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Abstract
In this work, we explore multiplex graph (networks with different types of edges) 
generation with deep generative models. We discuss some of the challenges associ-
ated with multiplex graph generation that make it a more difficult problem than tra-
ditional graph generation. We propose TenGAN, the first neural network for multi-
plex graph generation, which greatly reduces the number of parameters required for 
multiplex graph generation. We also propose 3 different criteria for evaluating the 
quality of generated graphs: a graph-attribute-based, a classifier-based, and a tensor-
based method. We evaluate its performance on 4 datasets and show that it generally 
performs better than other existing statistical multiplex graph generative models. We 
also adapt HGEN, an existing deep generative model for heterogeneous information 
networks, to work for multiplex graphs and show that our method generally per-
forms better.

Keywords Multiplex graphs · Multiplex network generation · Generative adversarial 
networks · Tensor decomposition

1 Introduction

Graphs are used to represent many different types of data—from protein interactions 
(Pavlopoulos et al. 2011) to social networks (Newman et al. 2002). There are a simi-
larly large number of useful graph-related tasks, like link prediction and node clas-
sification. One of these tasks is graph generation, which is the focus of this work. 
Graph generation models can generally be split into two types: statistical attribute-
based generative models and deep generative models. Statistical generative models 
like the Erdös and Rényi (1959), Barabási and Albert (1999), and stochastic block 
models (Holland et al. 1983) have explicitly defined parameters like the attachment 
rate or the number of communities.
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In contrast, many deep generative models can learn directly from one or more 
input graphs. This ability allows them to mimic attributes of the input dataset with-
out defining them explicitly. The majority of these models are based on either RNNs 
(Recurrent Neural Networks), GANs (Generative Adversarial Networks) (Goodfel-
low et al. 2020), or VAEs (Variational Autoencoders) (Kingma and Welling 2013). 
Examples of these include GraphRNN (You et al. 2018), NetGAN (Bojchevski et al. 
2018), GraphVAE (Kipf and Welling 2016), and LGGAN (Fan and Huang 2019).

However, sometimes a simple graph structure may not be sufficient to represent 
a dataset accurately. One example of this is the Enron dataset (Klimt and Yang 
2004), where each node is a person and each edge is an email between them. 
Representing this as a standard graph would only show that two people commu-
nicated with each other, without any information on when they communicated. 
For example, the two people may have exchanged an email once, daily, or once a 
month–each of which would indicate a very different relationship. Representing 
this data as a multiplex graph allows us to fully represent this information.

Another use-case for a multiplex graph is to capture different types of social 
media interactions across the same users. Each node would represent a person 
and each edge type could represent a different form of interaction. An example 
of this could be a graph representing Twitter interactions, where each edge could 
either represent a retweet, mention, or following. Using only one of these would 
unecessarily limit the information captured in the graph.

Traditional graph generation models and multiplex graph generation models 
are useful in many of the same ways. For example, they can be used to anonymize 
private data (Wang and Wu 2013) in order to enhance the reproducibility of mod-
els trained on private datasets. This would allow the user to preserve interesting 
structures in the graph without leaking private user information.

However, all of the current multiplex network generation models are statisti-
cal generative models. BINBALL (Basu et  al. 2015) adapts ideas from BA and 
ER models and proposes new multiplex preferential attachment rules. StarGen 
(Fügenschuh et al. 2018) further builds upon BINBALL by separating the param-
eters controlling the global and local degree of nodes, increasing the diversity of 
individual layers. ANGEL (Fügenschuh et al. 2020) uses a hub-and-spoke-based 
model to generate multiplex graphs, allowing it to better mimic certain structures. 
These existing works pose some major limitations, namely: 

1. Explicit parameterization. The existing models declare a set of parameters that 
affect the output of the graph. These parameters are inflexible and may lead to 
overfitting to a particular graph attribute while neglecting another.

2. Limited datasets. All three of the methods focus on Airline Transportation Net-
works (ATNs), specifically on the EU airline dataset (Cardillo et al. 2013). It is 
difficult to determine if the methods will work for different datasets. In this work, 
we explore the task of multiplex graph generation on datasets from wildly varying 
domains.

3. Limited evaluation criteria. It is difficult to quickly compare the performance 
of the models on different datasets. The performance evaluation of the models 
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is primarily done visually by comparing the distributions of various topological 
properties. This also ignores some other potentially interesting characteristics of 
the generated graphs like whether or not a classifier can distinguish between real 
and generated samples, especially useful for tasks like graph anonymization.

The first problems can be resolved by using a neural network to learn directly from 
a set of input graphs. However, extending a traditional graph generation network is 
not straightforward since the layers are often correlated. There are also many more 
parameters required. Furthermore, it is difficult to evaluate the quality of the gener-
ated graphs. We further investigate these issues in Sect. 3 below.

In this work, we tackle these issues and propose TenGAN, a tensor-based GAN, 
to generate multi-view graphs. With minor modifications, our approach readily gen-
eralizes to other data sources that can be modelled well with tensor decompositions. 
For example, tensor decompositions have been shown to work well on a variety of 
data, including fMRI (Noroozi and Rezghi 2020) and EEG data (Cong et al. 2015), 
NBA game data (Papalexakis and Pelechrinis 2018), network traffic data (Baskaran 
et  al. 2019), and spatio-temporal urban computing data (Wang et  al. 2014). How-
ever, in this work, we focus on the domain of multiplex graphs and reserve exploring 
other domains for future work.

Our contributions include:

• Novel method: We propose a novel GAN-based method to generate multiplex 
graphs that uses tensor decomposition to reduce the number of parameters 
required.

• Evaluation criteria: We propose 3 different evaluation metrics for multiplex 
graph generation and evaluate their effectiveness.

• Thorough experimentation: We conduct thorough experiments on 4 different 
datasets across 2 different models to evaluate the performance of our method. We 
also modify an existing method for heterogeneous graphs to work with multiplex 
graphs and compare our method against it.

2  Background

We first enumerate important background information and notation for this work. 
We briefly define and describe multiplex graphs, tensors, tensor decompositions, 
and generative adversarial networks. A table of symbols can be found in Table 1.

2.1  Multiplex graphs

In this work, we focus on the generation of multiplex graphs. A multiplex graph 
consists of several views, where each view is a graph. Each of the views contains the 
same nodes, but with different edges. Formally, a multiplex graph G with k views 
can be written as G = (V , (E1,E2,…Ek)) , where V is the shared vertex set and Ei are 
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the edges at the i-th layer. It is worth noting that not all of the nodes need to be con-
nected within each view.

One example of a multiplex graph is a social network, where each edge in a given 
view represents a different mode of communication. A time-evolving graph with a 
constant number of nodes could also be represented as a multiplex graph, with each 
view representing a different timestamp. Finally, a knowledge base could be seen as 
a multiplex graph, where each node represents an entity and each view represents a 
different relation. It is worth noting that this differs from the traditional notion of a 
multigraph, where nodes can have multiple edges between them but each edge is of 
the same type. Edges in a multiplex graph can have multiple types.

2.2  Tensors & decompositions

Networked data (e.g., a social network) can be represented in many different for-
mats. One of the most common formats is to use an adjacency matrix. In a similar 

Table 1  Table of symbols and 
their description

Notation Meaning

X,X , x , x Tensor, matrix, vector, scalar
[[A,B,C]] The tensor constructed from the factor matrices A,B,C.
‖X‖F Frobenius norm
g(i) The i-th view of multiplex graph g
◦ Outer product
Ti,j,k The value in the i-th, j-th, and k-th entry along the 1st, 

2nd, and 3rd mode of the tensor T

T
(k) The k-th frontal slice of a tensor T  . That is, Ti,j,k∀j∀i

NEIGH(u) The set of neighbors of the node u

Fig. 1  Example of a multiplex graph being represented as a tensor. Left: each view of the multiplex 
graph (can be seen as a graph). Middle: each view shown as an adjacency matrix. Right: the adjacency 
tensor consisting of the stacked slices
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manner, a multiplex graph can be viewed as a third-order tensor where Ti,j,k = w if 
there is an edge of weight w (or 1 in the case of an unweighted graph) between node 
i and node j in view k. A visual example of this is shown below in Fig. 1.

One advantage of storing multiplex graphs in this tensor format is that it allows 
us to easily apply tensor decomposition methods. One of the most common tensor 
decomposition methods is the CANDECOMP/PARAFAC or Canonical Polyadic 
Decomposition (CPD) (Hitchcock 1927; Kolda and Bader 2009). Given an integer r, 
the CPD decomposes a tensor T  into the sum of r outer products of vectors. While 
the CPD can be applied to a tensor of any order, we focus on the third-order case in 
this work. Thus, the CPD can be written as:

where ai, bi, ci are the factor vectors. It is convention to write the factors as matrices 
A,B,C , which consist of the corresponding vectors horizontally stacked. For exam-
ple, the i-th column of A would be ai.

Another tensor decomposition method that has been shown to work well in the 
domain of knowledge bases and other multiplex graphs is RESCAL (Nickel et al. 
2011). Given a I × J × K tensor T  , RESCAL factors each slice as T(i) ≈ AR

(i)
A

T , 
where A is n × r and R is r × r × K.

2.3  Graph convolutional networks (GCNs)

Kipf and Welling (2017) propose graph convolutional networks (GCNs), which con-
volves the features of a given node with the features of its neighbors. Each addi-
tional GCN layer incorporates information from another hop in the graph. Formally, 
each layer of the GCN can be written as:

where h(k)
u

 is the representation of u at the k-th layer, W(k) are the weights of k-th 
layer, and h(0)

u
 are the node features of u. Note that we focus on featureless multiplex 

graphs in this work. As such, we set h(0)
u

= I ; essentially setting the node features of 
each node equal to its one-hot encoding.

2.4  Generative adversarial networks (GANs)

In this work we use a GAN (Goodfellow et al. 2020) architecture which, in its gen-
eral form includes a generator network that generates “fake” data and a discrimina-
tor network that distinguishes fake from real. Both networks trained in unison and 
are engaged in a game of outperforming each other, with the end goal being that the 
generator can essentially learn the distribution of real data. One challenge of this 

T ≈ �,�,� =

r∑

i=1

a◦
i
b◦
i
ci

(1)h
(k+1)
u

= �

�

W
(k+1)

�

v∈NEIGH(u)∪{u}

hv
√
�NEIGH(u)� ⋅ �NEIGH(v)�
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approach is that we need a distribution of inputs to model over, rather than just a 
single sample. We discuss how we address this in Sect. 4.1.

3  Problem formulation

We consider the following problem: 

Some examples of criteria in C may include graph attributes (like clustering coef-
ficient and degree distribution) or the correlation between different slices. However, 
it is not fully clear what these criteria should be and is one of several challenges in 
multiplex graph generation, some of which are listed below:

Challenge 1:  Inadequate Evaluation Criteria Before we can decide on an 
appropriate model, we must determine our evaluation criteria. This is challenging 
because we need to consider not only the graph attributes of each view but also 
the relationships between each view. This means that many of the graph evalu-
ation metrics commonly used in graph generation are insufficient for multiplex 
graph generation. In this work, we propose 3 methods of evaluation for multiplex 
graph generation models, described in Sect. 4.4 below.

Challenge 2: Sampling from Multiplex Graphs Many existing multiplex data-
sets consist of a single graph with multiple views. However, since we are emulat-
ing a set of multiplex graphs, we need many smaller multiplex graphs to form a 
distribution. In the traditional graph setting, there are existing datasets that consist 
of multiple graphs (e.g., the PPA dataset (Hu et al. 2020)). However, to the best 
of our knowledge, there are no such existing datasets for multiplex graphs. There-
fore, we need a sampling method that samples smaller multiplex sub-graphs from 
a larger multiplex graph. We describe our method in Sect. 4.1 below.

Challenge 3: Large Number of Parameters If we naively attempt to generate a mul-
tiplex graph, the number of parameters required will explode. This is because 
we need  parameters to generate an adjacency tensor for a multiplex 
graph with k views and n nodes. We propose TenGAN (described in Sect. 4.2) 
that generates a compressed tensor-decomposition-based representation to solve 
this problem.
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4  Proposed method

We propose TenGAN, a GAN-based model that first generates factors of a tensor 
decomposition model, then uses those to generate the adjacency tensor. We propose 
two variants: TenGAN-CP, which uses the CPD and TenGAN-R, which uses the 
RESCAL decomposition. We first sample sub-multiplex graphs from the dataset, as 
described in Sect. 4.1. Then, we train our GAN on the sampled multiplex graphs. 
Finally, we sample random graphs from the generator (by passing in different ran-
dom noise vectors) and evaluate them with the metrics described in Sect. 4.4.

4.1  Sampling

Many generative models require multiple input samples, rather than a single exam-
ple. For example, LGGAN (Fan and Huang 2019) is trained on 2-hop and 3-hop 
egonets extracted from the original source graph. However, it has been shown that 
this can lead to biased samples that may not necessarily be representative of the 
original graph, especially in terms of in-degree and community structure (Leskovec 
and Faloutsos 2006). To help avoid this, we perform random-walk sampling across 
each view. We then use the induced subgraph on the remainder of the views.

However, one issue with many large multiplex datasets is that most of the nodes 
may be disconnected in any given view. In extreme examples, like in some knowl-
edge graphs, almost all nodes will be disconnected in each view. Oftentimes, even 
the union of all edges across all views will still result in a disconnected graph.

Another issue is that these datasets are often too large or have too many views. 
For example, the NELL dataset (Carlson et al. 2010; Smith et al. 2017) has over 2 
million views. Random sampling of the dataset would produce extremely or com-
pletely sparse entries. In order to produce better quality samples, we use the sam-
pling method of ParCube (Papalexakis et al. 2012).

This computes the following importance score for each slice along each mode. 
For example, the importance scores for each slice along the three modes for a tensor 
T  would, respectively, be:

We then randomly sample indices for each mode, with the probability of a given 
index being selected proportional to its score. For example, a given index i is 
selected with probability ai∕

∑I

x=1
ax . This results in a more dense tensor and there-

fore a multiplex graph with more connected nodes, reducing the chance of getting 
empty (or near-empty) tensors as inputs to our model.

ai =

J∑

j=1

K∑

k=1

Ti,j,k; bj =

I∑

i=1

K∑

k=1

Ti,j,k; ck =

I∑

i=1

J∑

j=1

Ti,j,k
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4.2  Architecture

Our model is a GAN and consists of a generator network and a discriminator net-
work. The generator consists of a MLP, followed by two or three smaller MLPs to 
generate the factor matrices/tensors (depending on the factorization method). We 
further describe the two generator architectures below in Sects. 4.2.1, and 4.2.2. The 
discriminator uses the max pool of several Graph Convolutional Networks (GCNs) 
(Kipf and Welling 2017) (one per view) followed by a fully-connected layer to pre-
dict if a sample is generated or drawn from the original real dataset. A diagram of 
our architecture is shown in Fig. 2.

4.2.1  TenGAN‑CP architecture

TenGAN-CP uses a shared feature extractor layer and splits into separate networks, 
each of which generates a different factor in the CPD. This can be considered a 
higher-order extension of the BRGAN-B (Shiao and Papalexakis 2021) architecture 
and uses the tensor CPD instead of the matrix SVD.

After generating the factors, we calculate the sum of the outer products of vec-
tors from our factor matrices A,B , and C : 

∑r

i=1
ai◦bi◦ci . As shown in Sect.  4.3, 

this reduces the number of parameters needed to generate a given multiplex graph. 

Fig. 2  Diagram of the TenGAN discriminator (top) and two different generator architectures (bottom). 
TenGAN-CP is based on the CP decomposition, and generates the factor matrices A,B,C before combin-
ing them into the output adjacency tensor. TenGAN-R is based on the RESCAL decomposition, and first 
generates the factor matrix A and factor tensor R before combining them into the adjacency tensor
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We use the loss function from Wei et al. (2018) (which is based on Arjovsky et al. 
(2017)):

where GP is the gradient penalty term from Gulrajani et al. (2017), CT is the con-
sistency term from Wei et al. (2018), and A,B,C is the output from the generator. ℙg 
denotes the distribution of graphs generated by the generator, and ℙr denotes the real 
distribution of graphs. D(⋅) denotes the output of the discriminator on a given tensor. 
The goal of this loss function is to minimize the difference between the expected 
values of the discriminator’s output on the generated data and the input (real) data.

4.2.2  TenGAN‑R architecture

We also propose the TenGAN-R architecture, which is initially similar to the Ten-
GAN-CP architecture, with the distinction that we use the RESCAL decomposition 
instead of the CPD. This results in more parameters for the same value of r, but per-
forms better on certain datasets (Table 3).

4.3  Parameter complexity

If we attempted to generate an adjacency tensor for a multiplex graph with n 
nodes and k views directly, we would have to use  parameters in the final 
layer. However, if we generate the CPD factors first, we only need  
parameters in the final layer, where r is a hyperparameter that increases the qual-
ity of the fit at the cost of more parameters. This offers savings for r < n2 , and we 
show that our models work well for this case in Table 3. For the RESCAL-based 
formulation, we need  parameters in the final layer. In this case, we 
only reduce the number of parameters in the case where r < n.

L = 𝔼
[[A,B,C]]∼ℙg

[D([[A,B,C]])] − 𝔼
x∼ℙr

[D(x)] + �1GP + �2CT

Table 2  Since we are unable to share the data for the comm dataset, we instead provide network statistics 
of the computer infrastructure graph

Data are over the course of one day on five TCP/IP ports: 22 (SSH), 23 (Telnet), 80 (HTTP), 443 
(HTTPS), and 445 (MS directory services). For each view (port), we list the number of active nodes, the 
number of edges, the number of nodes in the largest strongly connected component (LCC size), and the 
average shortest path length (SP) and average clustering coefficient (CC). SP and CC are computed based 
on 1,000 randomly sampled nodes (CC) or node pairs (SP) within the induced subgraph of the largest 
strongly connected component

Port # Nodes # Edges LCC size SP CC

22 295,077 1,039,721 205,043 3.9 0.10
23 9,304 17,408 5,578 3.1 0
80 640,492 3,495,394 374,767 4.4 0.04

443 1,172,959 6,705,799 439,911 4.7 0.02
445 437,119 7,927,648 219,089 3.8 0.06
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4.4  Evaluation metrics

Another difficult task in multiplex graph generation is evaluating the quality of 
the generated graphs. Gretton et  al. (2012) found that measuring the Maximum 
Mean Discrepancy (MMD) between distributions of different graph statistics 
works well for simple graphs. We propose 3 methods for evaluating the structural 
similarity between generated and input graphs:

4.4.1  MMD‑based evaluation

One method to evaluate the quality of generated multiplex graphs would be to apply 
the evaluation criteria used for simple graphs to each view. We measure the Mean 
MMD (M-MMD) score between the distributions of different graph attributes. More 
concretely, for each graph attribute, we take the mean of the MMD between the i-th 
view of a generated graph G′ and a graph G. We can use the clustering coefficient, 
degree distribution, and the orbit of the graphs similar to You et al. (2018).

The main downside of this approach is that it does not take the relationship 
between the views into account. For example, consider the case where we generate 
multiplex graphs with two views. Let the list of the generated first and second views 
be V �

1
= g�(1)∀g� ∈ G� and V �

2
= g�(2)∀g� ∈ G� . Then, suppose the MMD scores of V ′

1
 

and V ′
2
 across all the graph attributes are 0. Then, the overall Mean MMD (M-MMD) 

would be 0. However, swapping V ′
1
 and V ′

2
 , yields same M-MMD.

This is clearly an undesirable behavior in any case where each of the views are 
correlated with each other. An extreme example of this would be a multiplex graph 
g where g(1) has an edge iff g(2) does not have an edge. Then, it is possible for a 
generated graph g′ to have g�(1) = g�(2) , but still have a perfect M-MMD of 0 in all 
the graph attributes. To address this issue, we propose the tensor-based evaluation 
method below.

4.4.2  Tensor‑based evaluation

Multiplex graphs can be viewed as third-order tensors, where each slice is a graph 
across the same nodes, and tensor decompositions have been shown to be able to 
extract structure (like communities) from multiplex graphs (Gujral and Papalexa-
kis 2018; Gauvin et  al. 2014; Al-Sharoa et  al. 2017; Sheikholeslami and Gianna-
kis 2018). We take advantage of this fact by applying the CPD to each multiplex 
graph or tensor. The normalized reconstruction error of the decomposition for vari-
ous values of r provides a heuristic for how much structure there is along the three 
modes of the tensor. We then compare the errors of the generated and original ten-
sors across different ranks to see if they are similar in terms of trilinear structure. It 
may be possible to produce a similar reconstruction error for a given rank without 
matching the structure of the real graph, but we argue that it is highly unlikely for 
this to occur across many different values of r.

We randomly sample n tensors from the generated and real tensors and compute 
an error vector e of the errors across different ranks. We then calculate the sum of 
the Wasserstein metric (a.k.a. the earth mover’s distance: EMD) between all n2 pairs 
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of error vectors. The lower this score, the more similar pairs are (on average). While 
this score works well across a fixed dataset, it is difficult to compare this score across 
datasets of different sizes. This is because the number of feasible r values changes 
with the size of the tensor; and a given dataset may naturally have a wider range of 
pairwise distances (Fig. 3).

To solve this issue, we normalize the sum of generated-real distances by the sum 
of pairwise real-real distances. More formally, given real error matrix E and gener-
ated error matrix �′ (where every row Ei is a vector of the i-th sample’s CPD errors):

The lower the TenScore, the more realistic the generated samples are. TenScore also 
serves as an indicator for graph diversity. If it near 0, it likely means that the model 
is suffering from mode collapse—a common problem among GANs. We also pro-
pose a modified version of TenScore for knowledge base graphs: TenScore-R, which 
uses RESCAL’s error.

4.4.3  Classifier‑based evaluation

We train a classifier on generated and original data; then check to see if it correctly 
predicts the origin of an example. We calculate the accuracy and F1 score of the 
resulting model (the closer to 0.5 or 50%, the better). In the model, we calculate a 
graph2vec (Narayanan et al. 2017) embedding for each view of the multiplex graph. 
Then, we split the embeddings into training/test data and train a SVM classifier for 
each view. Finally, we take the majority vote of the ensemble. These steps are shown 
in a diagram in Fig. 4.

(2)TENSCORE =

∑n

i=1

∑n

j=1
���(Ei,�

�
j)

∑n

i=1

∑n

j=1
���(Ei,Ej)

Fig. 3  Three plots of pairs of CPD error values that have low, medium, and high EMD scores. CPD error 
vs. rank plot on three pairs of tensors. The dashed green lines are the generated results, and the solid blue 
lines are the original results. We can see that the EMD scores are lower when the lines are more similar 
and that the scores are higher when the lines are further apart. This is the intuition behind our tensor-
based evaluation method
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4.5  Implementation details

We implemented this model in PyTorch (Paszke et al. 2019) on Python 3.9. We used 
NetworKit (Staudt et al. 2016) and NetworkX (Hagberg et al. 2008) for graph data, 
and Tensorly (Kossaifi et al. 2016) for tensor decompositions. We extended portions 
of the GraphRNN (You et  al. 2018) evaluation code and heavily modified HGEN 
(Ling et al. 2021) to work for multiplex graphs (see details in Sect. 5.2). We use the 
code from Rossetti (2020) for the BINBALL, StarGen, and ANGEL baselines. It 
was originally written for undirected networks, so we extend it to work for directed 
multiplex graphs. The code for our experiments is available here.1

5  Experimental evaluation

5.1  Datasets

We used 4 multiplex graph datasets selected to represent a wide variety of data 
types, including a social media network, a knowledge graph, a computer network 
communication graph, and a time-evolving network. 

1. Football (Greene and Cunningham 2013): 248 English Premier League football 
players and clubs on Twitter, where each of the 6 views corresponds to a different 
interaction between the accounts (follows, followed-by, mentions, mentioned-by, 
retweets, retweeted-by). Note that 3 of the views are essentially transposes of the 
other 3.

Fig. 4  Diagram of the classifier-based evaluation model. We first calculate an embedding and train a 
classifier on each view before using the majority vote to guess if the result is a real or generated mul-
tiplex graph. Note that this is similar to, but different from the discriminator. This is because we use an 
established embedding model and a non-neural-network classifier

1 https:// github. com/ wills hiao/ tengan

https://github.com/willshiao/tengan
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2. NELL-2 (Carlson et al. 2010): A sampled version of the NELL-2 dataset (from 
Smith et al. (2017)) that consists of (entity, relation, entity) tuples. The original 
size is 12, 092 × 9, 184 × 28, 818 , but we resample it to a 1, 000 × 4 × 1, 000 ten-
sor (where 4 is the number of views) for the purpose of evaluation. The sampling 
method is described in Sect. 4.1.

3. Comm: An enterprise communication network dataset of 1,558,594 computers. 
Each view corresponds to communications between nodes on one of five ports 
(22, 23, 80, 443, and 445), with one view for each port. In the view associated 
with port p, a directed edge from u to v exists if u initiates a connection to v over 
port p. Since we are unable to provide a copy of this network, descriptive statistics 
of each view in this network are shown below in Table 2.

4. Enron (Klimt and Yang 2004): A multiplex graph of emails sent between Enron 
employees, where each view represents a two-month (60-day) time interval and 
edges represent emails. The original tensor (available at Smith et al. (2017)) is 
6,066 senders × 5,699 recipients × 244,268 words × 1,176 days. We collapse the 
words dimension and simply add an unweighted edge for each email sent in a 
given time interval. We also aggregate the slices so that each view represents a 
60-day period to reduce the number of views. Finally, we sample 1,000 senders 
and 1,000 recipients using the methodology described in the supplementary mate-
rial. Finally, we sample 1,000 senders and 1,000 recipients using the methodology 
described in Sect. 4.1.

We perform random walk sampling to extract a set of sub-multiplex-graphs from 
each dataset. We describe this process with more detail in Sect. 4.1.

5.2  Comparison with existing methods

To the best of our knowledge, no other deep learning models for multiplex graph 
generation exist. The existing models are statistical and are built to match specific 
attributes of the underlying graph. We compare our method against BINBALL (Basu 
et  al. 2015), StarGen (Fügenschuh et  al. 2018), and ANGEL (Fügenschuh et  al. 
2020). We also adapt HGEN (Ling et al. 2021)—a generative model for heterogene-
ous graphs—to work for multiplex graphs. A heterogeneous graph consists of nodes 
of different types and, therefore, edges of different types. An common example of 
this is a citation graph, where we might have nodes for authors, papers, and confer-
ences. This is in contrast to multiplex graphs, where we have different views of the 
same nodes. As such, it is difficult to directly compare the two methods—however, 
we attempt to convert multiplex graphs to heterogeneous graphs and evaluate its per-
formance. The HGEN code2 (as provided in the paper) does not support different 
edge types or a single node belonging to multiple classes, so we encountered the fol-
lowing issues (some of which may affect its performance).

2 https:// github. com/ lingc hen03 31/ HGEN

https://github.com/lingchen0331/HGEN
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Lack of multiplex graph support. Let n be the number of nodes and k be the num-
ber of views in our original multiplex graph. To work around the lack of support for 
different edge types, we create k nodes for each of the n nodes in the original graph, 
each with a different class in the range [1, k]. Then, we link together each of these 
k nodes in the heterogeneous network. This results in a total of nk nodes across k 
classes in the resulting heterogeneous network.

Graph size issues. While the actual HGEN model is efficient for generation, it 
requires HIN node embeddings for each node in the input graph. We chose to use 
hin2vec (Fu et al. 2017)— same as in the original HGEN code. However, we have 
nk nodes after the conversion to a HIN, causing the embeddings to take too long to 
calculate on some datasets (like the Comm dataset).

5.3  MMD‑based evaluation

The MMD-based evaluations compares the similarity of different graph attributes 
for each slice between the real and generated graphs. From Table 3, we can see that 
TenGAN-CP and TenGAN-R generally perform fairly well on the Football, NELL-2 
and Comm datasets. However, this is a layer-level comparison, and even BA (which 
treats each layer separately) performs decently well in this comparison. This is why 
the other evaluation methods are important, especially the tensor-based evaluation, 
which provides a holistic look at the generated tensors.

5.4  TenScore evaluation

TenGAN-CP tends to perform best in terms of TenScore across all the datasets, 
with the exception of the Comm dataset (where BINBALL performs slightly bet-
ter). TenGAN-CP has a TenScore of below 1 on the Football, NELL-2, and Enron 
datasets. This indicates that the mean EMD for all real-generated pairs is lower than 
the mean EMD for all real-real pairs in the dataset. None of the methods have a very 
low TenScore, which means that all of the methods exhibit a good amount of diver-
sity comparable to that of the original data. However, some of the baseline methods 
have a very high TenScore, indicating that the generated graphs have a very different 
amount of trilinear structure from that of the input graphs.

Suprisingly, Barabási-Albert outperforms some of the other statistical methods on 
the Football and Enron datasets like BINBALL and StarGen. This is likely because 
BINBALL and StarGen focus on airport transportation networks and therefore focus 
on modelling behavior like hub-spoke formations (Basu et  al. 2015; Fügenschuh 
et al. 2018). These structures are more present in the sparser NELL-2 and Comm 
datasets than the denser Football and Enron datasets.

5.5  Classifier‑based evaluation

TenGAN-CP performs fairly well on the Football dataset, with an accuracy of 0.70 
and F1 score of 0.57 (recall that the lower the accuracy, the better). TenGAN-R 
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performs well on the NELL-2 and Comm datasets. No model does a very good job 
of fooling the classifier on Enron, likely due to the higher number of views.

Most of the baselines do a poor job of fooling the classifier, with many baselines 
resulting in the classifier having 100% accuracy. One reason is because some genera-
tors are able to model some layers extremely well, but sometimes fail to model other 
layers. This leads to the classifier for certain layers to have very high accuracy, mak-
ing the overall classifier very accurate. For example, BINBALL randomly assigns 
(based on a parameter p) a layer as a BA model or an ER model. This assignment 
can mean that the generated results for a given layer will be significantly different 
from those of the original graph, causing the classifier to be very accurate on that 
layer.

Another reason for the poor performance of the baselines is that the majority of 
them are statistical models and rely on general rules (e.g. preferential attachment for 
BA). While this may be able to mimic some attributes, the node and graph embed-
dings will likely greatly differ (except in the case where the original graphs exhibit 
simple structure).

5.6  Summary

TenGAN performs well on the majority of the datasets across all of the evaluation 
criteria. It performs especially well in the classifier-based and TenScore evaluations. 
This is likely because TenGAN learns directly from the data in contrast to most 
of the other baselines, which have to learn explicitly defined parameters instead. 
However, TenGAN-R does significantly worse than TenGAN-CP on most datasets, 
despite requiring more parameters. This is likely because TenGAN-R tends to have 
a hard time converging on the Football and Enron datasets. A possible reason for 
this is that the RESCAL decomposition imposes a stricter requirement on the fac-
tor matrix A since it is shared across all layers, making it difficult for the model to 
learn well. The hyperparameter r is also important in how well the model performs. 
Generally, r has to be higher for sparser tensors and lower for denser tensors. We do 
not carefully tune r in this paper—we select a resonable default (e.g., r = 100 ) and 
increase/decrease it until the model converges.

6  Related work

There have been several works on the topic of multiplex graph sampling. Interdonato 
et al. (2020) found that methods that work on standard graphs like Metropolis-Hast-
ings random walks, BFS, and forest fire sampling (Leskovec and Faloutsos 2006) 
can also be applied to multiplex graphs. To improve random walk sampling on mul-
tiplex graphs, Gjoka et al. (2011) proposes union multigraph sampling—a method 
that uses the “union multigraph”, which consists of all edges across all views in the 
multiplex graph. Union multigraph sampling then performs a random walk over this 
multigraph to sample it. While unbiased samples are useful, we sometimes want a 
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biased sample to better sample nodes with special properties. Khadangi et al. (2016) 
propose using learning automata to do so.

There has also been some previous work on multiplex graph generation. For 
example, Nicosia et  al. (2013) propose a model to grow a multiplex graph based 
on traditional preferential attachment models like the Barabási-Albert (BA) model 
(Barabási and Albert 1999). BinBall (Basu et  al. 2015) also builds upon the BA 
model and focuses on air transportation networks. StarGen (Fügenschuh et al. 2018) 
directly improves upon BinBall by using a per-layer edge count distribution and 
splitting the scaling factor of a new node into global and local factors.

Kim and Goh (2013) also uses single-layer preferential attachment models and 
tunes the correlation between layers. ANGEL (Fügenschuh et al. 2020) specifically 
tries to emulate the hub-and-spoke structure found in many graphs.

In recent years, neural networks have also been applied to graph generation. 
GraphRNN (You et al. 2018) uses a RNN to model graphs as a sequence of nodes 
of edges. NetGAN (Bojchevski et al. 2018) uses a LSTM to learn the distribution 
of biased random walks and reconstructs graphs from them. GraphVAE (Kipf and 
Welling 2016) uses a variational autoencoder to generate graphs. LGGAN (Fan 
and Huang 2019) generates the adjacency matrix directly, along with its associated 
labels. BRGAN (Shiao and Papalexakis 2021) generates rank-constrained graphs by 
first generating factor matrices, in a similar manner to TenGAN. There have also 
been several models for multi-scale graphs. The key difference between a multiplex 
and multi-scale graph is that a multiplex graph contains the same nodes with differ-
ent edges in each view, while a multi-scale graph typically contains representations 
of the same underlying graph at different resolutions (different number of nodes) in 
each layer. Misc-GAN (Zhou et al. 2019) generates a multi-scale graph before col-
lapsing it into a standard graph, and DMGNN (Li et al. 2020) predicts multi-scale 
graphs from previous ones.

To the best of our knowledge, there have been no other neural-network-based 
models for multiplex graph generation. HGEN (Ling et al. 2021) allows for the deep 
generation of heterogeneous networks by modelling random walks over the graph 
with a GAN. However, their approach largely focuses on the modelling of inter-
layer edges with meta-paths. Heterogeneous networks refer to graphs with different 
node and edge types, while we focus on the case with shared nodes but different 
edges/views. We elaborate more on the precise definition of a multi-view graph in 
Sect. 2.1 above.

7  Conclusion

In this work, we discuss some of the issues associated with multiplex graph gen-
eration, as well as some solutions to those issues. One of these issues is the large 
number of parameters required to generate a multiplex graph using a neural network. 
We tackle this by proposing a novel GAN-based method that leverages the CPD and 
RESCAL decompositions to greatly reduce the number of parameters required.

Another issue with multiplex graph generation is a lack of evaluation criteria. We 
address this by proposing 3 different evaluation metrics that evaluate the realism of 
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the graph along different aspects. We also modify HGEN, a model for heterogene-
ous networks, to work with multiplex graphs. We run our models on 4 different data-
sets, compare their results against HGEN and 3 other statistical multiplex generation 
models, and find that we perform better on the majority of them.

8  Supplementary information

The code for TenGAN can be found at https:// github. com/ wills hiao/ tengan.
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