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Abstract
We examine whether data generated by explanation techniques, which promote a pro-
cess of self-reflection, can improve classifier performance. Our work is based on the
idea that humans have the ability to make quick, intuitive decisions as well as to reflect
on their own thinking and learn from explanations. To the best of our knowledge, this
is the first time that the potential of mimicking this process by using explanations
generated by explainability methods has been explored. We found that combining
explanations with traditional labeled data leads to significant improvements in classi-
fication accuracy and training efficiency across multiple image classification datasets
and convolutional neural network architectures. It is worth noting that during training,
we not only used explanations for the correct or predicted class, but also for other
classes. This serves multiple purposes, including allowing for reflection on potential
outcomes and enriching the data through augmentation.

Keywords Deep learning · Reflective thinking · Data augmentation · Explainability ·
Convolutional neural networks · GradCAM

1 Introduction

Self-reflection can be defined as “The capacity of humans to exercise introspection
and to attempt to learn more about their fundamental nature and essence.”[Wikipedia]
Reflective thinking is an essential process that has led to numerous notable achieve-
ments in literature and science. However, it has not been a concept previously applied
in machine learning. The emerging field of explainable artificial intelligence (XAI)
(Meske et al. 2020) has introduced techniques generating explanations. Explanations
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support the understanding of machine learning models. They can provide a wealth of
information on model behavior, as multiple explanations can be generated for each
input. Humans have primarily used this data to understand decisions made by AI
systems. In the field of interactive machine learning, feedback loops have been estab-
lished, where explanations originating from XAI techniques are presented to humans,
who can adjust them and provide feedback to the machine learning system (Schmid
and Finzel 2020). However, there has been no form of self-introspection in the learning
process to date.

In this work, we aim to leverage the vast data generated through explanations
to improve machine learning models. Our approach can be seen as a form of data
enhancement,where the raw inputs are enhanced through the inclusion of explanations.
The reflective process also allows for new opportunities for data augmentation, where
the ground truth and the explanation of the correct class serve as the original input.
Explanations of random classes can be used for augmentation. In some sense, this
work shows how machine learning can “mine” its own data generated in the form of
explanations. Thus, here, learning from explanations refers to the process of including
explanations originating from (adjusted) XAI techniques in the learning process in
addition to training data to improve a machine learning system.

Our approach also builds on basic concepts of human reasoning, though we do
not claim to fully replicate actual human reasoning. In his book “Thinking, Fast and
Slow”, Nobel laureate Daniel Kahneman proposes the idea that humans have two
different modes of thinking: (i) a fast, unconscious, instinctive system for tasks such
as determining the relative distance of object and (ii) a slow, conscious, deliberative
system, for tasks such as focusing on a specific person in a crowded, noisy environment.
Inspired by this idea, we extend classical inference in deep learning, which is based
on a single (fast) forward pass, to include a more reflective, slower inference process
using explanations. We propagate from a class to explain, i.e., the final layer, back
to a specific layer of the neural network using an adjusted version of the well-known
explainabilitymethod “GradCAM” (Selvaraju et al. 2017).We thenuse the explanation
and the input together to make a final decision, as shown in Fig. 1. We refer to this
process of explaining a fast prediction and using the original input and explanation to
make a final decision as “reflecting.”

The reflective process includes a formof deliberation, inwhichwe evaluatemultiple
options by testing or making assumptions about the class of an input that may differ
from the ground truth or predicted class. So, reflecting can include explanations for
different outcomes than the actual prediction or the ground truth. Figure 2 illustrates
the use of an explanation for input based on the correct class and an incorrect class.

In humans, self-reflection can be distinguished from non-self-reflection.While self-
reflection is typically a lengthy and iterative process, we use the term “self-reflection”
in our study to refer to a single backward pass. Self-reflection is an evolutionary process
that develops over time and depends on skills that are acquired after mastering basic
perceptual skills, such as object recognition. In our study, the “reflective” network is
also an evolution of the classifier used to generate explanations in Fig. 1.We investigate
both “self” versus “non-self” reflection in our study, meaning that the reflective-net
can be the result of “fine-tuning” using explanations of an existing classifier, or it can
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Fig. 1 Reflective-Net: after a first classification (Step 1–2), a possible decision for the input is explained
using a backward pass up to a specific layer (Step 3). Then, the explanation and input (Step 4) are used to
get a second classification

be trained from scratch using explanations from an existing classifier with randomly
initialized parameters.

Our primary goal in using reflection is to improve the learning process. During
training, we consider different potential outcomes, even if they are unlikely, through
reflection. In contrast, during inference, we only rely on explanations of actual predic-
tions. Therefore, we view reflection as a tool that primarily supports the generalization
of the network. In our empirical analysis, we also evaluate the performance of the net-
work using an oracle that provides explanations for the correct class.

Two of our findings are that (i) training using explanations based on different predic-
tion outcomes leads to better generalization and (ii) using the ground truth explanation
to make a final decision results in very large accuracy improvements, while training on
the predicted outcome still yields notable improvements. Our contributions include:

– Demonstrating how to learn from explanations by modifying the well-known XAI
method GradCAM to obtain more informative explanations, and using the idea of
enhancing inputs with explanations for different prediction outcomes (classes).

– Empirically showing the benefits of our method and the impact of various design
options.Our reflective network using explanations outperformsnon-reflective clas-
sifiers in terms of accuracy.

2 Reflective networks

We implement the “reflection process” of a neural network as follows. First, a clas-
sifier makes an initial prediction for an input. Then, it reasons upon this prediction
or another possible outcome, yielding an explanation (Fig. 1). The explanation and
the input sample can then be used by the same or a different network to produce a
second prediction. For humans, reflection also involves considering and envisioning
different scenarios or outcomes, or predictions. For example, the network may be
given the explanation of the correct class even though it predicted another class (right
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Fig. 2 Reflective-Net: learning from explanations of correct and incorrect predictions. Predicted classes
have grey boundaries. Reflective thinking based on either incorrect (left panel) or correct predictions (right
panel) leads to better outcomes

panel in Fig. 2). Our results show diversity of explanations per sample is a must.
Training a system with just one explanation for an input, i.e., always the correct or
the actual prediction yields limited or no improvement. Therefore, it is essential to
consider different outcomes during training to prevent the network from relying too
heavily on explanations (while still using the original input) and to help the network
identify correct and incorrect explanations for given inputs and how to transform them
into the correct outcome. Additionally, we can control the amount of information per
explantion. Traditionally, gradient-based attriubtion methods like GradCAMmethods
highlight pixels in support (or in contradiction) to a prediction. Thus, they consist
of one channel, i.e., one number pixel. We use more informative explanations. Our
explanations have both a spatial extent and a “depth” of multiple channels. In addition,
we aim to provide explanations at a higher level of abstraction, or more semantically
meaningful features of an object, rather than individual pixels. As a result, our expla-
nations are computed for intermediate layers rather than the input and have a different
shape than the input. In contrast to GradCAM, we do not reshape the explanations to
the input shape through up-sampling and aggregation of channels.

To summarize, our explanations focus on more semantically meaningful, or inter-
mediate, layers using a “semantic” or depth dimension. We begin by describing the
simplest system architecture for leveraging explanations, then we elaborate on the
non-reflective classifier, how to compute explanations, and how to incorporate them
into a classifier. In Sect. 2.2, we discuss various design decisions.

2.1 Base architecture

The overall goal is to compute explanations for an input to a trained classifier. There
are design decisions to be made about the level of abstraction for the explanations,
such as whether they should be based on pixels or higher-level concepts. For example,
should the answer to the question “Why is this a car?” be based on low-level details
like the presence of certain pixels or onmore semantically meaningful features like the
presence of two visible tires and a red fender and front door? Another design decision
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Table 1 Base classifier CO architectures

ResNet variant
(He et al. 2016)

VGG variant
(Simonyan and Zisserman 2014)

Explained

Block Type/stride Filter shape Type/stride Filter shape Layer L

– C/s1 3×3×3×64 C/MP 3×3×3×32

1 C/s1 3×3×64×64 C/MP 3×3×32×64 Low

C/s1 3×3×64×128 C 3×3×64×128

2 C/s2 3×3×128×128

C/s1 3×3×128×256 C/MP 3×3×128×128 Middle

3 C/s2 3×3×256×256 C 3×3×128×256

C/s1 3×3×256×512 C 3×3×256×256 High

4 C/s2 3×3×512×512 C/MP 3×3×256×512

C/s1 3×3×512×512 C 3×3×512×512

– FC/s1 512×nClasses FC/s1 512× nClasses

– SoftMax/s1 Classifier SoftMax/s1 Classifier

“C” is a conv. layer and “FC” a dense layer; “s2” denotes stride a stride of 2, while “MP” denotes a 2×
2MaxPool layer; For ResNet we add to the output B of each block, the output of a C/s1 layer of shape
1×1×Bi

d×Bo
d (with Bi

d /B
o
d being the in-/output feature channels of the block); A BatchNorm and ReLU

layer follows each “C” layer. The last column indicates layer (names) L used for computing explanations

is about which decisions (classes) the explanations should be based on, such as only
the predicted class or all possible classes.

Once the explanations have been computed, they and the explained sample are
used as input for the same (or a different) classifier. An important question is how
to incorporate the explanations into the classifier. In the following sections, we will
provide details about the base architecture and discuss these design decisions.
Non-reflective classifier We assume the existence of a trained classifier CO using an
arbitrary architecture. We evaluate the performance of two specific types of archi-
tectures, ResNet and VGG. For illustration, we will use a VGG-style convolutional
neural network as an example, which can be seen in Table 1 and Fig. 3 without the
orange-colored layers. For this classifier CO , explanations are computed.
Explanations The explanations computed using the non-reflective network CO are
based on existing methods, specifically an adapted version of GradCAM (Selvaraju
et al. 2017). Typically, attribution-based explanations (likeGradCAM) aim to highlight
relevant parts of the input creating an “attention map” with the same spatial extent
as the input. However, our focus is not on attributing to the input itself, but rather on
identifying the more semantically meaningful features at intermediate layers that have
influenced a decision. To do this, we modify GradCAM to aggregate the channels of
an intermediate layer rather than the input, resulting in multiple channels, each being
a sum of a few other channels. This allows us to maintain spatial information while
still simplifying the explanations through aggregation.

More formally, we obtain a class-discriminative, location-sensitive explanation
Rc ∈ Ru×v×d of width u, height v and depth d for class c, where Rc

i denotes the
i-th channel. We explain the convolutional layer L with K feature maps Ak ∈ Ru×v ,
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Fig. 3 Reflective-Net illustrated for VGG; A VGG network (grey boxes) is extended to a network using
explanations. Explanations pass through two conv-layers (orange) and the output is appended; (each conv
layer is followed by a batchnorm and a relu layer) (Color figure online)

with each element indexed by i, j . That is, Ak
i, j refers to the position (i, j) of the

feature map Ak , and the score of a class yc (before the softmax).
Explainabilitymethods should allowunderstanding “hypothetical” outcomes, i.e., out-
comes other than the actual predictions. This condition is fulfilled for commonly used
methods that propagate information backward, e.g., using gradients (Selvaraju et al.
2017) or a relevance measure (Bach et al. 2015). Decoder-based and GAN-based
methods such as those (Schneider and Vlachos 2022; Nguyen et al. 2016) that rely
on forward pass information are less adequate. We focus on GradCAM (Selvaraju
et al. 2017). GradCAM computes gradients concerning the score class yc, i.e., the
activation of that neuron. GradCAM performs global average pooling over the spatial
dimensions height and width with indexes i, j to compute neuron importance weights:

αc
k := 1

Z

∑

i, j

∂ yc

∂Ak
i, j

(1)

where Z is a normalization constant. The weight can be interpreted as a partial
linearization of the network downstream from activation maps A. It represents the
importance of feature map k for target class c. GradCAM aggregates all K feature
maps using their corresponding weights into a heatmap of depth 1 followed by a ReLU
activation. In contrast, we aggregate by summing only K

d feature maps rather than all
K (we assume K

d yields an integer), and we do not employ a ReLU layer. That is, we
get:

Rc
i =

K
d ·(i+1)∑

k= K
d ·i

αc
k A

k (2)
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For GradCAM, explanations of intermediate layers of smaller spatial dimensions are
up-sampled to obtain attribution maps of the inputs. We reason in terms of the abstrac-
tion (and dimensions) provided by the explained layer and not of the original input.
Reflective network The reflective network CR has the same architecture as the classi-
fier CO with a few extra layers to accommodate the explanations (Network in Fig. 3
including orange-colored layers). That is, the explanation is first processed using two
sequential convolutional layers, each followed by batch normalization and a ReLU
layer. The outcome of the second one is appended to the layer L used to compute
the explanations so that spatial dimensions are aligned. This reflective network CR

can be trained with the same setup as the original classifier CO , except that the input
consists of the sample X and the explanation Rc. For each labeled sample (X , y),
where y is the ground truth for X , we choose the explained class (Expl.Class)
randomly from the available explanations Expl.ClassTrain(X) in each iteration.
However, the set Expl.ClassTrain(X) being a subset of explanations of all classes is
static. That is, the explanations within Expl.ClassTrain(X) are pre-computed before
training of the reflective network using the original classifier CO . That is, expla-
nations remain fixed throughout training. In particular, we consider the option that
Expl.ClassTrain(X) contains an explanation of a randomly chosen class. In this
case, we choose a class uniformly and independently at random among all possible
classes for each set of Expl.ClassTrain(X) for each sample X and maintain the same
class for each sample throughout training.1 For operation, i.e., testing, we consistently
use the explanation of the prediction yp = CO(X) of the non-reflective classifier,
i.e., Expl.ClassT est (X0) = yp. In our empirical analysis, we also investigate other
classes, e.g., using the ground truth y0. However, in a real-world setting, the ground
truth is usually not available at test time.

2.2 Options for architecture and training

We describe design options to alter the base architecture shown in Fig. 3. The actual
architecture of the underlying classifier can be a VGG, ResNet, or any other neural
network architecture.

– Layer L: The layer we use for computing the explanation. That is, we backpropa-
gate from the score of a class c, typically the last layer before the SoftMax, i.e., its
logits layer, up to layer L to obtain explanation Rc. Locations of layers Middle
and High are indicated in Table 3 for both architectures.

– Depth of the explanation d: The amount of information that an explanation con-
tains, i.e., whether it is just a heatmap (one channel, d = 1) or whether it contains
multiple channels, i.e., d > 1.

– Explained classes (= predictions) used for training Expl.ClassTrain : We let
Expl.ClassTrain ⊆ {correct, predicted, random} for a dataset with n classes.
An explanation might be “correct”, i.e., the one obtained from the correct output
class. The predicted class of the network is denoted by predicted. “Random”
refers to an explanation from a randomly chosen class of all classes [1, n]. That is,
before training begins, if random ∈ Expl.ClassTrain we choose uniformly and

1 Keeping explanations fixed throughout training is done to reduce computation time.
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independently a random class yr ∈ [1, n] for each sample X and use this expla-
nation for yr . That is, we obtain a set of explanations Expl.ClassTrain(X) for
each sample X . During training, the set Expl.ClassTrain(X) remains static. But
at each epoch, sample X is used for training together with a random explanation
of the set Expl.ClassTrain(X). The set can contain one or multiple explanations
and even duplicates.

– Explanation Source (Expl.Source): We consider three options: (i) Self: Fine-
Tuning the same network used to obtain the explanations, resulting in self-
reflection; all weights may be changed during fine-tuning; (ii) Other: A reflective
network is trained from scratch using random initialization and explanations from
another network; (iii) Noise: Explanations are random noise, with each value
chosen uniformly at random in each iteration. The classifier should ignore these
explanations, but it may still perform better due to retraining. We want to exclude
the possibility that our improvements are only due to the effect of multiple resets of
learning rates, or cyclic learning rates (Smith 2017), which are known to improve
performance.

3 Evaluation

We conduct both qualitative and quantitative evaluations. For the quantitative eval-
uation, we investigate the impact of the architecture and training options on the
performance of the reflective network (Sect. 2.2).We use visualization of explanations
for the qualitative evaluation and use a recent explainability technique to understand
the behavior of reflective networks.

3.1 Setup and analysis

In our experiments, we used PyTorch 1.11.0 and Python 3.9 on an Ubuntu machine
with an NVIDIA RTX 2080 Ti. We used a default setup, with some parameters var-
ied for individual experiments. Stochastic Gradient Descent with momentum 0.9 with
batchsize 128 was used for training. Overfitting was generally not a major concern,
so we only reported test performance after training.The initial learning rate of 0.1
was decreased by 0.1 at epochs 70 and 120 of the 150 epochs for training the orig-
inal classifier CO , and half as many epochs for retraining CR . We also employed
weight decay with a parameter of 0.0005. Unless otherwise specified, we used a
VGG and ResNet variant (see Table 1) and the following settings (Sect. 2.2):d = 32,
Expl.ClassTrain = {correct, predicted, random}, ExpSource = Sel f . For VGG,
we used the L = Middle layer as indicated in the last column in Table 1, and for
ResNet, L = High was the second conv layer of the block. We used CIFAR-10/100,
SVHN (Netzer et al. 2011), FashionMNIST (Xiao et al. 2017) (scaled to 32x32), and
TinyImageNet (CS231N 2018) without data augmentation. Since the TinyImageNet
architecture has a larger spatial extent (64x64), more classes, and more data, we added
a block to ResNet and two layers to VGG for downsampling; we also scaled the num-
ber of neurons of all layers by a factor of 1.5 and used d = 64 to account for the growth
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Table 2 Empirical analysis using explanations of predictions Expl.ClassT est = predicted

Cifar-00 Cifar-10 Average

ResNet VGG ResNet VGG

Baseline (non-reflective) 59.0±0.4 57.3±0.3 86.8±0.2 84.7±0.3

Depth d

1 0.4±0.5 0.3±0.6 −1.4±0.7 −0.5±0.6 −0.29

4 0.9±0.7 0.4±0.5 −0.1±0.5 −0.0±0.4 0.3

32 2.2±0.6 1.0±0.4 0.2±0.4 0.4±0.3 0.92

128 2.6±0.5 1.4±0.4 0.3±0.3 −1.5±0.3 0.71

Expl.ClassTrain
Correct −1.0±0.1 −1.3±0.4 −0.9±0.1 −0.7±0.2 −0.96

Predicted −1.0±0.1 −1.1±0.6 −0.9±0.1 −0.6±0.1 −0.89

Random 1.5±0.5 0.3±1.0 −0.7±0.2 −4.0±1.0 −0.73

Correct, predicted −0.9±0.2 −1.3±0.6 −0.9±0.1 −0.6±0.2 −0.96

Correct, random 2.7±0.5 0.9±0.6 0.3±0.2 −0.0±0.2 0.98

Correct, predicted, random 2.2±0.6 1.0±0.4 0.2±0.4 0.4±0.3 0.92

Expl.Source

Self 2.2±0.6 1.0±0.4 0.2±0.4 0.4±0.3 0.92

Other 1.9±0.5 1.3±0.4 0.9±0.3 −0.4±0.8 0.92

Noise 1.4±0.6 0.9±0.6 −0.6±0.1 −0.1±0.2 0.4

Layer L

Middle 1.2±0.7 0.3±0.6 −0.4±0.4 0.4±0.3 0.36

Middle, High 2.2±0.5 1.1±0.4 0.6±0.4 0.4±0.3 1.06

High 2.3±0.3 1.1±0.2 0.2±0.3 0.4±0.3 0.99

Numbers indicate absolute differences in accuracy to a non-reflective network used as baseline stated in the
top row (no data augmentation was used). Larger numbers are better. Average is the mean of the differences
of all four settings
Bold is best in the column of a hyperparameter

in channels also when learning from explanations. Predefined splits into training and
test data were employed. We trained 7 networks for each configuration. We report the
average accuracy and standard deviation (Table 1). Code is available at https://github.
com/JohnTailor/Reflective-Net-Learning-from-Explanations.

3.2 Quantitative

We perform first an empirical analysis using two architectures and two datasets. We
then evaluate on additional datasets.

Empirical analysis The results of varying design parameters can be seen in Tables
2 and 3. The main findings are: it is important to train with multiple explanations per
input, explanations based on upper layers are more effective, and using explanations
in general is beneficial, as demonstrated by the “sanity” checks (such as using random
explanations or extensive compression (d = 1)). Table 2 focuses on the most common
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Table 3 Empirical analysis showing only Cifar-100

Cifar-100/ ResNet Cifar-100/ VGG

Expl.ClassT est Expl.ClassT est

Predicted Correct Random Predicted Correct Random

Baseline (non-reflective) 59.0±0.4 57.3±0.3

Depth d

1 0.4±0.5 0.7±0.8 0.2±0.5 0.3±0.6 0.3±0.6 0.2±0.6

4 0.9±0.7 1.7±1.0 0.5±0.8 0.4±0.5 0.4±0.6 0.4±0.6

32 2.2±0.6 9.3±3.1 −0.4±0.7 1.0±0.4 2.2±0.7 0.4±0.4

128 2.6±0.5 15.5±0.6 −0.7±0.7 1.4±0.4 5.4±0.6 −0.6±0.6

Expl.ClassTrain
Correct −1.0±0.1 24.4±0.5 −25.8±1.7 −1.3±0.4 4.7±0.2 −5.7±0.9

Predicted −1.0±0.1 24.6±0.2 −25.1±1.5 −1.1±0.6 5.1±0.4 −5.8±0.7

Random 1.5±0.5 1.5±0.5 1.5±0.5 0.3±1.0 0.4±1.0 0.4±0.8

Correct, predicted −0.9±0.2 24.6±0.5 −25.4±1.0 −1.3±0.6 4.6±0.3 −5.9±0.7

Correct, random 2.7±0.5 8.4±0.6 0.8±0.8 0.9±0.6 1.8±0.4 0.6±0.6

Correct, predicted, random 2.2±0.6 9.3±3.1 −0.4±0.7 1.0±0.4 2.2±0.7 0.4±0.4

Expl.Source

Self 2.2±0.6 9.3±3.1 −0.4±0.7 1.0±0.4 2.2±0.7 0.4±0.4

Other 1.9±0.5 7.7±0.9 −0.7±0.8 1.3±0.4 2.5±0.4 0.6±0.5

Noise 1.4±0.6 1.4±0.6 1.4±0.7 0.9±0.6 0.9±0.6 0.9±0.6

Layer L

Middle 1.2±0.7 1.4±0.7 1.0±0.7 0.3±0.6 0.5±0.6 0.2±0.5

Middle, High 2.2±0.5 10.6±0.6 −0.7±0.6 1.1±0.4 2.6±0.5 0.1±0.6

High 2.3±0.3 10.5±0.4 −0.6±0.4 1.1±0.2 2.4±0.2 0.4±0.3

ResNet VGG

Expl.ClassT est Expl.ClassT est

Datasets Predicted Correct Random Predicted Correct Random

FashionMNIST

Baseline (non-reflective) 93.0±0.1 92.8±0.2

Reflective-Net 0.6±0.1 1.9±0.2 0.1±0.1 0.2±0.0 0.9±0.1 −0.1 ± 0.3

SVHN

Baseline (non-reflective) 95.1±0.3 94.7±0.3

Reflective-Net 0.2±0.2 1.7±0.3 −0.7 ± 0.4 0.1±0.1 0.5±0.0 −0.2 ± 0.3

Tiny-ImageNet

Baseline (non-reflective) 45.6±0.2 43.3±0.6

Reflective-Net 2.3±0.2 8.6±0.6 −0.4 ± 0.5 0.4±0.8 −0.2 ± 1.1 −0.6 ± 1.1

Numbers indicate differences in accuracy in percent to a non-reflective network stated as baseline in the
top row (no data augmentation was used). Larger is better. Bold is best in the column of a hyperparameter
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Fig. 4 Comparison of explanations using GradCAM and upsampled explanations of VGG on CIFAR-10
after the second conv layer (L = Low in Table 3)

scenario, where the predicted class is used (Expl.ClassT est = predicted) to obtain
an explanation during test time, regardless of whether it is correct or not. Table 3
includes a single dataset and additional results for explanations of random and correct
classes at test time, i.e., Expl.ClassT est = random and Expl.ClassT est = correct .
Expl.ClassTrain : Training with only a single explanation per sample, i.e., without
reflecting on multiple options, only yields consistent gains for random explana-
tions, i.e., Expl.ClassTrain = random. This gain can be attributed to retraining
of the network, as the reflective network can be considered equivalent to a clas-
sifier trained twice with a decaying learning rate. Such cyclic learning rates are
known to be beneficial (Smith 2017). When using only predicted explanations, i.e.,
Expl.ClassTrain = predicted, during training, the classifier tends to rely on the
explanations rather than the actual inputs and is unable to improve upon the original
classifier except when the ground truth is used at test time. However, if explanations
for a random class are used, the classifier performs poorly because it predicts the
randomly chosen class of these explanations regardless of the actual input.

On the other hand, choosing randomly between an explanation for a random (likely
incorrect) class and the predicted or correct class leads to significant performance gains
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across all architectures and datasets. It does not matter whether the explained classes,
i.e., Expl.ClassTrain , contain both the predicted and correct classes or just the correct
and random classes. Note that in the former case, the correct explanation is often con-
tained twice within a set Expl.ClassTrain(X) for a sample X , but this imbalance has
little impact. This suggests that learning by considering multiple options is necessary
and that “what-if” type of reasoning during training, even with explanations based on
classes different from the correct or predicted ones, is very helpful. Additionally, it is
important to ensure that the network does not rely solely on explanations.

Depth d Using a heatmap (d = 1) as an explanation does not yield much improve-
ment. This suggests that spatial information is not particularly valuable, as heatmaps
only highlight locations without providing semantic information. On the other hand,
using more detailed explanations that provide information on features is beneficial. In
general, using more detailed explanations (larger d) is helpful, with the exception of
VGG on Cifar-10. A smaller d results in explanations that contain less information
and are less discriminative, while larger d provides class-specific information. For
example, heatmaps (d = 1) highlight the center of an image regardless of the class,
while larger d explanations provide information relevant to the class. When d is at its
maximum, i.e., no aggregation occurs, each value is the product of the feature activa-
tion and the gradient. For features that are not relevant to the object, this product will
be zero due to the activation being zero. However, using overly fine-grained explana-
tions carries the risk of overfitting, as the training data may contain few samples that
exhibit specific activation and explanation patterns that are not generalizable to the
test data. Aggregation can reduce the risk of heavily relying on such patterns.

Expl.Source and layer L The layer used to obtain the explanation has some influence
on the results. Using explanations based on multiple layers can be advantageous,
and upper layers tend to perform better overall. This might be because it is easier
to identify a potential mismatch between activations from the forward pass and the
explanation when the features are more specialized towards a specific class. As for
the explanation source, there are varying differences in accuracy between training a
network from scratch or fine-tuning a pre-trained network. Training networks from
scratch (Expl.Source = Other ) allows the network to learn more freely from the
explanations. Self-training benefits from the cyclic training effect mentioned earlier
(Smith 2017), and using noise for explanations also leads to improvements due to this
effect.

Expl.ClassT est As shown in Table 3, using the explanation for the correct class during
testing, i.e., Expl.ClassT est = correct , generally leads to significant improvements,
often exceeding 15%, compared to not using explanations. This demonstrates the
importance of understanding the reasons or features at a lower level that contribute to
the final decision. However, it is worth noting that at the layer L where the explanation
is obtained, the classifier may already be heading in the wrong direction, with some
features deemed relevant (having positive activation) that are actually irrelevant for
the correct class, while others deemed irrelevant but are actually highly relevant. This
could be due to sensitivity to noise, for example. If the explanation for the correct class
is used, the classifier can overcome errors caused by imprecise recognition in lower
layers and focus on the features that should exhibit strong activations for the correct

123



Reflective-net: learning from explanations

Fig. 5 Explanation for correct class for an incorrect prediction. Blue shows an irrelevant feature for the
correct class that still shows strong activations for the forward pass. Red shows a feature that should show
strong activation according to the explanation but does not. Thus, an explanation of the correct class might
provide more adequate information for classification (Color figure online)

class prediction but are not doing so. For example, if the classifier predicts “cat” but
should predict “horse,” and the explanation highlights a relevant feature related to a
horse’s head that should have strong activation but only has weak activation during the
forward pass due to noise or inadequate representation in lower layers, the explanation
can compensate for this absence and help the network rely on it to some extent, as
shown in Fig. 5.

Using explanations for a random class during testing, i.e., Expl.ClassT est =
random, leads to lower accuracy than the non-reflective network, i.e., the classi-
fier CO that does not use explanations. This is expected because these explanations
often point to a wrong class unrelated to the correct class or prediction. The impact is
greatest if only the correct or predicted class is used during training, as the network
learns to trust the explanations and believes they are likely correct. However, if this is
not the case during testing due to the use of random explanations, the network relies
on this incorrect information and performs poorly.

Various datasets Table 3 presents the results for the TinyImageNet, FashionMNIST,
and SVHN datasets. For FashionMNIST, the base classifier without explanations
already performs very well with accuracies above 90%, and training with reflections
only leads to small improvements. On the other hand, for TinyImageNet, explanations
based on predictions are clearly beneficial. Additionally, the results for CIFAR-10
and CIFAR-100 (Table 3) suggest that reflections are less effective on simple datasets
with a few classes and easy classification, compared to more complex datasets where
the baseline classifiers do not perform exceptionally well. In these cases, the cyclic
training method appears to be more effective.

3.3 Qualitative evaluation

Explanations Explanations from GradCAM and our explanations show similarities.
This can be seen in Fig. 4. All images are normalized to span the entire range from
0 to 1. Note, we only show the first three of 16 channels, we use the second layer
L = Low (Table 3) and explanations are upsampled to have the same dimensions as
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GradCAM.Mathematically, GradCAMexplanations are the sumof the (channel-wise)
explanations, so overlap is expected. The channel-wise explanations seem to empha-
size some areas much more than GradCAM does, e.g., the explanation of channel 0
for the car seems to indicate that almost the entire car is highly relevant. However,
these differences are mostly due to normalization. They might also be a consequence
of cancellation, e.g., in GradCAM, two feature maps might be the inverse of each
other and, therefore, their additions lead to cancellation. Compared to using a single
channel as in GradCAM, the channel-wise explanation give a more nuanced view of
what areas and features impact the prediction.

Reconstructions from activations In order to investigate the influence of explanations
on the output, we applied a recently developed explainability technique called ClaDec
(Schneider and Vlachos 2022). This method trains a decoder from layer activations
to reconstruct the original inputs to the classifier. The reconstructions highlight what
concepts of the input maintain throughout the layers, i.e., which of them are part of the
current activations. Unlike techniques like GradCAM, which only provide attribution,
reconstructions providemore detailed information aboutwhat information the network
is using and how it encodes it. We used the open-source implementation of ClaDec
and a reflective network trained on the FashionMNIST dataset using our default setup.
ClaDec was trained to reconstruct input images2 based on activations from the dense
layer (the last layer before SoftMax) that were generated by feeding an input image
and either the explanation for the correct class or a random class to the classifier.

Figure 6 shows reconstructions in three columns: the ground truth (the original
image to be classified), the reconstruction based on activations from the input and of
the correct explanation, and, finally, a random explanation. We also indicate whether
the predictionwas correct. It can be observed that random explanations tend tomislead
the network, resulting in inaccurate reconstructions. For example, in the first row,
the second image is a mix of a sandal (correct class) and a boot (from a random
explanation). Incorrect explanations can also lead to unusual activation patterns that
are not accurately reconstructed into any meaningful object. For example, the first
column in the second row shows a bag. The shape of the bag is atypical (in the
dataset) and resembles a T-shirt to some degree. Using the correct explanation, the
reconstruction is not perfect, but it is closer in shape to a typical bag in the data than
the ground truth. For the random explanation, the reconstruction is very blurry and
shows some weak elements of the wrong explanation (sweatshirt). In many cases,
explanations have little impact—for instance, both reconstructions in the second row,
middle column, are similar, although the random one is for an incorrect class (boot)
rather than the correct class (sneaker).

Training iterations The left panel in Fig. 7 illustrates the learning curves of the
original classifier without explanation and the reflective network with and without
fine-tuning (“self”-reflection and “other”). Fine-tuning involves adjusting all weights
and results in the quickest convergence. Interestingly, the reflective network without
fine-tuning, where all parameters are randomly initialized, still converges faster than

2 We only reconstructed input images. It is also possible to train to reconstruct explanations, which are
also part of the input to the reflective network. However, we are primarily interested in understanding how
activations relate to input images.
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Fig. 6 Understanding reflective networks based on correct and random explanations at test time using a
recent explainability technique called ClaDec (Schneider and Vlachos 2022). Random explanations at test
time tend to mislead the classifier

the non-reflective network. This can be best seen in the right panel of Fig. 7. This
can be observed in the right panel, which displays the differences in training accuracy
between reflective and non-reflective networks. Initially, the differences are substan-
tial, with reflective networks with fine-tuning showing more than 20% improvement.
This indicates that reflective networks learn faster initially. Only when the learning
rate is decayed, training accuracy of non-reflective and reflective networks reach 100%
although the gap in test accuracy remains in favor of reflective networks. Overall, using
a reflective process reduces the number of training iterations but may not necessarily
lower computational costs, as explanations must still be calculated.

4 Related work

Data augmentation In data augmentation, the input data is typically modified or syn-
thesized using techniques such as geometric transformations on images or GANs
(Shorten and Khoshgoftaar 2019; Cubuk et al. 2020). Data augmentation can alter
both the size and quality of the training data. Explanations, which can have spatial
and depth information, can also be considered as input data and therefore can be aug-
mented using similar techniques. In this work, we only augmented explanations by
adding Gaussian noise. Adding an explanation of a fixed class, such as the predicted
one, to the input does not alter the original input (image), but rather adds additional
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Fig. 7 Convergence of VGG on Cifar-10; left panel:learning curves; right panel: difference of training
accuracy between non-reflective and reflective network w/o fine-tuning;

information generated by the explainability method. Using explanations from multi-
ple classes and selecting one of them randomly during training could be considered a
form of data augmentation that increases the quantity of training data. However, the
choice of classes for which explanations are computed is restricted, as our experimen-
tal results show that the correct class should be included and using too many classes is
not beneficial. In contrast, data augmentation on images typically does not have such
constraints, and there is no requirement that the unmodified image must be part of the
training data or that only a few combinations of augmentations give the best results.
However, augmentations are often specific to the domain and may have limits on their
strength, for example, rotating an image by 180 degrees could change its meaning,
such as turning a “3” into an “E”.

Data enhancement Data enhancement involves adding extra data elements to an exist-
ing dataset. The trend of big data and the use of machine learning have increased
the efforts to combine multiple data sources, leading to a growing interest in multi-
modal learning (Roh et al. 2019; Baltrušaitis et al. 2018; Bayoudh et al. 2021). This
is motivated by the fact that our world is multi-modal, meaning that humans can
perceive information through multiple senses such as sight, sound, and smell. Using
multiple modes of information, such as image data and its accompanying text, can
improve prediction tasks. Our work is multi-modal in the sense that we use both the
actual observations and self-generated data, comprising a visual mode for images and
a thinking mode for reflection.

LearningmethodsBackpropagation (Rumelhart et al. 1986) is a technique for adjusting
the weights of a network iteratively to minimize the difference between the actual out-
put and the desired output using gradient descent. Feedback is known to be important
in the brain (Whittington and Bogacz 2019; Lillicrap et al. 2020), as it can alter neural
activity, which is not captured by backpropagation (Lillicrap et al. 2020). Other mod-
els, such as hierarchical Bayesian inference (Lee and Mumford 2003) or Helmholtz
machines (Dayan et al. 1995), do take feedback into account. In our work, we rely
on backpropagation and incorporate feedback from higher layers across networks by
using explanations from a classifier as input to a reflective network. This is similar
to the popular theory (Kahneman 2011) that suggests that a classifier first “thinks”
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quickly (during a one-time, initial pass) and then “thinks” slowly, through a slower
process of explanation that involves computing the explanation and using it as input
to the reflective network. The recirculation algorithm (Hinton and McClelland 1988;
O’Reilly 1996) has been used for closed-loop networks and also involves two passes,
with the first pass consisting of a visible vector circulating the loop and the recir-
culation consisting of an average of the visible vector and a reconstruction error. Its
generalized form O’Reilly (1996) is considered to be more biologically plausible.
Explanation-based learning was first introduced in the late 1980s (Ellman 1989), but
it differs from our research and the current understanding of XAI. Explanation-based
learning is more similar to “one-shot learning,” in which a single training sample is
used to derive general rules that describe the behavior of the system. These rules are
viewed as explanations in Ellman (1989).

Attentionwith gradientsAttentionmechanisms (Vaswani et al. 2017) have beenwidely
applied to image recognition and localization tasks (Wang et al. 2017; Woo et al.
2018; Bello et al. 2019; Zhao et al. 2020). These methods typically involve encoding
attention through a mask (Wang et al. 2017) that is multiplied with the feature map.
Some approaches aim to cover more than just the most discriminative aspect of an
object, which is often the focus of methods like GradCAM (Jiang et al. 2019; Choe
and Shim 2019; Li et al. 2018; Jetley et al. 2018). For example, Jiang et al. (2019)
averaged attention maps from multiple training epochs, Choe and Shim (2019) used
attention-based dropout, Li et al. (2018) incorporated a classification loss and an
attention mining loss, and Wang et al. (2019) used multiple loss terms in addition
to the classification loss, including attention separability and consistency loss terms.
Fukui et al. (2019) introduced an attention-branch network that combines a response-
based visual explanation model with an attention mechanism on a classifier branch,
while (Elsayed et al. 2019) used hard attention to restrict the area used for classification.
Pozzi et al. (2020) incorporated attention and reinforcement learning.

Our approach differs in several ways. First, we do not learn an attention mechanism
by (i) using a sigmoid function to obtain attention scores and (ii) multiplying these
scoreswith activations from a forward pass, or (iii) using gradient information to adjust
weights (of attention and other layers). Instead, we concatenate explanations to a layer.
Second, our explanations are “feature and location-based” rather than just “location-
based”. While some methods use multiple, more or less independent attention maps,
our approach involves a single, detailedmap derived directly from a single explanation.
Third, and most importantly, our training heavily relies on using explanations from
correct and incorrect classes. Rather than emphasizing the importance of “paying
attention,” we focus more on the goal of reflection, i.e., “Let’s investigate multiple
decisions and see what decisions should be made.”

Gradient noise Adding noise to gradients (Neelakantan et al. 2015; Yang et al. 2020)
during training can also be seen as a form of augmentation or regularization. However,
adding explanations is generally unrelated to adding noise to gradients. First, we do
not change gradients but add input information (in the form of explanations), and
second, explanations are not typically simply gradients. However, adding noise to
the explanation, i.e. if we augment explanations, might be seen coarsely as altering
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a function of the gradients if explanations are computed using gradients (e.g., as in
GradCAM).

Knowledge transfer In Li et al. (2019), explanations (i.e., attention maps) were used
to transfer knowledge from a single-label dataset to a multi-label dataset using regu-
larization. While our approach is motivated by self-reflection, it could also be used for
combining knowledge from multiple models, known as knowledge distillation (Hin-
ton et al. 2015). However, our approach does not follow the typical student-teacher
paradigm (Wang and Yoon 2020; Tan et al. 2018), as there is no “teacher” guiding a
student. Instead, self-reflection/self-explanation is used as input to make a decision.
Knowledge from one or more networks can also be transferred to another network
using input weighing (Dhurandhar et al. 2019).

Self-supervised learning Some approaches aim to learn without labeled data, such as
aligning multiple modalities (de Sa 1994) or using structural insights of the data (Jing
and Tian 2020). These approaches may use features learned from a prediction task
to perform a classification task. In contrast, our self-reflective learning approach does
not use the explanation as a “supervision”, or label. Instead, the explanation is simply
an input to the network.

Explainability The field of explainability is rapidly evolving, but still faces challenges
(Meske et al. 2020). One concern that has been raised is that the intentional use of
explanations of “wrong” classes could be seen as a deception attempt (Schneider et al.
2022). Our approach can be used with any explainability method, but is most suitable
for methods that explicitly provide explanations for any class for any input, such as
GradCAM, LIME, and LRP. Methods like ClaDec (Schneider and Vlachos 2022)
are designed to only explain the actual prediction, so using a randomly generated
explanation with such a method is likely to produce inferior results. LRP Bach et al.
(2015) is a popular method, but has been criticized for being sensitive to mean shift
of inputs (Kindermans et al. 2019) and being dominated by the input (Adebayo et al.
2018). LIME (Ribeiro et al. 2016) is computationally demanding, as it requires training
a proxy model for each local explanation.

Self-reflection Self-reflection is a process of introspection and critical examination of
one’s own thoughts and actions. It has been studied in psychology and neuroscience as
a means of gaining self-insight and improving decision-making. In technical systems,
the concept of self-reflection is largely absent. However, some research has explored
ways to incorporate self-reflection into machine learning systems. For example, Tom-
forde et al. (2014) proposed high-level ideas for incorporating self-reflection into
systems, while Altahhan (2016) used the term to describe mechanisms for altering the
relevance of experiences in reinforcement learning. The process of self-reflection has
been studied in neuroscience, for example by usingMRI scans to identify brain regions
involved in self-reflection (Johnson et al. 2002). In psychology, self-reflection has been
widely discussed (Hixon and Swann 1993), and it has been found that even human
self-reflection does not always result in self-insight. This aligns with our findings that
“trivial forms” of self-reflection in a system may not lead to improvements.
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5 Discussion and future work

What explanation to use? There is a wide range of explainability methods avail-
able, including attribution-based techniques like GradCAM (Selvaraju et al. 2017)
and concept-based methods (Schneider and Vlachos 2022). GradCAM was one of
the methods said to have passed elementary sanity checks that many other methods
did not (Adebayo et al. 2018). GradCAM has also been found to be effective in user
studies, by creating explanations that deceive people to perceive the “wrong” predic-
tion as true (Schneider et al. 2022). However, it is not clear whether it provides a
comprehensive explanation in the sense of showing how relevant input parts interact
with each other. This raises questions about the suitability of techniques that aim to
explain ML models to humans for self-reflection. This could be a direction for future
research in the field of “explainability for self-reflection” in addition to the existing
field of “explainability for humans”. Our work focuses on pure self-reflection without
any human intervention.

The role of using multiple explanations per input. One key aspect of our work was
to reflect on explanations for different predictions, not just the most likely one. For
gradient-based techniques like GradCAM, this is intuitive:gGradients for the most
likely class are already included during trainingwith regular stochastic training. There-
fore, adding explanations using the same gradients does not provide new information.
Usingmultiple explanations also serves as a regularizer for the reflective network, pre-
venting the network from relying too much on the explanations and making decisions
primarily on them.

How to incorporate explanations? In addition to incorporating explanations through
layer concatenation, we suggest that other mechanisms such as attention may also be
a promising direction for future research. Also other themes, arising for non-reflective
networks such as initialization should be investigated, e.g., whether correlated initial-
ization is helpful or not (Schneider 2022a).

Self-reflection in humans versus our work. While our work is partially inspired by
the human capability of self-reflection, our concept of self-reflection is more limited
compared to the more comprehensive notion in humans (Hixon and Swann 1993).
Our concept refers to reflecting on individual decisions in sequence, while humans
reflect on their capabilities, actions, and emotions as a whole. Therefore, we do not
claim to replicate human capabilities in this regard, similar to other human traits like
creativity (Basalla et al. 2022). However, it is possible that a model could also learn
from explanations generated by humans. In such a setup, a human would need to
explain in terms of the input, i.e., highlight areas of the input that are relevant for
decision making, or understand the model’s representation and align it with their own
explanations for upper layers in the network.

Data augmentation and computational costs: Our approach can be seen as a form
of data augmentation. Any data augmentation comes with computational costs. In
contrast to simple augmentations like image rotations, flipping, etc., computing expla-
nations based on our method require computing gradients of a network and is thus
computationally expensive. This is a limitation.
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Furthermore, other data (e.g., text) and models (e.g., large scale transformers
(Schneider 2022b)) could be investigated as well.

6 Conclusions

Our study has shown that incorporating data generated by explanation techniques,
which promote self-reflection, can significantly improve classifier performance and
training efficiency in multiple image classification datasets and convolutional neu-
ral network architectures. This is an important result as it demonstrates the potential
for machines to learn from their own explanations and engage in a form of reflec-
tive thinking, similar to humans. Our approach also opens up new possibilities for
data augmentation, by capitalizing on explanations for both the correct and incorrect
classes.
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