observation peri-
ods are set to 1  h and 2  h. This may be caused by the relatively large variances 
of cascade lengths in the Sina dataset. The performance improvements show that 
our model can accurately predict the final size of cascades on both social media 
and citation networks where the cascading phenomenon exists. Second, compared 
to CoupleGNN, our CasSIM model can produce overwhelmingly more accurate pre-
dictions, especially when measured by WroPerc. For instance, on the Sina dataset, 
the increase is larger than 17%. The improvement can even reach 35% in our Twit-
ter2020 dataset. This means the performance of CasSIM is more stable than Cou-
pledGNN. We can also infer that the consideration of users’ dual roles in information 
diffusion is necessary and our CasSIM model effectively captures the interactions 
between users’ susceptibilities and influences. Last, the improvement of our CasSIM 
model is more significant when observation periods are shorter. For instance, for the 
Sina dataset, CasSIM increases the performance measured by MLSE by 6% com-
pared to Tempcas when observation periods are set to 1 h. The increase drops to 3% 
for 2-h observation periods and further decreases to 2% when observation periods 
are 3 h. We infer that this should result from our consideration of users’ topic prefer-
ences and message contents in CasSIM. When shorter observation periods are set, 

Table 3  Popularity prediction performance on Twitter2020

Model 1 hour 2 hours 3 hours

MSLE MAPE WroPerc 
(%)

MSLE MAPE WroPerc 
(%)

MSLE MAPE WroPerc (%)

SEISMIC 14.394 – 45.17 13.353 – 39.35 12.631 – 33.33
Feature-based 13.440 0.642 41.78 12.110 0.586 37.72 11.461 0.557 33.90
DeepCas 12.897 0.614 39.73 11.145 0.579 36.02 11.677 0.547 30.13
DeepHawkes 10.705 0.623 36.25 10.499 0.617 35.83 9.188 0.553 25.28
CasCN 10.640 0.592 35.81 9.207 0.552 34.63 9.048 0.550 25.62
CoupledGNN 9.400 0.497 34.49 9.122 0.477 32.86 9.045 0.452 22.55
CasSeqGCN 9.320 0.494 34.82 9.127 0.489 32.98 8.928 0.453 22.43
FOREST 8.799 0.489 33.01 8.469 0.463 30.25 8.147 0.454 21.46
CasFlow 8.916 0.478 31.59 8.114 0.458 28.94 8.081 0.446 16.33
TempCas 8.756 0.461 28.25 8.251 0.442 26.67 8.070 0.426 15.38
CasSIM 8.569 0.443 27.53 8.046 0.437 25.43 8.032 0.422 14.76
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the baselines which only rely on early adopters’ co-occurrences in cascades do not 
have sufficient information for prediction.

Final adopter prediction 
In the literature, only FOREST can predict the final adopters while predicting 

the popularity. It uses a microscopic prediction module to calculate the probability 
distribution over users to be the next activated user. FOREST iteratively samples the 
next adopters until a special virtual user named by ‘STOP’ is sampled. Compared 
to FOREST, CoupledGNN and our CasSIM model assign an activation probability 
for each user. As both the models can predict the number of final adopters, i.e., ñ∞

m
 , 

we can use the ñ∞
m

 users with the largest activation probabilities as the set of final 
adopters. Considering the inevitable prediction errors, we use a tolerant parameter 
� to add a certain percentage of extra adopters. It may be argued that microscopic 
models can also be applied to predict final adopters by iteratively predicting the next 
adopters which is similar to FOREST. However, different from FOREST, such mod-
els do not have the mechanisms to terminate the sampling. In order to ensure the 
comprehensiveness of our validation, we manually add an unfair terminating condi-
tion, that is, the true number of final adopters are sampled. We use the state-of-the-
art microscopic models such as DyHGCN and TopoLSTM as representatives. Note 
that � only works for CoupledGNN and CasSIM since they are introduced to counter 
the potential errors of their predicted popularity. In Table 4, we list the performance 
regarding final adopter prediction when observation periods are 3 h for Twitter and 
Sina, and 3 years for AMINER. For the tolerant parameter � , we use 10% , 20% , 30% , 
40% and 50% in our experiments.

We can see that CasSIM already perform better than all the baselines except for 
DyHGCN with the original predicted popularity with � set to 0. DyHGCN only 
performs slightly better than CasSIM when applied on the Sina dataset and Twit-
ter2012. Although the improvement is a bit marginal compared to FOREST, Cas-
SIM has a much better performance than CoupledGNN. With the relatively high-
quality cascades in Sina and Twitter2012, CasSIM increases the three measurements 
by about 18% . The improvement can reach more than 30% on AMINER and Twit-
ter2020. With positive � values set, we can observe an obvious performance increase 
for both CoupledGNN and CasSIM. It can be expected that too large � will even-
tually compromise the performance. In our experiments, we can achieve the best 
performance when � equals 30% or 40% and the performance started to fall when � 
is 50%.

6.4.2  Discussion

From the above analysis, we can see our CasSIM model produce promising per-
formance for both popularity prediction and final adopter prediction. Moreover, it 
effectively models the two roles of users in information diffusion. The integration 
of message contents into our model also helps improve the prediction of popularity 
when observation periods are short.
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6.5  Ablation study

We examine the contributions of the components which are implemented in our 
CasSIM model and missing in previous works. As we emphasised previously, the 
novelty of CasSIM is the diffusion process modelling which considers users’ profiles 
as two roles, message contents and topic-specific susceptibilities and influences. We 
design three variants of CasSIM to study the components related to these factors:

• CasSIM-h/r We do not distinguish users’ dual roles in diffusion and use the same 
vectors for users’ susceptibilities and influences.

• CasSIM-up We remove the pre-training process for the initial user profiles and 
use random assignments.

• CasSIM-x We remove users’ topic preference vectors, e.g., pv and do not consider 
the content of messages under diffusion, e.g., xm.

Table 5 outlines the performance comparison between CasSIM and its variants in terms 
of popularity prediction. We have three major observations: i) CasSIM performs con-
siderably better than its variants; ii) ignoring users’ two roles in information diffusion 
consistently leads to the largest damage to the prediction performance; iii) except for 
Sina, message content consistently ranks the second most influential component.

6.6  Hyperparameter test

We examine the influence of three important hyperparameters of CasSIM. The first 
parameter is the number of GNN layers which can intuitively be interpreted as the 
number of diffusion generations. The other two parameters relate to the pre-trained user 
profiles. In CasSIM, we assume that users’ profiles are stable over a sufficiently long 
time, especially for users’ topic profiles, e.g., pv . In the previous experiments, we use 
the first three months’ retweets in our Twitter dataset to pre-train users’ susceptibility 
and influence vectors, and stick to them to conduct following cascade predictions. We 
would like to test whether this is reasonable in practice and when user profiles should 
be retrained. We take our Twitter dataset as an example in our investigation. We start 

(a) Number of GNN lay-
ers.

(b)User profiling
period.

(c) Prediction period.

Fig. 6  The influence of hyperparameters
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with examining how many months in advance are needed in this pre-training process 
and then track the performance changes when predicting cascades in different periods 
after the user profile training. Figure 6 shows the results. We vary the number GNN 
layers z from {2,3,4,5}. We can see that MSLE curve drops to the bottom when z = 3 , 
then slowly climbs up when larger numbers of layers are implemented. We vary the 
number of months whose retweets are used for user profiles from {1, 2, 3, 4, 5} and the 
result shows that the periods for user profiling can be neither too short nor too long. 
On our Twitter dataset, three months work the best for popularity prediction. To test 
the effectiveness of pre-trained user profiles, we train and test our CasSIM model on 
tweets in the 1, 3, 6, 9 and 12 months after the tweets used for user profile training. We 
can see the popularity prediction performance decreases when the trained user profiles 
are used to predict cascades later than 3 months. However, a closer look will reveal that 
the range of the change is rather small. This is consistent with our expectation that user 
preferences and interests are relatively stable in spite of the vast changes in social news 
trending.

7  Conclusion

In this paper, we proposed a new deep learning model CasSIM which can simul-
taneously achieve the two most demanded cascade prediction objectives: popu-
larity prediction and final adopter prediction. Compared to previous models, 
CasSIM explores the dual roles of users in diffusion processes as both receivers 
and distributors and models the three basic factors in users’ decision to become 
active: susceptibilities, influences and message contents. With effective user pro-
filing, CasSIM successfully models the topic-specific property of susceptibilities 
and influences. In addition, the introduction of GNN allows CasSIM to capture 
the dynamics of susceptibilities and influences during information diffusion. With 
extensive experiments on three real-life datasets, we validated the effectiveness of 
CasSIM in predicting popularity and final adopters. The results showed that Cas-
SIM outperforms the state-of-the-art methods, especially when shorter cascades 
are observed, in both social media and other scenarios where cascades are also 
present.

We identify a few limits of our CasSIM model which can be addressed in the 
future. First, we focused on messages in the form of texts and only consider their 
topics. Second, CasSIM does not consider the temporal ranks between the early 
adopters. It is interesting to extend and test CasSIM in cascade prediction by com-
bining other types of information in messages such as images and quotations, con-
sidering other semantic features such as sentiments, and improve the performance 
by integrating the time stamps of early adopters.
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Appendix A: Statistics of our data collection

We summarise the statistics of our data collection used for the analysis in Sect. 4 in 
Table 6. 

Appendix B: Description of datasets in experimental evaluation

Sina

The dataset is collected by  Zhang et al. (2013) from Sina, a popular Chinese social 
media platform and spans from September 28, 2012 to October 29, 2012. For each 
user, the dataset includes 1,000 additional most recent microblogs. We only keep the 
cascades with more than 15 users.

AMINER AMINER (Tang et al. 2008) is constructed with data collected from the 
DBLP computer science bibliography.1 The social graph describes authors and their 
citation relations between 1992 and 2002. A cascade corresponds to a paper and 
tracks the researchers who ever co-authored the paper or cited the paper. We con-
struct the social graph with the papers between 1992 and 2002 and those between 
2005 and 2009 for model training, testing and validation.

Twitter2012 This dataset is collected by  Weng et al. (2013) from Twitter. It com-
prises public tweets posted between March 24 and April 25, 2012. Following the 
approach of  Xu et al. (2021), we consider hashtags and their adopters as distinct 
information cascades. The social network is established with a variety of relation-
ships including followings, retweeting and mentions.

Twitter2020 We collected this dataset with the same social graph constructed 
based on the following-ships in May 2020 as used in Sect. 4. Specifically, in addi-
tion to the six-month tweets, this dataset contains the retweets spanning from March 

Table 6  The statistics of our Twitter dataset

Social network #node 5, 808, 938
#edge 12, 511, 698
average degree 2.15

Timeline tweets Period 1(1/3/2020-30/6/2020) #tweet 7,855,186
#retweet 4,245,618
#tweet per user 627.51
#retweet per user 339.16

Period 2 (1/3/2021-30/6/2021) #tweet 3,591,664
#retweet 1,883,128
#tweet per user 303.76
#retweet per user 150.43

1 https:// dblp. org/

https://dblp.org/


104 N. Chen et al.

1 3

1, 2020 to October 30, 2021 for almost 2 years. Our experiments use the cascades 
with a size larger than 15. Table 7 lists the statistics of the datasets. 

Appendix C: Description of baselines

Feature‑based method

This is a linear regression model with crafted features with L2 regularisation. We 
use the same features in Cao et al. (2020D).

SEISMIC  (Zhao et al. 2015). SEISMIC uses the Hawkes self-activation point 
process to approximate the impact of cascading effect for popularity prediction.

DeepCas (Li et al. 2017). DeepCas is the first end-to-end representation learn-
ing-based method for popularity prediction. It represents cascades as cascade 
graphs and uses Bi-GRU to embed a cascade graph with random walk paths.

DeepHawkes  (Cao et  al. 2017). DeepHawkes integrates deep learning into 
Hawkes process for popularity prediction. It treats cascades as a temporal series 
of events. It combines user embedding vectors and cascades encoding by RNNs.

CasCN  (Chen et  al. 2019). Compared to models like DeepCas sampling ran-
dom diffusion paths, CasCN samples sub-graphs from cascade graphs into a 
series of sequential sub-cascades. Then it proposes a dynamic GCN model (Bruna 
et al. 2014) to learn the cascade representation for popularity prediction.

CoupledGNN  (Cao et al. 2020D). CoupledGNN leverages two GNNs to sim-
ulate the cascading effects of information diffusion. One updates users’ activa-
tion states and the other captures the spread of users’ influence. Despite being 
designed for popularity prediction, the simulation of cascading effect also allows 
it to predict final adopters.

CasSeqGCN (Wang et al. 2022) Similar to CasCN, CasSeqGCN also processes 
cascade graphs into a sequence of sub-cascades with network topology for popu-
larity prediction. It uses a dynamic route aggregation-based GCN to capture the 
representations of sub-cascades, and an LSTM to extract temporal information.

FOREST  (Yang et  al. 2019). FOREST uses an enforcement learning frame-
work to endow a microscopic prediction model with popularity prediction. It can 
predict both popularity and final adopters. The proposed microscopic model uses 

Table 7  Statistics of Sina, AMINER, and Twitter datasets

Social network Ave. # user per ascade #cascades

#node #edges Observation 1 Observation 2 Observation 3

Sina 1,776,950 308,489,739 28.36 34.79 38.22 34,897
AMINER 131,415 842,542 14.71 15.71 18.80 30,106
Twitter2012 490,474 1,903,230 15.88 17.28 20.22 88,440
Twitter2020 5,808,938 12,511,698 27.64 30.99 33.76 81,331
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GRU neural networks to embed and use the representation of the last early adop-
ter to predict the next adopter.

CasFlow (Xu et al. 2021). CasFlow uses graph signal processing, graph repre-
sentation techniques and variational auto-encoder to capture node-level and cas-
cade-level diffusion uncertainty. It is designed for popularity prediction.

TempCas  (Tang et  al. 2021). TempCas is designed for popularity prediction 
and claims better performance than previous methods. It considers the temporal 
changes of cascade graphs and calculates the representation of a cascade graph 
based on previous snapshots of the cascade graph.

DeepDiffuse (Islam et al. 2018). DeepDiffuse is an attention-based RNN model 
designed for predicting final adopters. It captures the state transitions of users, 
leveraging network embeddings and attention models to predict the timing of the 
next adopter’s infection.

TopoLSTM  (Wang et  al. 2017). TopoLSTM is an RNN model for final adop-
ter prediction. It enhances the standard LSTM by exploiting the hidden states in a 
directed acyclic graph, which is obtained from the social graph.

SNIDA  (Wang et al. 2018). SNIDSA is an RNN model that incorporates struc-
ture attention for predicting final adopters. It utilises RNNs to handle sequential data 
while introducing an attention mechanism to trace the structural dependency among 
users. Additionally, it employs a gating strategy to integrate both sequential and 
structural information.

DyHGCN (Yuan et al. 2020). DyHGCN is designed for final adopter prediction. 
It extracts structural information from both social graphs and cascade graphs to gen-
erate dynamic user embeddings through a heterogeneous GCN.

Appendix D:  Performance of popularity prediction 
on the Twitter2012 dataset

See Table 8.

Table 8  Popularity prediction performance on Twitter2012

Model 1 h 2 h 3 h

MSLE MAPE WroPerc 
(%)

MSLE MAPE WroPerc 
(%)

MSLE MAPE WroPerc (%)

SEISMIC 9.720 – 41.33 8.634 – 40.88 8.355 – 37.13
Feature-based 16.944 0.523 49.38 14.563 0.456 45.16 11.321 0.435 39.78
DeepCas 8.422 0.582 29.16 6.304 0.650 31.71 5.610 0.411 33.97
DeepHawkes 7.071 0.553 29.53 5.326 0.509 26.52 4.765 0.368 20.70
CasCN 7.091 0.498 28.82 5.207 0.485 26.20 4.645 0.349 20.52
CoupledGNN 7.145 0.509 26.30 5.185 0.481 25.97 4.475 0.339 19.79
CasSeqGCN 7.027 0.548 26.76 5.193 0.488 25.64 4.357 0.336 19.36
FOREST 6.856 0.510 25.90 5.169 0.491 24.85 4.198 0.332 18.74
CasFlow 6.692 0.505 24.10 4.884 0.397 22.82 4.043 0.337 14.57
TempCas 6.469 0.423 22.86 4.896 0.349 22.10 3.969 0.318 13.91
CasSIM 6.440 0.419 22.26 4.739 0.338 22.64 3.903 0.309 13.57
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Appendix E: Topic annotations of clustered topics

We coarsely classify them into three categories. Label ’COVID-19’ encapsulates 
all discourse about COVID-19, such as infection and death numbers, vaccines, and 
policies. The label ’BLM’ corresponds to discussions around the Black Lives Matter 
related activities. Topics that do not fall under these two types are preliminarily clas-
sified under label ’Other’.

See Tables 9 and 10.

Table 9  Keywords and annotations of tweets in Period 1

Topic Top 10 words label

1 Fr tube chine phone live covid france virus coronavirus jours COVID-19
2 Covid positivo hospitales presidente mands magnifique nombre morts fr virus COVID-19
3 Corona mssen einfach innen deutschland pandemie knnen innen wre de COVID-19
4 Love good day time people life today feel mme photo Other
5 Faut tait monde temps jour jamais temps medecin sante COVID-19
6 Wow wait benzema moment bonne mesdames messieurs submitted lne enfin Other
7 Usa china biden trump antifa gop america black game yall BLM
8 Saint luxembourg vraument mme veux mieux franais neiegkeeten infektioun krank COVID-19
9 Ms gente pra vida gobierno estn quiero lasso cmo gracias Other
10 Deutschland gesicherte bei eine gesicherte covid-19 auslosen hat WHO COVID-19
11 Hate black life gun covid asia jacobblake today year COVID-19
12 Blm georgefloyd justice trump shot video cop gun ferguson protest BLM
13 Publiziert soeben resto sketch mars cours daily wonte influencer labonnement Other
14 Zuhause sicher gut helfen aku hause abstand wre maske virus COVID-19
15 Happy violences tapes partiels think dankeschn hope cours jespre bir Other
16 Policy home temporarily media learn resonance account honored healthy hospital COVID-19
17 Bir ve bu iin gibi mood daha olan kadar yok Other
18 Policiers ignoraient rbellion participes tweet yeah tabass suffit miff ms Other
19 Macron allocution million suivi avait avril president qui nation mdrr Other
20 Love omg mood stadsarchief coup amsterdam collectie commente fotograaf tapi Other
21 Macron us racist privacy app phone coronavirus black government vaccine BLM
22 Time shit trump day tweet people lmao fake love year Other
23 Lockdown flattenthecurve borderline hinausgehen reise arbeit home wash maske ber COVID-19
24 Death who life china work virus temps cdu year time COVID-19
25 Confinement start qqun rouvrir peson mourront animal botes jlui follow Other
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Table 10  Keywords and annotations of tweets in Period 2

Topic Top 10 words Label

1 Covid vaccine effect hour day people good week last first COVID-19
2 Impfstoff maske dose immunitat wirksamkeit jahr covid impfen jetzt wirkung COVID-19
3 Ms pra gente casca estn mundo quiero mme gobierno vida Other
4 Vaccin cote heure jour dexieme fievre symptome douleur effect fait COVID-19
5 De ausreisetst abriegelung corona zahlen landesgrenzen dicht balkanroute mit hause COVID-19
6 Yes fr million rentez year gagner mdrrr ete mood rebellion Other
7 Fr variant delta virulent boom mondiale aggrave jamais vaccin COVID-19
8 Germany luxembourg country merkel dead europe case person patient listen COVID-19
9 Teilen nicely france lithuania slovakia latvia bulgaria estonia policy mme COVID-19
10 Cristiano mdr lt mme mdrr wsh gt ptn rn pq Other
11 Fuck person automatically check photo kind twitter pardon monsta instabil Other
12 Resonance pt2 true nct day 21st pt 2nd diagonales actu2 Other
13 Kes tweet participes suffit miff rgale rt gagnent commentaires bir Other
14 Fin crise france retraite masion personnel deconfinement sante deces cas COVID-19
15 Yang aku ada ini yg nak orange ke kita boleh Other
16 Neerheylissem brabant publicar votes 10 wow acaba lmao yok ang Other
17 Belgien voir mme vraiment monde faut jamais jour nouvelle journe COVID-19
18 Actu japonais diagonales weeknd lundi devierg volont bavure caissires repas Other
19 Imbattable person comrades plage douche transition restaurant open COVID-19
20 Day symphorien person dirait oubli escortes couvre jour qun kkkk COVID-19
21 Championne lol himer pulvris jepkosgei joyciline km barbec influenceuse follow Other
22 Ttrangle essaye saute dfendre gardin paix mdrr extinct bonjour passer Other
23 Pfizer vaccin moderna biotech covid autorise qu commander doses chine COVID-19
24 Fuck vcut wib droit dcembre retweet januari absolutely wsh mme Other
25 Danke wtf voil requinqu trolleuse jours nope family ms pra Other

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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