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Abstract
Location-Based Social Networks stimulated the rise of services such as Location-
based Recommender Systems. These systems suggest to users points of interest (or
venues) to visit when they arrive in a specific city or region. These recommendations
impact various stakeholders in society, like the userswho receive the recommendations
and venue owners. Hence, if a recommender generates biased or polarized results, this
affects in tangible ways both the experience of the users and the providers’ activities.
In this paper, we focus on four forms of polarization, namely venue popularity, cat-
egory popularity, venue exposure, and geographical distance. We characterize them
on different families of recommendation algorithms when using a realistic (temporal-
aware) offline evaluation methodology while assessing their existence. Besides, we
propose two automatic approaches to mitigate those biases. Experimental results on
real-world data show that these approaches are able to jointly improve the recommen-
dation effectiveness, while alleviating these multiple polarizations.
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1 Introduction

Artificial Intelligence (AI)-based systems are known to typically perform worse for
minorities and marginalized groups (Buolamwini and Gebru 2018; Koenecke et al.
2020; Obermeyer et al. 2019). This lower effectiveness might have a concrete impact
on the users interacting with these systems, such as allocational and representational
harms (Jacobs et al. 2020; Blodgett et al. 2020). One of the research areas where
AI-based systems are commonly used and where the analysis of these biases might
be particularly relevant is the recommendation domain. Recommender Systems (RSs)
are software tools that help users finding relevant items. Due to their ability to adapt to
users’ needs, they have been applied in various disciplines (Ricci et al. 2015). As such,
they are one type of AI technique that is being increasingly used nowadays, and hence,
may affect society as a whole by amplifying existing biases or guiding people’s deci-
sions. In fact, RSs are known to be multi-stakeholder environments (Abdollahpouri
et al. 2019a), since they affect multiple actors in a direct way, mainly the users receiv-
ing the recommendations (consumers) and those behind the recommended objects
(providers). Because of that, research on bias analysis and fairness measurements
is needed; in particular, specific definitions, dependency variables, and mitigation
approaches beyond those already studied for general Machine Learning (Zehlike et al.
2020).

Tourism is a domain where the needs of consumers and the services offered by
providers naturally meet in the real world. In the tourism industry, travel guides/blogs
have always been used to organize trips. However, while travel portals and travel
guides tend to focus on the most popular places (which can be useful in many cases),
recommendation algorithms should also offer users more novel recommendations,
to provide them satisfying experiences (Massimo and Ricci 2022). For this reason,
tourism recommendation, where AI models automatically support decision-making
processes, clearly impacts on society. Hence, it is an area that is particularly sensitive
to these effects and biases. Several recommendation tasks related to tourism have been
addressed, such as tour recommendation to groups (Herzog and Wörndl 2019), tra-
jectory recommendation (Chen et al. 2016), suggestion of travel packages (Benouaret
and Lenne 2016), etc. Probably, the most important recommendation task related
to tourism is the Point-of-Interest (POI) or venue recommendation problem, which
focuses on suggesting to users new places to visit when they arrive in a city (Zhang
and Chow 2015; Liu et al. 2014). The POI recommendation problem is usually defined
upon data stored in Location-Based Social Networks (LBSNs) (Doan and Lim 2019).
These social networks allow users to check-in in venues; thanks to these check-ins,
platforms such as Foursquare can provide services to the users, like the possibility
to share information between them, together with venue search and/or recommenda-
tion. At the same time, based on reviews, ratings, and venue check-ins available in
LBSNs, users decide what to buy or consume and where to go. However, generat-
ing recommendations in LBSNs introduces new challenges with respect to traditional
recommendation, such as different contextual dimensions (temporal, geographical,
social, and so on), and a higher sparsity on the user preferences (Li et al. 2015; Wang
et al. 2013; Liu et al. 2017; Kapcak et al. 2018). From now on, we will refer to RSs
that operate in LBSNs as Location-Based Recommender Systems (LBRSs).
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In this context, it is critical to assess the extent to which LBRSs have a concrete
impact on the tourism domain as a whole. Besides the users accepting the recommen-
dations (the consumers), whose experience in a city depends on these suggestions, the
business of venue owners/managers (the providers) strongly depends on them. Hence,
we must think of properties of a RS that go beyond accuracy, to provide equitable
suggestions. Thus, RSs might be polarized towards certain undesired properties (e.g.,
by recommending only popular items) and this would concretely impact the involved
stakeholders in different ways. In the end, not exposing the full catalog of candidate
venues to the users might not be fair from a business perspective (Wasilewski and
Hurley 2018) and may also lead to a lack of novelty and diversity in the recommenda-
tions. As a consequence, the most widely known type of polarization in recommender
systems is towards item popularity, which means that only a subset of popular items is
recommended to the user. Polarized recommendations towards popular venues would
worsen user experience, since theymight get too crowded, and it might also strengthen
inequalities between venue owners/managers. Venue category can also be character-
ized by a certain popularity, which can impact POI recommendation and society at
a broader (and probably more dangerous) level. Indeed, users might not be recom-
mended possibly interesting but unpopular categories of POIs (thus probably ignoring
their fine-grained preferences) and the owners of an entire sector/type of business
might be affected as a whole by it. Item popularity may also affect the exposure
of the venues, since popular venues are always ranked in higher positions. Hence,
these venues would increase their chances of being noticed and selected by the users
(Singh and Joachims 2018), while other interesting items may go unnoticed by the
user (exposure bias). Finally, a geographical polarization towards far away or close
POIs with respect to those the user is currently visiting, might ignore their preferences
and previous interactions. This polarization would affect the trust of the users on the
recommender system (and, again, their experience) and impact owners of more rel-
evant venues. The problem of under-recommending and under-exposing providers is
well known in the recommender systems literature (Mehrotra et al. 2018), but to the
best of our knowledge, it has never been studied for LBRSs.

It should be clear that polarization might be related to the concept of algorithmic
bias, which has been widely studied in recommender systems (Jannach et al. 2015;
Bellogín et al. 2017; Boratto et al. 2019; Abdollahpouri et al. 2017; Adamopoulos et al.
2015; Adomavicius et al. 2014; Ekstrand et al. 2018; Guo and Dunson 2015; Jannach
et al. 2016). Algorithmic bias assumes that RSs reinforce a previously existing bias in
the data. While a pre-existing bias might be the cause of polarization, our focus is at
a societal level, to study the impact of polarization for the involved stakeholders. In
other words, it does not really matter in the context of this work if a venue is popular
in the recommendations because it already was or because the systemmade it popular.
Heavily polarized recommendations have a negative impact on tourism stakeholders,
so we study these phenomena, without any assumption of the prior distribution of the
data. To summarize, in this work, we use the term polarization to quantify to what
extent an algorithm deviates from what it is observed in the training data.1 We use

1 Note that polarization cannot be computed in an absolute way as no ground truth is available. As a
surrogate, we assume the observed interactions in the system (i.e., training data) represent, to some extent,
the target distributions against which we want to compare.
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the term bias to describe, in a more generic way, the inclination of an algorithm to go
towards polarization.As our resultswill show, inLBRSs, polarization is a phenomenon
that appears independently of how the datawere generated. This, in particular, includes
cases where data is biased towards some algorithms (such as popularity) or sensitive
features of users (gender or race) or items (higher advertising budgets).

In this work, we characterize the four previously mentioned forms of polarization
(i.e., towards venue and category popularity, venue exposure, and geographical dis-
tance) through metrics that have not been used before. Then, we assess if the use of
check-ins to capture the interactions of the users with a LBSN to produce recom-
mendations may lead to polarized suggestions from these perspectives. To do this, we
consider an evaluation methodology that mimics the real world, by using a tempo-
ral split of the user check-ins. We then compare different families of recommender
systems to inspect these forms of polarization. In order to show to what extent a
recommender might be affected by different forms of polarization, it is useful to char-
acterize these phenomena independently. However, at the same time, mitigating these
forms of polarization separately would not be adequate, since the objective is to pro-
duce recommendations that are as non-polarized as possible (regardless of the type
of polarization). As previously mentioned, each polarization affects stakeholders in
different and negative ways; hence, dealing only with a form of polarization would
still lead to negative outcomes. For this reason, we propose two forms of mitigation
based on the concept of hybrid recommendation (Burke 2002) and re-ranking (Abdol-
lahpouri et al. 2019b). Both approaches will allow us to deal with multiple forms of
polarization at the same time by combining the outcomes of different recommenders.

2 Background and related work

2.1 Recommender systems

The purpose of a Recommender System is to provide recommendations of differ-
ent types of items to a particular user by analyzing their interests and tastes (Ricci
et al. 2015). These items vary considerably depending on where we apply the rec-
ommender (e.g., movies, books, online dating, businesses, etc). This wide variety of
applications has led to the development of a large number of different recommendation
techniques. The most extended ones are the content-based models (de Gemmis et al.
2015), which exploit the features of users and items tomake the recommendations, and
the collaborative-filtering approaches, that can be divided into two different families.
The first of them, memory-based or k-nn methods (Ning et al. 2015), compute similar-
ities between users and/or items to build recommendations. The second family, known
as model-based algorithms (e.g., classic matrix factorization models or more recent
proposals based on neural networks) (Koren and Bell 2015), uses the information of
the interactions between the users and items in order to create a predictive model.
Finally, another popular technique in the area are hybrid approaches. These methods
combine different types of algorithms to alleviate the possible drawbacks that each
recommender may have independently (Burke 2002).
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Regardless of the recommendation algorithm, normally all of them have to deal
with a fundamental problem: sparsity, that is, the ratio between the actual number
of interactions made by users on items in the system and the potential number of
interactions considering those users and items. Generally, this sparsity is severe, being
common to work with datasets with a sparsity higher than 97% (i.e., only 3% of
the possible information is available to estimate the recommendations). At the same
time, in classical recommendation (e.g., movies) researchers usually make use of the
ratings that the users gave to the items explicitly (generally a score between 1 and 5).
However, in other recommendation domains such as web, music, or Point-of-Interest
recommendation, there might not be ratings available, but rather the number of times
a user has visited/consumed an item (as in the Foursquare dataset used in this paper).

2.2 Location-based recommender systems

While POI recommendation has the same goal as traditional RSs, there are aspects
that make LBRSs different. First, the sparsity in these domains is considerable; for
example, the densities, i.e., the inverse of sparsity, of the MovieLens20M and Net-
flix datasets are 0.539% and 1.177%, respectively. On the other hand, the Foursquare
dataset we use in our experiments shows a density of around 0.0034%. Second, the use
of one-sided or one-class information, where LBSNs normally only record positive
values (check-ins) indicating that a user has visited a venue. Besides, users may check-
in the same venue more than once, something that it is not considered in the traditional
recommendation. And third, and more importantly, venue recommendation is highly
affected by geographical, temporal (Sánchez and Bellogín 2022), and sometimes even
social (user friends) (Gao et al. 2018) influences. The former is possibly the most
critical aspect to consider in LBRSs, as it is usually assumed that users prefer to visit
venues that are close to each other (Miller 2004). That is the reason why existing algo-
rithms have incorporated geographical influence for generating recommendations (Liu
et al. 2014; Ye et al. 2011; Lian et al. 2014).

Each model incorporates these influences differently, and although there are a large
number of LBRSs (see Liu et al. (2017) for an experimental survey of the state-of-the-
art models), many of them use traditional recommendation techniques. For example,
Matrix Factorization (MF) approaches are used in the IRenMFmodel (Liu et al. 2014),
which also takes into account the neighbor POIs of the target one by distance and uses
a clustering algorithm to group all the POIs to model the geographical influence.
Similarly, the GeoMF method (Lian et al. 2014), which uses two additional matrices,
one to model the user activity areas by dividing the geographical space in a set of grids
and the other to represent the influence of the POIs, and the LRT algorithm (Gao et al.
2013), which models the temporal component by factorizing the check-in matrix for
every hour in a day. User-neighborhood approaches are also used in some LBRSs,
like the USG model (Ye et al. 2011), which computes user similarities based on their
check-in activities and combines themwith the probability of visiting the target venue.
LORE (Zhang et al. 2014) and iGLSR (Zhang and Chow 2013) are two other user-
neighborhood approaches, which compute the similarities based on the distance of the
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users’ residences, combined with the geographical influence modeled using Kernel
Density Estimation (KDE).

2.3 Realistic evaluation in recommender systems

When evaluating recommendation quality in an offline setting, the RSs literature usu-
ally considers a random split with cross-validation methods to avoid the overfitting
problem (Said et al. 2013). However, a RS should be evaluated as realistically as pos-
sible, not knowing anything about future interactions, to avoid obtaining unrealistic
results and avoid data leakage (Kaufman et al. 2012).

Because of this, the community is slowly shifting the offline evaluation towards
using temporal splits, where the recommendation algorithms should predict the present
(or, actually, future) user interactions based on their past activity (Campos et al. 2014).
However, different strategies may arise for performing such a temporal split. We
can split by selecting a percentage of interactions to use in the training/test splits.
A common approach would be to select the 80% of the oldest interactions to build
the training set and the rest would form the test set. Other strategies would be to
choose a timestamp, so as to use all interactions that happened after that timestamp
for testing the recommenders. In alternative, one can order the interactions for each
user separately and assign the most recent ratings of each user to the test set.

Each of these strategies has advantages and disadvantages in terms of the char-
acteristics of the training/test splits derived and how close they represent real-world
scenarios. Based on these descriptions, the most realistic protocols would be those that
allow for a training set temporally separated from the test set, which can be achieved
by either using a common splitting timestamp for the entire dataset or by selecting a
percentage of the data according to the moment of interaction. This conclusion is in
line with recent analyses made by the community regarding data leakage (Meng et al.
2020; Ji et al. 2021).

It is worth noting that, even if some of the existing POI recommenders perform
a temporal split (Li et al. 2015; Zhang et al. 2014; Zhang and Chow 2015), to the
best of our knowledge there is no thorough research about the effects of this type of
evaluation split on typical recommendation approaches in this domain.

2.4 Impact of recommender systems

As described before, RSs analyze users’ preferences in order to make personalized
recommendations to users. However, it has been observed that sometimes the rec-
ommendations of the algorithms can be discriminatory for different groups (e.g., by
ethnicity, age, occupation, or gender) (Edizel et al. 2019; Sánchez and Bellogín 2019;
Weydemann et al. 2019). This effect can also cause certain types of users to receive
the same type of items, isolating them according to these biases (the so-called filter
bubble (Pariser 2011)). This was one of the main reasons to propose metrics in the
field so that we could measure complementary dimensions beyond accuracy, such as
novelty and diversity (Castells et al. 2015).
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One of the most recognizable biases in RSs that has received much attention in
recent years is the popularity bias, which shows how the recommendations produced
are generally biased (or polarized) to the most popular items, affecting negatively the
novelty and diversity of the suggestions. Some researchers have proposed different
mechanisms to palliate this problem; for example, Abdollahpouri et al. (2017) pre-
sented a regularization framework to retrieve long-tail items with a small performance
loss in ranking evaluation, whereas Abdollahpouri et al. (2019b) proposed re-ranking
techniques to reduce the popularity bias in recommendations. Alternatively, Bellogín
et al. (2017) defined two new split protocols to counter the effect of the popularity
bias. Additionally, recent work has focused on the theoretical impact of popularity bias
on the algorithms (Cañamares and Castells 2017, 2018). In any case, this is an issue
that has been studied in different domains (Jannach et al. 2015; Boratto et al. 2019).
Our goal is to go beyond the assessment/reinforcement of pre-existing polarized data
recorded in a system or biases in algorithms, to study more broadly polarization in
POI recommendation.

Another related topic associated with the societal impact of recommendations on
the users is algorithmic fairness. A recent work by Weydemann et al. (2019) studied
to what extent LBRSs can provide suggestions to groups characterized by sensitive
features. More recently, Sánchez and Bellogín (2021) analyzed the recommendations
of two different groups of users using LBRSs, i.e., locals and tourists, concluding that
the latter suffers from a greater popularity bias. As we introduced in our motivation,
polarized recommendations do not impact only consumers, but also providers (venue
owners). In this work, we study a broader phenomenon, which complements and does
not overlapwith the studies on algorithmic fairness (indeed, we are neither considering
demographic information of the users/providers, nor notions of similarity between
them), by providing insights on the polarization generated by different algorithms.
Hence, no direct comparison is possible and the connection between this study and
algorithmic fairness is left as future work.

3 Polarization characterization

Given the peculiarities of the POI recommendation problem with respect to the tradi-
tional recommendation, it is important to control which forms of polarization occur in
this domain. In this section, we explain how to measure different forms of polariza-
tion: towards popular venues (Sect. 3.1) and categories (Sect. 3.2), regarding the venue
exposure (Sect. 3.3), and with respect to the geographical distance (Sect. 3.4) between
the user and the recommended venues. At the end of this section (Sect. 3.5), we also
show several toy examples to better understand the proposed polarization metrics.

3.1 Measuring venue popularity polarization

From the multiple definitions that “novelty” has in the RSs and Information Retrieval
areas, one of the most commonly used definitions is that something is novel when it is
not popular (Gunawardana and Shani 2015). To measure novelty, Vargas and Castells
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(2011) defined the Expected Popularity Complement (EPC) metric, by computing the
number of users who rated that item, divided by the number of users in the system;
then, they proposed to subtract that value to 1, so that values closer to 1 indicate that the
items are more novel (less known by the users in the systems). A similar metric called
Inverse User Frequency (IUF), defined in Castells et al. (2015) measures novelty in a
similar way, but considering the logarithm between the user that rated that item and
the total users in the system. However, these metrics are too sensitive to the actual
number of ratings, or interactions, in general, received by each item. For instance, if an
algorithm always returns the same top-n items but the item distribution is too skewed,
we may obtain similar novelty values between that algorithm and another one that
recommends more items which have been rated by a similar number of users.

Because of this, in this work, we analyze the polarization towards popular venues by
analyzing the popularity distribution derived from each recommendation algorithm. In
this way, we can compare whether some algorithms are more or less tailored to return
more popular items. Moreover, we propose a metric that summarizes such distribution
in an empirical value for each algorithm; however, sincewe cannot assume the inherent
distribution of the data, there is no general skewness function to measure it (such as
kurtosis, which assumes data is normal); because of that, we resort to empirical metrics
aware of the domain we analyze.

Definition 1 (Venue Popularity Polarization) The polarization of a recommendation
model rec towards popular venues is the probability that a more popular venue is
ranked higher than a less popular one, when considering the top-n items recommended
to a user.

Our proposed metric to characterize the polarization of a model towards popular
venues is computed bymeasuring the area under the curve generated by the cumulative
distribution of the recommended items by rec; this is done by approximating the
analytical integral by the trapezoidal rule. More specifically, given the unique set of
items R(rec, n) returned by recommender rec up to cutoff n, i.e., the length of the
recommendation list, for all users, we propose the following formulation to measure
the venue popularity polarization:

PopI@n(rec) = 1

2|m|
|m|∑

k=2

(
FR(rec,n)
pop (xk−1) + FR(rec,n)

pop (xk)
)

(1)

where |m| are the items in the training set, ordering them by the number of times
they have been recommended by the recommender rec. FR

pop(x) measures the cumu-

lative popularity distribution2 for an item x , depending on whether it belongs to R,
in such a way that it is updated only for those items contributed by the correspond-
ing recommender used to create such list R. Finally, to measure the popularity of a
venue, we count the number of users who visited it divided by the total number of
users that visited all recommended venues. By definition, the larger the area, the more
uniform (less skewed) the distribution is. Hence, this metric produces lower values

2 More specifically, since the distribution is discrete, we compute a cumulative histogram.
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for recommenders polarized towards popular items, which is bounded in [0, 1] thanks
to the trapezoidal rule applied on a square [0, 1] × [0, 1]. It is important to note that
obtaining a high value in this metric does not imply that the ranking accuracy of the
recommendations is higher, it implies that more items with different popularity values
are being recommended. Therefore, in order to obtain the “expected” value of this
metric, we should compute it with the data available in the test set as it represents the
real visiting patterns of the users in the dataset. We shall do this later in the experi-
ments by contrasting the behavior of recommenders against a method that provides
suggestions based on the test set.

3.2 Measuring category popularity polarization

Intuitively, a user who likes rock music would probably prefer recommendations of
groups such as Led Zeppelin or the Rolling Stones rather than classical music. In the
case of POI recommendation, users may prefer some venues over others depending on
the venue type. In this domain, the venue type is unambiguously linked to the venue
category, such as restaurant, museum, public park, etc. Because of this, it is important
to consider the polarization with respect to well-known groups of items, such as genres
in movies or music, venue categories in POIs, or verticals in e-commerce.

Moreover, the interactions between users and these groups of items are not uni-
formly distributed in typical recommendation systems, and in particular in LBSNs,
as we show later for different cities with respect to venue categories. Hence, it is
important to distinguish the popularity of a specific POI from that of the associated
categories (e.g., a particular museum may be the most popular venue in a city, but
museums may be the least represented category in that city).

Definition 2 (Category Popularity Polarization) The polarization of a recommenda-
tion model rec towards popular categories is the likelihood of recommending venues
belonging to categories associated with the highest number of user interactions.

We analyze the polarization towards popular categories by grouping the top-n rec-
ommended POIs by each category, while sorting the different categories by increasing
popularity, measured as the number of interactions each category has received in the
entire dataset.

Thus, we summarize this analysis in the following metric value:

PopC@n(L) = 1

min(n, |L|)
∑

i∈L

bin
(
cat(i)

)

|{cat(·)}| (2)

PopC@n(rec) = 1

|U |
∑

u∈U
PopC@n(R(rec, u, n)) (3)

where, as before, n denotes the cutoff at which wemeasure the metric (i.e., the number
of items to consider from the recommendation list), R(rec, u, n) denotes the top-n
recommended items to user u by recommender rec. Note that |L| and n will be, in
general, equal, since L = R(rec, u, n), except when the recommender has a low

123



1894 P. Sánchez et al.

recommendation coverage (i.e., number of items that the recommender is returning
to the target user). In case of low coverage, |L| might be smaller than n, that is why
we prefer to make this situation explicit in the formulation. Here, cat(i) returns the
associated category to each item, and bin(·) returns the category bin, where the least
popular category is associated to the first bin (i.e., bin

(
cat(i)

) = 1) and popular
categories are assigned the last bins. In this way, a larger value is obtained for popular
categories and we can use this as an indicator of how polarized an algorithm towards
popular categories is. We consider the number of categories, |{cat(·)}|, to be fixed.3

In those cases where the category information is not available, an implicit clustering
of the venues might be used (for instance, those items whose name contains a special
keyword might be classified into a pre-defined group, e.g., ‘Museum’ or ‘Cafe’).

Themetric is in the [0,1] range, where 0/1 indicates that amodel only recommended
venues associated with the most unpopular/popular category. As in the previous case,
to obtain the expected value, we should compute this metric with the data available in
the test set.

3.3 Measuring polarization in terms of item exposure

When measuring the quality of a recommender system, in most cases only the users’
opinions are taken into consideration, either in terms of relevance or other dimensions
such as novelty and diversity. However, the perspective of the items should be equally
important because we may be over-representing the most popular items in the rec-
ommendations (Ariza et al. 2021). For several years, researchers in the recommender
systems area have analyzed the effect of over-representing the most popular items,
observing that the most unpopular items actually belong to the long-tail item distri-
bution (Park and Tuzhilin 2008). Although a large number of users consume popular
items, according to Anderson (2006), vendors should focus on such long-tail items
as unpopular items are often more profitable. In the POI recommendation domain,
the items are venues, ranging from major tourist sites to minor ones, e.g., food estab-
lishments, bars, or small businesses. By recommending less popular venues in the
long-tail, we may introduce users to new places that they had not thought they might
be interested in, and also make these less popular sites receive more visits, which
means that they end up having more customers. As these venues are sometimes busi-
nesses that generate trade activity in the cities, a poor exposure of these venues might
negatively affect the city’s economy.

Definition 3 (Venue Exposure Polarization) The polarization of a recommendation
model rec in terms of exposure is the likelihood of the model to suggest a venue
proportionally to the number of times the users will consider that venue in the future.

While, in the characterization of item popularity, we assessed the probability of
recommending a popular item, in order tomeasure the exposure of venues, we compare
the number of times an item has been recommended (Recommender Exposure, RE)

3 In Foursquare, as an example, the categories are organized using a 3-layer hierarchy tree structure. This
number would then depend on the category level used; for instance, for the first level, the one covering the
most generic types of POIs, there are 9 different categories.
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against its actual exposure (i.e., the number of times that venue should be recommended
regarding a subjective policy) (Actual Exposure, AE). However, differently from the
metrics proposed by Ariza et al. (2021), instead of dividing RE and AE, we will
compute the squared difference since it is a more common mechanism to measure
errors, as in Ekstrand et al. (2021b):

RE@n(i, rec) = 1

|U |
∑

u∈U

1/log2(pos(i, R(rec, u, n)) + 1)∑
j∈R(rec,u,n) 1/log2(pos( j, R(rec, u, n)) + 1)

(4)

AE(i;π) = p(i |π) (5)

I E@n(rec;π) =
∑

i∈I
(RE@n(i, rec) − AE(i;π))2 (6)

where R(rec, u, n) denotes, as before, the top-n recommended list by rec for user u,
whereas pos( j, L)denotes the position of item j in a recommendation list L . Finally,π
denotes the exposure of the item under the target policy (ideal exposure). In this paper,
we will work with two different policies—see (Ekstrand et al. 2021b) for an overview
of reasonable choices over these policies—, namely: Parity, where we assume that
all items should be recommended equally, i.e., following a uniform distribution, and
Relevance, in which we assume that each item should be recommended following
the same distribution observed in the test set. According to this, I E would denote the
final Item Exposure based on a target policy π , for a recommender rec measured at
cutoff n. Hence, the lower the I E , the better (low polarization, similar to the expected
exposure) the recommender is.

3.4 Measuring polarization towards geographical distance

According to the first law of geography, “Everything is related to everything else, but
near things are more related than distant things” (Miller 2004), which is why many
LBRSs model geographical influence. Because of this, exposing the polarization (or
the lack of it) towards this aspect might be a critical signal of the type of venues
provided by a recommendation algorithm. Despite the fact that geographic influence
has been used extensively tomake recommendations to users, we have not foundmany
works that analyzes the geographical relationship between the actual recommended
POIs (e.g., if they are close to each other or to the user midpoint). Hence, we consider
this analysis an important contribution of the presented work.

Definition 4 (Geographical Distance Polarization) The polarization of a recommen-
dation model rec towards geographical distance is the likelihood of the model to
suggest a venue that is close to/far from the current position of the user.

As a first approximation, we propose two metrics that consider the distance of rec-
ommended POIs in their evaluation. The first one, DistT, shown in Eq. (7), sums the
distance of the recommended POIs as if the user accepted those recommendations
and visited those venues in order.4 With this metric, we account for the polarization

4 Existing literature shows that users pose higher trust in highly ranked results, and measures of exposure
in a ranking introduce a discount for lower-ranked results (Singh and Joachims 2018). The assumption is
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towards longer or shorter recommended routes or trajectories, even though this metric
could be applied to any type of recommender system, not only for those producing
routes. The second metric, DistU, shown in Equation (8), computes the total distance
between each recommended POI and the user historical midpoint, obtained by averag-
ing the coordinates of every venue visited by the user in the training set. In this way, we
aim to capture how sensitive each recommendation algorithm is to the history of pre-
vious locations of the user. This concept connects to the recent literature on calibrated
recommendations (Steck 2018), by studying how adherent the recommendations are
to the previous behavior patterns of the users, which in our case are modeled by their
locations. Note that Equation 8 cannot be used if the user has not checked-in in any
venue in the training set. However, in a real environment where a tourist arrives at a
city, instead of her midpoint we could make use of the coordinates of the venue she is
staying at or the actual geographical position of the user.

DistT@n(Ru) =
min(n,|Ru |)∑

i=2

Hav(Ru,i−1, Ru,i ) (7)

DistU@n(Ru) =
min(n,|Ru |)∑

i=1

Hav(um, Ru,i ) (8)

where Ru,i is i th item recommended to user u, um is user u historical midpoint, and
Hav is the Haversine distance of the coordinates of two geographical points. In order
to interpret the geographical polarization values found using these metrics, we need to
compare those values obtained by the recommenders we are analyzing with respect to
those found using the user’s ground truth. Thus, obtaining high values in these metrics
(which indicate that the recommended venues are either far away from each other or
from the user’s midpoint) might not be intrinsically bad if the users actually exhibit
those mobility patterns in the ground truth. However, obtaining very different values
from those exhibited by the users in the test set would be a sign that the recommenders
are actually showing a geographical distance bias far from the expected one.

3.5 Toy examples

In this section, we show a toy example for every proposed metric to illustrate how
they work, in order to help the reader to have a better understanding of all the different
analyzed polarizations.

First, in Fig. 1, we compare the performance of two different recommenders (rec1
and rec2) using our Venue Popularity Polarization metric (Eq. 1), and we compare
it against other novelty metrics like EPC and IUF (they were both defined at the
beginning of Sect. 3.1). As we can observe in that figure, both recommenders would
obtain the same values in terms of Expected Popularity Complement (EPC) or Inverse

Footnote 4 continued
that the lower an item is ranked, the lower is the likelihood that the user will choose it. So we can assume
that the ranking generated by a recommender system is a proxy for the sequence of choices for the users.
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Fig. 1 Visual example of the popularity polarization of two different recommenders, rec1 and rec2. The
second recommender would obtain higher values in our metric due to the fact that it is recommending more
different venues, and hence the area under the curve would be higher than in the first recommender

Fig. 2 Visual example of the category popularity polarization of two different recommenders, rec1 and
rec2. The second recommender would be preferred as it is recommending venues from different categories

User Frequency (IUF) because they are recommending items that have been rated by
the same number of users (i.e., their popularity is the same). However, the second
recommender is able to recommend both the black and white items while the first one
is not. Thus, the area under the curve of the second recommender would be higher, as
it is recommending a higher number of items, showing less polarized results.

Secondly, in Fig. 2, we show a comparison between two recommenders in terms
of Venue Category Polarization. Both of them recommend three different items, but
the first one is only recommending items with the feature denoted as “A”, which is the
most popular one. On the other hand, rec2 is recommending venues belonging to all
categories, and hence obtaining a lower category polarization.

Thirdly, in Fig. 3,we showa comparison between twodifferent recommenders using
our formulation for Venue Exposure Polarization by applying a relevance-based target
policy or ideal exposure. In that example, we observe that the second recommender
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Fig. 3 Visual example of how the value of Item Exposure (IE) changes according to the behavior of
recommenders, for a relevance-based policy. Here, rec1 and rec2 denote the first and second recommenders,
R(recn , u, 3) denotes the recommendations from recommender recn for user u, while Tu1 and Tu2 represent
the test set of the two users. In this situation, rec2 would obtain a lower value because it is recommending
the black item 2 times, as in the test set, and it is not recommending the dotted item, which does not appear
in the test set. Hence, as the recommended items from rec2 are more similar to the ground truth of the user
than the ones recommended by rec1, the venue exposure polarization of rec2 would be lower

obtains a lower result in terms of exposure than the first one due to several reasons.
Firstly, rec2 is not recommending one of the items (the one with the dotted pattern),
which actually does not appear in any of the test sets. Secondly, this model is also
recommending the black item twice, which is the same number of times that item
appears in the test set; however, the first method only recommends this item once.
Finally, rec2 is the onlymodel that recommends the itemwith vertical lines; moreover,
this item appears in as many recommendation lists as in the test set. Hence, rec2
achieves the expected exposure for this item, and the value of IE is decreased since
both RE and AE are closer to each other.

Finally, in Fig. 4, we show a comparison between two recommenders in terms of
our Geographical Distance Polarization metrics (Eqs. 7 and 8). In this example, the
second recommender would obtain lower values in the metrics as the recommended
venues are closer with respect to the user midpoint (Um) and also closer between them
than the recommendations produced by the first algorithm.

4 Evaluation settings

4.1 Evaluationmethodology

We performed experiments on the Foursquare global check-in dataset5 used in (Yang
et al. 2016). This dataset is formed by 33M check-ins in different cities around the
world, Fig. 5 shows the 50 cities with the highest number of check-ins. We selected
the check-ins from the cities of Tokyo, New York, and London from this dataset and,
once we selected the check-ins of all three cities separately, we performed a 5-core,
that is, we removed both users and POIs with less than 5 interactions. Next, aiming for
a realistic evaluation, we split the check-ins so that the 80% of the oldest interactions
were used to train the recommenders and the rest 20% to test them.

5 https://sites.google.com/site/yangdingqi/home/foursquare-dataset.
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Fig. 4 Visual example of the geographical distance polarization of two different recommenders, rec1 and
rec2. In this example, the second recommender will be preferred as the recommended venues are more
geographically related between them and with respect to the user midpoint (represented by Um )

Fig. 5 Plot showing the 50 most popular cities (in terms of number of check-ins) in the Foursquare dataset
before preprocessing. In black, the cities of Tokyo, New York, and London are highlighted

The statistics of the datasets and their splits are shown in Table 1. Finally, we
removed from the test set all interactions that appeared in the training set (as the
purpose is to recommend new venues to the users) and the repetitions, that is, we
consider that the users just visit the same POI once in the test set. These evaluation
methodology issues, combined with the sparsity of the dataset and the fact that we do
not force test users to have a minimum number of training interactions, means that the
results in terms of ranking accuracy will be low. However, we decided to not focus
only on those users with enough locations visited in their profile, as this would make
our experimental analysis too limited. However, we leave as a future work the analysis
of cold-start users (Lika et al. 2014).
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Table 1 Statistics of the three cities used in the experiments

City Split |U| |V| |Cr| |Cr| |Cr ||U|·|V|%
|Cr ||U|·|V|%

Tokyo Complete 10,057 24,892 921,874 381,165 0.3683 0.1523

Training 9735 24,614 737,499 317,213 0.3078 0.1324

Test 7623 18,901 184,375 97,554 0.1280 0.0677

New York Complete 7832 12,975 315,472 154,639 0.3104 0.1522

Training 7319 12,713 252,377 126,453 0.2712 0.1359

Test 4701 9275 63,095 37,256 0.1447 0.0855

London Complete 4443 7384 141,402 73,295 0.4310 0.2234

Training 3968 7284 113,121 59,243 0.3914 0.2050

Test 2433 5329 28,281 18,109 0.2181 0.1400

We show the number of users (|U|), number of venues (|V|), number of check-ins (|Cr|), number of unique
check-ins (|Cr|, without repeated interactions), and data density computed according to whether repetitions
are considered or not. We present these values for the entire city, together with the corresponding training
and test splits. In the case of Tokyo, NewYork, and London, there are 7301, 4188, and 1958 users appearing
in both training and test sets, respectively

Moreover, for the training set, we maintain three different versions due to the
intrinsic characteristics of some of the aforementioned models: the one with repeti-
tions (RTr), the one adding all interactions (FTr), and the one binarizing all possible
user-POI interactions (BTr). Please note that in this dataset there are no explicit rat-
ings as we typically find in classic recommendation datasets, such as MovieLens. In
Foursquare, we only know when a user has visited a certain POI, unlike other LBSNs
such as Yelp,6 where we do find ratings and reviews. Hence, the training set with
repetitions (RTr) is being used by the recommenders that build sequences for per-
forming the recommendations. The frequency training set (FTr) is being used by the
recommenders that can exploit the explicit information, to give more importance to
those interactions with a higher score. In this case, by aggregating the check-ins, we
can obtain a frequency matrix that can be used in the models as if it was the clas-
sic matrix of user ratings. However, these frequencies are not entirely comparable to
ratings because they are not bounded at the system level (there may be users with
a wide range of frequencies). Finally, the binarized training set is used by both the
implicit and explicit recommenders. This final training set will denote with a ‘1’ if a
user has visited a particular POI (regardless of the number of times it has been visited)
and will present a ‘0’ otherwise. For generating the recommendations, we follow the
TrainItemsmethodology (Said and Bellogín 2014), i.e., we consider as POI candidates
for a target user u those venues that appear in the training set but that have not been
visited by u.

6 https://www.yelp.com/dataset.
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4.2 Recommenders

In order to analyze and characterize the biases that may exist in the Foursquare dataset,
we now describe the state-of-the-art algorithms that have been considered in our exper-
iments, grouped in different families:

– Non-Personalized: we tested a Random (Rnd) and a Popularity (Pop) recom-
mender. The latter recommends the venues that have been checked-in by the largest
number of users.

– Collaborative-filtering: we used a User-Based (UB) (non-normalized k-nn algo-
rithm that recommends to the target user venues that other similar users visited
before) and an Item-Based (IB) (non-normalized k-nn that recommends to the
target user venues similar to the ones that she visited previously) collaborative
filtering algorithm.
We also included amatrix factorization algorithm that usesAlternate Least Squares
for optimization (HKV) from (Hu et al. 2008), and the Bayesian Personalized
Ranking (a pairwise personalized ranking loss optimization algorithm) using a
matrix factorization approach (BPR) from (Rendle et al. 2009). For the BPR, we
use the MyMediaLite library.7

– Temporal/Sequential: we include a user-based neighborhood approach with a tem-
poral decay function (TD) (that gives more weight to more recent interactions),
and several algorithms based onMarkov Chains: Factorized Markov Chain (MC),
Factorized Personalized Markov Chains (FPMC) and Factorized Item Similar-
ity Models with high-order Markov Chains (Fossil). All three Markov Chains
approaches are obtained from (He and McAuley 2016).

– Purely geographical: we used the Kernel Density Estimation (KDE) from (Zhang
et al. 2014), and a recommender that suggests to the user the closest venues to her
centroid (AvgDis).

– Point-of-Interest: we used the fusion model proposed by Cheng et al. (2012) that
combines the Multi-center Gaussian Model technique (MGM) with Probabilis-
tic Matrix Factorization (PMF) (FMFMGM), a POI recommendation approach
from (Yuan et al. 2016) that usesBPR to optimize themodel (GeoBPR), aweighted
POI matrix factorization algorithm (IRenMF) from (Liu et al. 2014), and a hybrid
POI recommendation algorithm that combines the UB, Pop, and AvgDis recom-
menders (PGN).

We also include a perfect recommender that uses the test set as the ground truth, named
Skyline. This recommender will return the test set for the user, in order to check the
maximum values that we can obtain with ranking-based accuracy metrics (Skyline).
At the same time, it helps to evidence the biases and polarizations that already exist
in the test split.

7 MyMedialite: http://www.mymedialite.net/.
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4.3 Metrics

Since we have already defined in previous sections our proposed metrics to measure
different types of polarization, we will now show the formulation of the metrics used
for measuring the item accuracy, novelty, and diversity.

– Accuracy: oriented at measuring the number of relevant items recommended to the
user (Gunawardana and Shani 2015).Wewill use Precision (P) and the normalized
Discounted Cumulative Gain (nDCG):

– Precision:

P@n(u) = Relu@n

k
(9)

where Relu@n denotes the set of relevant items recommended at top n.
– nDCG:

nDCG@n(u) = DCG@n(u)

IDCG(u)@n
(10)

DCG@n(u) =
n∑

k=1

2relk − 1

log2(k + 1)
(11)

where relk denotes the real relevance of item k in the test set. In a rating-based
dataset, this real relevance would be the rating that the user gave to that item
in the test set. In our case, as we only know whether (and when) a user has
performed a check-in, we fix this ideal relevance to 1 as long as the venue
appears in the test set of the user (every venue visited by the user in the test set
is equally relevant).

Higher values of P and nDCG imply a better recommendation quality.
– Novelty: oriented at measuring the number of popular venues, since they are
inversely related to novel venues (Vargas and Castells 2011). We use a simpli-
fied version of the Expected Popularity Complement (EPC) metric:

– EPC:

EPC@n(u) = C
min (n,|Ru |)∑

i=1

(1 − p(seen | Ru,i )) (12)

where C is a normalizing constant (generally C = 1/
∑min (n,|Ru |)

i=1 ). In our

case, p(seen|ik) = |Ui ||Utraining | , with Ui being the number of users that checked-
in in venue i and Utraining the set of users in the training set. Higher EPC
implies better recommendation novelty.

– Diversity: oriented at measuring howmany different venues we are recommending
to the user (Vargas and Castells 2011). We use the Gini Coefficient to measure the
diversity.
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– Gini:

Gini@n = 1 − 1

|I| − 1

|I|∑

k=1

(2k − |I| − 1)p(ik | s) (13)

p(i | s) = |{u ∈ U |i ∈ Rs
u,n}|∑

j∈I |{u ∈ U | j ∈ Rs
u,n}|

(14)

where p(in | s) is the probability of the n-th least recommended item being
drawn from the recommendation list generated by s, that is, when considering
all rankings@n (Rs

u,n) for every user. In this paper, wewill use the complemen-
tary of the Gini Index proposed in Castells et al. (2015), as defined in Vargas
and Castells (2014). Higher Gini implies better recommendation diversity.

– User Coverage: aims to measure whether the recommender system covers all the
users or items in the catalog (Gunawardana and Shani 2015). We focus on the
User Coverage (UC), that accounts for the number of users to whom at least
one recommendation is made. This metric is useful because there might be some
models that are not be able to recommend to all users of the test set (e.g., users with
very few interactions who are difficult to model properly). Higher user coverage
means that our model is able to recommend to more users.

5 Polarization assessment

Tables 3, 4, and 5 show the results of the aforementioned recommenders in terms of
accuracy (P and nDCG), novelty (EPC), diversity (Gini), and our metrics to measure
popularity polarization (PopI, for item popularity and PopC for category popularity),
item exposure (ExpP using Parity and ExpR using Relevance as target policies), polar-
ization towards geographical distance (DistT and DistU), and user coverage (UC).
Recall that higher values indicate better accuracy, novelty, diversity, and coverage.
On the contrary lower values of popularity polarization (except PopI that, in this
case, higher values means a higher area under the curve and hence lower popularity
bias), exposure, and distance measure the optimal situation with less polarization. The
parameters tested of the recommenders can be found in Table 2. We selected the best
configuration of each recommender according to nDCG@5 obtained in the test set8.

In order to validate the different forms of polarization we presented, we performed
three sets of experiments:

1. Impact on accuracy metrics.Before assessing polarization, we evaluate the models
shown in Sect. 4.2, considering the metrics presented in Sect. 4.3. This will allow
us to assess the behavior of these models from accuracy and beyond-accuracy
perspectives, to then contextualize it to the polarization these models generate.

8 It should be noted that other cutoffs do not produce significantly different results. This has been tested
in additional experiments not reported here, in agreement with other authors reporting strong correlations
between metric values at low and high cutoffs (Valcarce et al. 2018).
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2. Measuring recommendation polarization.Weaddress towhat extent the considered
recommendation models are polarized towards the four perspectives considered in
this work (i.e., venue and category popularity, venue exposure, and geographic
distance), by measuring the metrics proposed in Sect. 3.

3. Polarization mitigation. We evaluate the capability of hybrid and re-ranking miti-
gation strategies to counter polarization.

Since no validation set is used in these experiments, the reported performance is
an overestimation. Such an experimental setting is not uncommon in recommender
systems, especially when dealing with temporal splits as we have here (Sun 2022).

In what follows, we analyze these perspectives in depth.

5.1 Impact on accuracy metrics

The analysis of these results highlighted some interesting behaviors. First, we observe
in Tables 3, 4, and 5 that the Skyline does not have full coverage for the users and it
is not obtaining a value of 1 in the accuracy metrics. This is because we follow the
TrainItems methodology (see Sect. 4.1) and therefore the items that did not appear
previously in the training set cannot be recommended. Besides, there might be some
users that have a smaller number of relevant items than the used cutoff. These two
reasons could prevent some metrics from obtaining a perfect score.

Regarding the rest of the algorithms, we observe that one of the best performing
recommender (in terms of accuracy, if we ignore the Skyline) is the Pop recommender
in all cities, even though in Tokyo the TDmodel and in London the GeoBPR and PGN
models obtain a slightly better value than Pop. This could be due to several causes,
including (i) the high sparsity found in the datasets, (ii) the test set that only contains
new interactions (and hence popular venues are safe recommendations), and (iii) the
temporal evaluation methodology, as there could be users in the test set that do not
appear in the training subset (for whose, again, popular venues can be very useful
recommendations). This is an interesting conclusion, because it is a clear sign that this
algorithm, despite its simplicity, is able to beat more complex models that incorpo-
rate temporal and/or geographical influences. However, this is somewhat surprising,
because despite being such a competitive baseline, it is not so common to analyze the
performance of this baseline in POI recommendation (Sánchez and Bellogín 2022).
Indeed, the authors of IRenMF and the FMFMGMdid not test their approaches against
the Pop recommender.

With respect to the POI algorithms, we observe that, in terms of accuracy, their
performance is very similar to other classical approaches, like the UB or the BPR.
This may be due to the high number of both hyper-parameters and parameters that
thesemodels have, making it sometimes difficult to find a good configuration of hyper-
parameters that obtains a decent performance. In fact, it is interesting to highlight the
low values achieved by the FMFMGM algorithm in New York and London, while
in Tokyo it is competitive against other models. This demonstrates that although we
might find good configurations in terms of accuracy, the parameter settings in some
circumstances is critical. In the end, classical proposals such as those based on neigh-
bors, might be easier to explain and optimize due to its simplicity and lower number of
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parameters (Ning et al. 2015). This also affects the PGN recommender since, despite
its simplicity, its performance is rather high. In New York and London it is the best
recommender of the POI family and in Tokyo it has a very similar performance to
IRenMF. The low number of parameters of this recommender, combined with the fact
that it merges different sources of information such as popularity and geographical
influence, may be the reason for this behavior.

5.2 Measuring recommendation polarization

When measuring the distance (DistT and DistU), we observe that both Rnd and Pop
algorithms obtain high values, showing us that the recommended venues of thesemod-
els are far from each other. Analyzing this geographical information is also important
because, as we observe in the Skyline, users tend to visit POIs that are relatively close
to each other (this is further evidenced in the distance distributions presented in Fig.
6), meaning that the distance between the relevant items, and also between the rec-
ommended items and the user’s center, should be low. Nevertheless, the geographical
influence alone is not enough to obtain high values in terms of relevance, as evidenced
by the poor performance of the pure geographical algorithms (AvgDis, KDE).

At the same time, if we analyze the rest of the recommenders, we observe that,
although all of them seem to perform personalized recommendations, regarding PopI,
PopC, ExpP, and ExpR metrics we observe a pronounced popularity bias. Let us
focus, for example, in the PopI and exposure metrics. The only recommenders with
decent values of accuracy that seem to obtain high values on these metrics are PGN
and IB, while the rest only obtain results slightly higher than Pop. In fact, when
analyzing the exposuremetrics (ExpP, ExpR), the random recommender obtains lower
values in terms of ExpP than all algorithms (except the Skyline) due to the fact that
it recommends items in an arbitrary manner, without overrepresenting any subset of
items. Similarly, this recommender obtains good results in theExpRmetric because it is
recommending almost all the venues in the system, so it is very likely that within those
recommendations there are relevant venues. However, what the Rnd recommender
fails is in recommending the relevant venues to the correct users, as discussed before
regarding the accuracy metrics.

Hence, we conclude that most of the recommenders suffer from a great popularity
bias, evidencing the difficulty of findinggood representatives for allmetrics. Therefore,
among all the experimented recommenders,we consider IB andPGN to be of particular
interest, since even though they do not perform as well in terms of accuracy as Pop,
they obtain competitive results in terms of other metrics like novelty, diversity, and
item exposure; this is a direct consequence of suffering less from the popularity bias.
Let us now analyze the effect of the popularity and the categorical polarization more
in detail.

Figure 7 shows the cumulative plot of the cities of Tokyo (top), New York (bottom-
left), and London (bottom-right) of the most representative recommenders shown in
Tables 3, 4, and 5, showing the 30% of the most popular venues. For this selection, we
considered those models with better values in any evaluation dimension that belong
to different families. By considering those results, we observe that some of the most
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Fig. 6 Distance distribution of the users in the training sets of the cities of Tokyo (top), New York (bottom-
left), and London (bottom-right)

competitive recommenders like UB, TD, and BPR are just basically returning the
most popular POIs (something that we observed in the previous tables thanks to our
proposed metrics PopI and PopC). At the same time, those recommenders that are
able to obtain a higher area under the curve than the one obtained by the Skyline
are the worst in terms of performance (i.e., Rnd and KDE). This is a worrying result
that departs from the results previously reported for some recommenders in terms of
classical accuracy metrics, which slightly differed from the Pop algorithm. However,
when the recommended items are analyzed, a clear, strong popularity bias is observed.
In order to better visualize this effect, in Fig. 9, in the left column, we show the
distribution of the top 30% most popular venues in the three different cities. As we
can observe, despite showing only 30% of the most popular venues, most of the check-
ins are concentrated in the most popular ones, leaving a large number of other venues
in the long-tail unexplored. If, for example, we analyze the same distributions at the
user level (distribution of the check-ins performed by the users, shown in the right
column in Fig. 9), we can observe how the distribution is not so unbalanced, although
we can find that there are a considerable number of users who have made very few
check-ins. Nevertheless, we believe there is potential in combining different types
of algorithms (those more biased towards popularity and those less so) to see if it is
possible to maintain an adequate level of accuracy while increasing at the same time
the performance of other metrics such as novelty, diversity, or item exposure.
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Fig. 7 Popularity cumulative plots from the cities of Tokyo (top), New York (bottom-left), and London
(bottom-right) of the recommenders, considering the top-5 items returned by each of them. Showing the
30% most popular POIs

Now, let us move to the analysis of category popularity polarization. In the
Foursquare dataset, we have 9 categories of level 1:9 Arts & Entertainment (1),
Outdoors & Recreation (2), Food (3), Nightlife Spots (4), Shops & Services (5), Pro-
fessional & Other Places (6), Travel & Transport (7), Colleges & Universities (8), and
Residences (9); due to space restrictions, they will be presented using their numerical
IDs. We first show in the right column in Fig. 8 the distribution of the venue cate-
gories in the training set of the three cities. With this image, we want to show that
the categories are not distributed uniformly and that venues related to both transport
(airports, train stations, subways, etc.) and food (restaurants) are the most numerous
in these cities, while the number of check-ins in residences is negligible. Taking this
into account, we show in the right column of Fig. 8, the distribution of the categories
of the recommended venues by our models using a cutoff of 5, that is, only the top-5
items recommended by each of those models are considered when measuring PopC.
In these figures, we observe that the popularity of a category is not always associated
with the number of POIs that share that category; more specifically, category 7 (Travel
& Transport) concentrates the largest number of check-ins in the city of Tokyo, while

9 There are at least two other levels in Foursquare, each level is more specific than the previous one: level
2 includes 48 categories, whereas level 3 contains 337. An example of the relation between the three levels
is a soccer stadium (level 3), which would be categorized as stadium (level 2) or as arts & entertainment
(level 1).

123



1912 P. Sánchez et al.

Fig. 8 In the left column, we represent distribution of the categories that appear in the top-5 recommended
items for each algorithm in the training set for Tokyo (first row), New York (second row), and London (last
row). In the right column, we show the distribution of the categories of the venues in the cities following
the same order. The category bins in the latter case are ordered by increasing category popularity

category 3 (Food) is the second most popular category; however, since this category
covers a large number of different venues, those recommenders with a strong item
popularity bias (such as Pop) recommend almost no POIs from this category, since its
corresponding items are not globally popular. A similar behavior is observed in New
York, where category 3 is the most popular one in the number of check-ins but most
personalized recommenders do not suggest as many items belonging to that category
as those from categories 7 or 1.

Interestingly, the analysis of the category bias allows discriminating between those
recommendation methods that seem to have the same popularity bias, according to
Fig. 7. For instance, it is now more clear that Pop and BPR are recommending prac-
tically the same items. At the same time, IRenMF and UB also include some of the
least popular categories, evidencing different patterns on the recommendations that,
as we will discuss later, prompts different effects on the accuracy of these algorithms.
Finally, those techniques with a less pronounced category bias exploit very different
sources of information: Skyline uses the test directly, KDE exploits the geographical
coordinates, IB computes collaborative similarities between items (probably favoring
the less interacted items, as discussed previously), and Rnd. This is an indication that
the mitigation of these types of biases requires additional information sources. These
additional sources should, in any case, be balanced with relevant recommendations,
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since the risk of providing not interesting items is higher for less popular categories;
for instance, Skyline and Rnd show similar plots but have very different accuracy
levels.

5.3 Polarizationmitigation

As we observed in the previously reported results, it is impossible for one algorithm
to obtain the best performance in all reported metrics. In fact, the Skyline, which
would represent the best recommender in terms of accuracy, performs worse than the
Rnd recommender in terms of novelty and diversity. For that reason, and considering
accuracy as one of themost critical dimensions to optimize, we aim to combine several
algorithms to createmodels that obtain decent levels of accuracywhile overcoming the
analyzed polarizationmeasurements: popularity, exposure, and geographical distance.
In order to do so, we propose two different but complementary approaches to mitigate
the aforementioned biases.

As a first approach, we create hybrid recommenders by combining several mod-
els (Burke 2002); we apply simple models based on weighting differently each of
the combined recommendation algorithms. By means of these weights, we will be
able to enhance the quality of the recommendations by balancing the contribution of
the different models depending on the evaluation dimension that we are interested in
maximizing in that particular moment, either ranking accuracy, novelty, or diversity.
In our second approach, we make use of reranking techniques popular in the Infor-
mation Retrieval and Recommender Systems fields to address the tradeoff between
accuracy and diversity (Santos et al. 2010). In our context, we use these techniques in
order to rearrange the top-n recommended items by an algorithm according to another
recommendation technique. The objective of both proposals is to generate new rec-
ommendation lists that are capable of maintaining acceptable levels of accuracy, while
improving performance in other dimensions, such as novelty (since it is the opposite to
popularity), diversity, or geographical variability, thus mitigating some of the desired
biases.

It should be noted, however, that all these measurements (and whether an improve-
ment was found) depend on having a test set as reference. Such a set may contain
biases itself, hence limiting the generalization and impact of the proposed techniques.
Collecting and using unbiased datasets is out of the scope of this paper, but it is a
direction worth exploring in the future.

To define our hybrid approaches, we assume we have collected the top-n lists
of a set of recommenders, denoted as R, and a weight vector W , so that R j ∈ R
denotes the recommendations for all the users of the j-th recommender, and w j ∈ W
denotes the weight for that recommender. As every recommender may have a different
range (for the scores generated for every recommended item), we first combine all the
recommendation lists using the min-max normalization. The final score user u has for
item i is computed as:

s(i, u;R,W ) =
|R|∑

j=1

w j s(i, R j
u ) − min (R j

u )

max (R j
u ) − min (R j

u )
(15)
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where s(i, L) provides the score of item i within the recommendation list L , whereas
min (·) and max (·) denote the minimum and maximum score of the list for user u by
recommender R j . Moreover, instead of using all the recommended items from each
method (which might be computationally expensive) in our hybrid formulation, we
decided to use the top-100 items of each recommender being considered. This top-100
selection is only used for generating recommendations, i.e., it is independent of the
cutoff used to measure the quality of the recommendations.

On the other hand,webase our re-ranker approach in the xQuADframework (Santos
et al. 2010). Considering this, our proposed model can be formulated as follows:

fobj (u, i; λ, R j , Rk) = λ · fR j (u, i) + (1 − λ) · fRk (u, i) (16)

where R j and Rk are the two RSs to be combined (the second one is used to re-
rank the results from the first one), fobj is the objective function to be maximized.
Consequently, the final score of item i is a combination of the ranking position in the
original recommender R j and the second recommender Rk used to re-rank using the
combination parameter λ. In both cases, we use a score derived from the one presented
before for the hybrid approach, that is, fR(u, i) = rank(s(i, Ru), Ru). Then, a new
ranking is created by sorting the combined scores obtained through the objective
function. As in this case we re-rank a recommendation using another algorithm, we
need to restrict the number of items even more. Otherwise, the second method may
push items that are not very relevant since they were originally very low in the ranking.
Thus, we consider the top-20 items from R j .

Even though both approaches may seem similar, there is a substantial difference
between them.While in the hybrid approach we combine two independent recommen-
dation lists, in the re-ranking approach the candidate items come only from the first
recommender, i.e., the re-ranked items by the second recommender belong to the first
model. Additionally, we can only apply the second approach to a pair of RSs; hence,
for the sake of comparability, we restrict the size of the setR to hybrid recommenders
of size two, although in the future, we would like to investigate how to combine larger
pools of recommenders.

Hence, based on the proposed approaches,we present inTables 6, 7, and 8 the results
for the cities of Tokyo, New York, and London of the following recommenders: Pop,
UB, TD, IRenMF, and PGN. We decided to select these recommenders because they
are the ones that achieve the best values according to the accuracy metrics. For each
recommender, we show three configurations regarding the hybrid approaches denoted
as H(R1, R2), where each model is combined with the IB recommender with different
weights. These weights are designed to balance the contribution of each model in the
final recommendations. As there might be a large number of possible configurations,
we decided to focus on three weights: 0.2, 0.8, and 0.5. These weights allow us to
explore the effect in the recommendations when giving less importance to the first
recommender (0.2), the same weight to both models (0.5), and more importance to
the first algorithm (0.8). Thus, for example for H(0.2 Pop + 0.8 IB), the final score of
every item is created from Pop recommender and IB recommender contributing 20%
and 80% to the final score, respectively. We also include one re-ranker configuration,
denoted as RR(R1, R2), where, as explained before, the IB recommender is used to re-
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rank the top 20 recommended items from each method. The reason why we selected
the IB approach is straightforward: it is the personalized recommender (discarding
the pure geographical ones) that achieves the best values in novelty, diversity, and
exposure while not being the worst in terms of accuracy.

When analyzing these results, we notice some interesting outcomes. In New York,
we observe that the best recommender in terms of accuracy is still the pure Pop model,
however, when using the hybrid IB with a weight of 0.5 we reduce the popularity
bias (as we can see in the PopI metric) while improving almost in half the exposure
values. Better mitigation results are obtained when the weight on IB is higher, but in
that scenario, accuracy metrics decrease by more than a 37% (from 0.069 to 0.043
in terms of P). For the rest of the models (UB, TD, IRenMF, PGN) in this city we
do observe that using a hybrid with a weight of 0.2 in the IB component allows us
to alleviate most of the biases while also obtaining slightly higher values in terms of
accuracy. This is particularly interesting because we are able to maintain similar levels
of accuracy while improving significantly the results obtained in terms of novelty,
diversity, and polarization mitigation using such a simple technique. With respect to
comparing the performance of the re-rankers with the hybrids, we can observe that,
in general, re-rankers obtain comparable results to those of using a weight of 0.5 for
the hybrids, which might be reasonable since the IB re-ranker can only modify the
ranking of the top-20 items returned by the recommender, so the (biased) original
recommendations still maintain a strong effect in the final ranking. It is important to
note that, regarding the geographical polarization, we observe that in the case of New
York we are able to reduce this bias when using a weight of 0.8 with the IB approach
in the hybrid model (in the case of DistT, more than a 26%, from 30.8 to 22.6) or
when using the re-ranker (here, for DistT, more than a 13% improvement, from 30.8
to 26.7). However, the reduction of the bias in these metrics is still far from the values
reported in the Skyline of Table 4. In fact, it should be noted that any reduction of this
bias would be surprising considering that the IB recommender does not include any
geographical component. Regarding this, we performed experiments considering the
KDE as a candidate algorithm to build the hybrids and the re-rankers. However, we
observed that when we reduced the distance of the recommended venues to the user,
the accuracy of the recommendations decreased significantly. For example, in New
York, we observed that when using our reranking approach, the performance in terms
of ranking accuracy decreases, for all recommenders, more than a 50%, evidencing
that the KDE is not a good method to be used with these mitigation proposals.

The results for the Tokyo dataset, shown in Table 6, confirm a very interesting
case where the best algorithm in terms of accuracy outperforms the best recommender
reported in Table 3 (which was, in fact, the Pop recommender, also reported in this
table). Here, the best performing configuration is the PGN with the IB re-ranker.
Although this is a promising result, we observe that in this case, the re-ranker is
obtaining lower values in terms of novelty and diversity while suffering from a larger
popularity bias (but lower category bias). Nevertheless, there is one example that
shows a very good tradeoff among all the metrics: H(0.2 PGN + 0.8 IB). In this
case, it also obtains a higher performance than the pure PGN; more specifically, we
are able to improve the accuracy a 5.88% in terms of P while reducing the ExpP
and ExpR by a 30.9% and a 33% respectively when compared against the result
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obtained by the PGN. In the case of the city of London, we observe in Table 8 that
the best performing configuration in terms of P is the Pop algorithm with the item
reranker, and in terms of nDCG is the PGN combined with the IB with a weight
of 0.2. However, the most important conclusion about these cases is that we again
managed to improve performance in terms of ranking accuracy (up to 14% in the
case of the Pop), maintaining similar values in novelty and diversity while reducing
exposure polarization. This indicates that, as long as we have a test set available,
we are able to increase the performance of the different models in other dimensions
without degrading the accuracy ranking dramatically. The geographical polarization,
on the other hand, is more difficult to improve, as discussed for the New York city.
However, all these examples confirm that it is possible to find configurations where
better results than the original recommenders are obtained, either in terms of accuracy
while keeping similar polarization values, or reduced polarizationmeasurementswhile
keeping comparable accuracies.

6 Conclusions and future work

Research on the characterization of biases in Artificial Systems in general, and Rec-
ommender Systems in particular, is an area of growing interest. In this work, we
have focused on polarization, that is, how far an algorithm deviates from what was
observed in the training data. We have characterized four types of polarizations in
Location-Based Recommender Systems, a specific type of algorithms that suggest
points-of-interest (or venues) to users, by exploiting their preferences and other inher-
ent characteristics from the touristic domain, such as location and item categories.
This type of suggestion is one of the main means for users to explore a city and the
business of venue owners is directly affected by them, hence providing equitable rec-
ommendations is a key aspect that may have a concrete impact on society. In detail,
we have analyzed the popularity polarization (both from venues and categories), the
exposure of venues, and the polarization related to geographical distance.

After the characterization, in the experiments, we have assessed these different
sources of polarization by comparing several state-of-the-art recommenders. Our
results show that popularity polarization is prevalent inmany of these recommendation
algorithms, both in generic or tailored approaches for location-based recommendation.
In terms of exposure and distance, there is a difficult tradeoff to satisfy with respect
to accuracy. This is, as discussed in the paper, tied to the test set available which may
itself contain bias.

Finally, we propose two techniques based on combining recommendation algo-
rithms (either by building a hybrid or a re-ranker method) that have demonstrated
promising results to mitigate the analyzed polarizations. In particular, for some cases,
these approaches are able to improve accuracy while reducing the observed polar-
ization. However, this effect depends on how the recommenders to be combined are
selected and also on the test set used to analyze the quality of the recommendations.

That iswhy, in the future, a deeper analysis is necessary to be performed so that other
families of algorithms are also included. In particular, more dynamic approaches based
on sequences or other contexts available in the tourism domain might have different
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levels of sensitivity to these biases. Similarly, we believe the polarization assessment
performed herein should be extended to analyze how it affects groups of different users,
for example, according to sensitive attributes such as user gender, age, or ethnicity. In
the same way, a more automatic approach to detect which recommendation algorithm
should be used to be combined with when using the proposed techniques, needs to be
analyzed to scale these approaches to larger datasets or other recommendation tasks.

At the same time, we would like to explore other strategies for reducing the polar-
ization of recommendations without the need for the users’ ground truth, so that the
polarization reduction is not so dependent on the test set. Indeed, besides the algo-
rithmic bias discussed in the introduction, another popular source of bias is the fact
that the data could be collected in a biased way, or that users interact with the system
in such a way that biased interactions are recorded (Chen et al. 2020). In this paper,
we aimed at understanding how biased or polarized the recommendations depending
on the algorithm are, since, even starting from the same data, some recommenders
may output more polarized results than others. However, this only relates to training
data, but this could also affect the test data, since the original data from where the
training and test splits are generated are the same. To the best of our knowledge, there
are not many feasible and realistic solutions to this aspect, and the community is still
working on it. One possibility would be to collect complete and unbiased datasets.
This has been done for specific domains (Cañamares and Castells 2018), evidencing
the very high cost it is required for such constructions. We may also focus on specific
subsets of users or items (those items in the long-tail or users with enough interactions
in the system), however this is not guaranteed to reduce the bias in the data, and may
have generalization problems. A potential solution that would require further analysis
and proper formalization is the use of simulations to generate synthetic data without
biased ground truth. However, this alternative would depend on the possibility of gen-
erating realistic user interactions, which is something quite challenging, even more
for location-based information (Ekstrand et al. 2021a; Hazrati and Ricci 2022).

Finally, other ways to mitigate these and other biases should be explored in the
field of Point-of-Interest recommendation, beyond exposure polarizations, such as
selection biases—where the observed interactions are not a representative sample
of all the interactions—and feedback loop effects—where the exposed items by the
recommender are used as training data for the same recommender, intensifying the
biases over time—(Chen et al. 2020).
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Appendix

As already discussed in Sect. 5.2, in Fig. 9 we show the distribution of the top 30%
most popular venues in the three different cities (left column). On the right column of
this figure, the check-in distribution performed by users is depicted. It is remarkable
how strong the long-tail effect is in both situations, meaning that there are items and
users that concentrate most of the check-ins.

Fig. 9 In the first column, we show the distribution of the 30% of the most popular venues in the cities
of Tokyo (first row), New York (second row) and London (last row). In the second column, we show the
distribution of the check-ins performed by the users in the same cities
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